Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 180
Filtrar
1.
J Agric Food Chem ; 2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39292825

RESUMEN

Transketolase (TKL; EC 2.2.1.1) is a highly promising potential target for herbicidal applications. To identify novel TKL inhibitors, we designed and synthesized a series of 3-oxopropionamide-1-methylpyrazole carboxylate analogues and assessed their herbicidal activities. Ethyl 3-((1-((2,4-dichlorophenyl)amino)-1-oxopropan-2-yl)oxy)-1-methyl-1H-pyrazole-5-carboxylate (D15) and ethyl 1-methyl-3-((1-oxo-1-((thiophen-2-ylmethyl)amino)propan-2-yl)oxy)-1H-pyrazole-5-carboxylate (D20) exhibited superior growth inhibition activities against both the root and stem of Amaranthus retroflexus (A. retroflexus) compared to nicosulfuron and mesotrione. Additionally, D15 achieved an inhibition rate of more than 90% against the roots and stems of Digitaria sanguinalis (D. sanguinalis), outperforming the four control agents at a concentration of 200 mg/L using the small cup method. In the pre-emergence herbicidal activity test, D15 effectively inhibited D. sanguinalis by more than 90% at 150 g ai/ha, surpassing the efficacy of the control, mesotrione. Conversely, in the postemergence herbicidal activity test, D20 exhibited efficient inhibition of A. retroflexus by more than 90% at 150 g ai/ha, outperforming the control agents nicosulfuron, mesotrione, and metamifop. The results of the TKL enzyme activity test showed that the IC50 values of compounds D15 and D20 were 0.384 and 0.655 mg/L, respectively, which were close to those of the control agents. Furthermore, molecular docking and molecular dynamics simulation studies revealed that D15 and D20 interacted favorably with the TKL of Setaria viridis. Such findings highlight the promising potential of D15 and D20 as lead TKL inhibitors for the optimization of new herbicides.

2.
J Agric Food Chem ; 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39269321

RESUMEN

Five new sorbicillinoid derivatives, including (±)-aspersorbicillin A [(±)-1], a pair of enantiomers at C-9, and aspersorbicillins B-D (2-4), together with two known analogs (5 and 6) were isolated from the endophytic fungus Aspergillus aculeatus TE-65L. Their structures including absolute configurations were determined by detailed spectroscopic analyses and electronic circular dichroism calculations. The herbicidal activity of sorbicillinoids on the germ and radicle elongation of various weed types was reported for the first time. Compound 1 displayed significant herbicidal activity against Eleusine indica germ elongation (IC50 = 28.8 µg/mL), while compound 6 inhibited radicle elongation (IC50 = 25.6 µg/mL). Both were stronger than those of glyphosate (66.2 and 30.9 µg/mL, respectively). Further transcriptomic and LC-MS/MS metabolomic analysis indicated that 6 induced the transcriptional expressions of genes related to the lignin biosynthetic pathway, resulting in lignin accumulation. Transmission electron microscopy confirmed the cell wall thickening of seeds treated with 6, suggesting weed growth inhibition. This study reveals new lead compounds for fabricating natural herbicides and expands the agricultural use of sorbicillinoid analogs.

3.
J Agric Food Chem ; 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39137321

RESUMEN

Thiazole and phenoxyacetic acid are key moieties in many natural and synthetic biologically active agents. A series of N-(5-(3,5-methoxyphenyl)-(thiazole-2-yl))phenoxyacetamide derivatives 6an-6bd were designed and synthesized, and their structures were confirmed by NMR and HRMS. Most of derivatives exhibited superior inhibition of Echinochloa crusgalli (E.c.) and Lactuca sativa (L.s.) seed germination by the Petri dish bioassay. Indeed, herbicidal bioassays indicated that 6an (2-(2,4-dichlorophenoxy)-N-(5-(3,5-dimethoxyphenyl)-1,3,4-thiadiazol-2-yl)acetamide) had the best inhibition against L.s. (IC50 = 42.7 g/ha, 375 g/ha at field experiments). 6an also had no harmful effect on Zea mays at 2- to 4-fold field usage. Moreover, transcriptomics and metabolomics analysis showed that 6an significantly influenced cell metabolism, including galactose metabolism and ascorbate and aldarate metabolism. These discoveries highlight that 6an shows promise to be developed as a potential herbicide.

4.
Plants (Basel) ; 13(15)2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39124163

RESUMEN

Cestrum parqui L'Herit. (Solanaceae family) is a species of forest shrub, self-incompatible and specialized in pollination, widespread in the subtropical area of the planet, and now widely distributed also in the Mediterranean area. The constituents of its leaves have antimicrobial, anticancer, insecticidal, antifeedant, molluscicidal, and herbicidal properties. The spread of this species represents a valuable source of compounds with high biological value. Various research groups are engaged in defining the chemical composition of the different parts of the plant and in defining its properties in view of important and promising commercial applications. To date, there are only a few incomplete reports on the potential applications of C. parqui extracts as selective natural pesticides and on their potential phytotoxic role. Scientific knowledge and the use of extraction techniques for these components are essential for commercial applications. This article summarizes the research and recent studies available on the botany, phytochemistry, functional properties, and commercial applications of C. parqui.

5.
J Agric Food Chem ; 72(34): 18898-18908, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39147603

RESUMEN

Phytoene desaturase (PDS) is a key rate-limiting enzyme in the carotenoid biosynthesis pathway. Although commercial PDS inhibitors have been developed for decades, it remains necessary to develop novel PDS inhibitors with higher bioactivity. In this work, we used the scaffold hopping and linker modification approaches to design and synthesize a series of compounds (7a-7o, 8a-8l, and 14a-14d). The postemergence application assay demonstrated that 8e and 7e separately showed the best herbicidal activity at 750 g a.i./ha and lower doses (187.5 g, 375g a.i./ha) without no significant toxicity to maize and wheat. The surface plasmon resonance revealed strong binding affinity between 7e and Synechococcus PDS (SynPDS). The HPLC analysis confirmed that 8e at 750 g a.i./ha caused significant phytoene accumulation in Arabidopsis seedlings. This work demonstrates the efficacy of structure-guided optimization through scaffold hopping and linker modification to design potent PDS inhibitors with enhanced bioactivity and crop safety.


Asunto(s)
Inhibidores Enzimáticos , Herbicidas , Oxidorreductasas , Zea mays , Oxidorreductasas/metabolismo , Oxidorreductasas/química , Oxidorreductasas/antagonistas & inhibidores , Herbicidas/farmacología , Herbicidas/química , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Zea mays/química , Relación Estructura-Actividad , Arabidopsis/enzimología , Arabidopsis/efectos de los fármacos , Arabidopsis/química , Arabidopsis/metabolismo , Triticum/química , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/antagonistas & inhibidores , Estructura Molecular , Triazoles/química , Triazoles/farmacología
6.
J Agric Food Chem ; 72(31): 17219-17228, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39052543

RESUMEN

Twelve novel longifolene-derived primary amine carboxylates were synthesized and evaluated for herbicidal activity. The structures of title compounds were confirmed by Fourier-transform infrared spectroscopy, 1H nuclear magnetic resonance (NMR), 13C NMR, and high-resolution mass spectrometry. The results showed that all the synthesized compounds exhibited higher herbicidal activity than the corresponding carboxylic acids involved in the reaction and the commercial herbicide glyphosate; some of them even possessed inhibition rates of 100% against Lolium multiflorum Lam. and Brassica campestris at low concentrations (0.039-0.313 mmol/L). Moreover, structural factors, including types of carboxylates and carbon chain length, had a great influence on the herbicidal performance. The herbicidal activity of dicarboxylates was similar to or much higher than that of corresponding monocarboxylates and glyphosate. Furthermore, compound 5l was found to be the most active candidate against the root and shoot growth of L. multiflorum Lam. and B. campestris with half maximal inhibitory concentrations (IC50) of around 0.010 and 0.023 mmol/L. The present work indicated that those prepared compounds have great potential to serve as high-performance botanical herbicides used at low doses.


Asunto(s)
Aminas , Brassica , Ácidos Carboxílicos , Herbicidas , Lolium , Herbicidas/farmacología , Herbicidas/química , Herbicidas/síntesis química , Brassica/efectos de los fármacos , Brassica/crecimiento & desarrollo , Brassica/química , Lolium/efectos de los fármacos , Lolium/crecimiento & desarrollo , Aminas/química , Aminas/farmacología , Ácidos Carboxílicos/química , Ácidos Carboxílicos/farmacología , Control de Malezas , Relación Estructura-Actividad , Malezas/efectos de los fármacos , Malezas/crecimiento & desarrollo , Estructura Molecular
7.
J Agric Food Chem ; 72(31): 17200-17209, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39075938

RESUMEN

Photosynthesis system II (PS II) is an important target for the development of bioherbicides. In this study, a series of natural naphthoquinone derivatives containing diaryl ether were designed and synthesized based on the binding model of lawsone and PS II D1. Bioassays exhibited that most compounds had more than 80% inhibition of Portulaca oleracea and Echinochloa crusgalli roots at a dose of 100 µg/mL and compounds B4, B5, and C3 exhibited superior herbicidal activities against dicotyledonous and monocotyledon weeds to commercial atrazine. In particular, compound B5 exhibited excellent herbicidal activity at a dosage of 150 g a.i./ha. In addition, compared with atrazine, compound B5 causes less damage to crops. Molecular docking studies revealed that compound B5 effectively interacted with Pisum sativum PS II D1 via diverse interaction models, such as π-π stacking and hydrogen bonds. Molecular dynamics simulation studies and chlorophyll fluorescence measurements revealed that compound B5 acted on PS II. This is the first report of natural naphthoquinone derivatives targeting PS II and compound B5 may be a candidate molecule for the development of new herbicides targeting PS II.


Asunto(s)
Diseño de Fármacos , Echinochloa , Herbicidas , Simulación del Acoplamiento Molecular , Naftoquinonas , Malezas , Herbicidas/química , Herbicidas/farmacología , Herbicidas/síntesis química , Naftoquinonas/química , Naftoquinonas/farmacología , Echinochloa/efectos de los fármacos , Echinochloa/crecimiento & desarrollo , Malezas/efectos de los fármacos , Malezas/crecimiento & desarrollo , Relación Estructura-Actividad , Éteres/química , Éteres/farmacología , Complejo de Proteína del Fotosistema II/química , Complejo de Proteína del Fotosistema II/antagonistas & inhibidores , Complejo de Proteína del Fotosistema II/metabolismo , Estructura Molecular , Proteínas de Plantas/química , Raíces de Plantas/química , Raíces de Plantas/efectos de los fármacos
8.
Molecules ; 29(13)2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38998991

RESUMEN

Weeds are a serious threat to crop production, and the utilization of secondary metabolites of phytopathogenic fungi is considered to be an effective method of weed control. In this study, eight compounds were isolated and purified from the mycelium and fermentation broth extracts of Bipolaris cookei SYBL03. The compounds (1-8), except 2 and 6, are reported for the first time from this genus. The herbicidal activities of compounds 1-8 were studied by evaluating their effects on the seed germination and seedling growth of monocotyledonous and dicotyledonous weeds. The results indicated that compound 7 (Cyclo-N-methylphenylalanyltryptophenyl, cNMPT) exhibited a concentration-dependent dual effect on the growth of weed seedlings and selective herbicidal activity against dicotyledonous weeds. We further investigated the morphological and physiological responses of roots of Amaranthus retroflexus, a dicotyledonous weed, to compound 7. Some changes were found in seedlings grown in 400 µg/mL compound 7 solution for 96 h, such as shortening and swelling of elongation zone cells, reduced number and length of root hairs, damage and wrinkling of the root surface, occurrence of electrolyte leakage, and an increase in ethylene content. These results suggest that compound 7 may exert herbicidal activity by causing stress to weed seedlings. Increased ethylene production could be involved in the response of plants to compound 7.


Asunto(s)
Bipolaris , Herbicidas , Malezas , Plantones , Herbicidas/farmacología , Herbicidas/química , Herbicidas/aislamiento & purificación , Plantones/efectos de los fármacos , Plantones/crecimiento & desarrollo , Bipolaris/efectos de los fármacos , Malezas/efectos de los fármacos , Malezas/crecimiento & desarrollo , Germinación/efectos de los fármacos , Amaranthus/efectos de los fármacos , Amaranthus/crecimiento & desarrollo , Raíces de Plantas , Micelio/efectos de los fármacos , Micelio/crecimiento & desarrollo
9.
J Sci Food Agric ; 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38975904

RESUMEN

BACKGROUND: Evaluation of herbicidal activity and identification of active compounds are important bases for the development of new botanical herbicides. RESULTS: This study confirmed that Symphoricarpos orbiculatus has high herbicidal activities against mono-dicotyledonous weeds, including Echinochloa crusgalli, Digitaria sanguinalis, Amaranthus retroflexus and Portulaca oleracea. By bioassay-guided isolation, 12 compounds were isolated and identified from S. orbiculatus for the first time, including iridoids: naucledal (K1), loganin (K2), loganigenin (K3), loganin acid (K4), glucologanin (K5) and vogeloside (K6), as well as flavonoids: quercetine (K7), luteolin (K8), nobiletin (K9), astragalin (K10), isorhamnetin 3-d-glucoside (K11) and rutin (K12). Biological assays showed that iridoids are the main active ingredients of S. orbiculatus. The compounds of K5 and K6 could inhibit both the root (IC50 = 37.54 and 38.91 µg mL-1, respectively) and shoot (IC50 = 42.78 and 45.72 µg mL-1, respectively) of Portulaca oleracea, which have a weeding toxicity similar to that of the commercialized plant-based herbicide pelargonic acid. In addition, the results of pot culture assay showed that S. orbiculatus ethanol extracts had high fresh weight control effect against Digitaria sanguinalis and P. oleracea at the concentration of 40 g L-1. After 7 days, both the soil treatment and the stem and leaf spray method resulted in severe leaf necrosis and significant leaf etiolation. CONCLUSION: Symphoricarpos orbiculatus and its herbicidal active compounds have the potential to develop into botanical herbicides, and are first reported in the present study. © 2024 Society of Chemical Industry.

10.
Pest Manag Sci ; 80(9): 4665-4674, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38884421

RESUMEN

BACKGROUND: The presence of barnyardgrass poses a threat to global food security by reducing rice yields. Currently, herbicides are primarily applied for weed management. However, the effectiveness of herbicide deposition and uptake on barnyardgrass is limited as a consequence of the high wax content on leaves, low water solubility and extreme lipophilicity of herbicides. Therefore, it is imperative to develop novel formulations for efficient delivery of herbicides to improve herbicidal activity and reduce dosage. RESULTS: We successfully prepared nanosuspension(s) (NS) of quinclorac through the wet media milling technique. This NS demonstrates excellent physical stability and maintains nanoscale during dose transfer. The deposition concentration and uptake concentration of NS on barnyardgrass were 3.84-4.47- and 2.11-2.58-fold greater than those traditional formulations, respectively. Moreover, the NS exhibited enhanced herbicidal activity against barnyardgrass at half the dosage required by conventional formulations without compromising rice safety. CONCLUSIONS: These findings suggest that NS can effectively facilitate the delivery of hydrophobic and poorly water-soluble herbicide active ingredients, thereby enhancing their deposition, uptake and bioactivity. This study expands the potential application of NS in pesticide delivery, which can provide valuable support for optimizing pesticide utilization, improving economic efficiency and mitigating environmental risks. © 2024 Society of Chemical Industry.


Asunto(s)
Herbicidas , Quinolinas , Herbicidas/química , Herbicidas/farmacología , Quinolinas/química , Quinolinas/farmacología , Suspensiones , Nanopartículas/química , Echinochloa/efectos de los fármacos , Control de Malezas/métodos
11.
J Agric Food Chem ; 72(26): 14592-14600, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38914518

RESUMEN

This study represents the initial examination of the herbicidal efficacy, crop safety, and degradation patterns of 2,4-D ethylhexyl ester (2,4-D EHE) at the enantiomeric level. Baseline separation of 2,4-D EHE enantiomers was achieved using a superchiral R-AD column, with their absolute configurations determined through chemical reaction techniques. Evaluation of weed control efficacy against sensitive species such as sun spurge and flixweed demonstrated significantly higher inhibition rates for S-2,4-D EHE compared to R-2,4-D EHE. Conversely, no stereoselectivity was observed in the fresh-weight inhibition rates of both enantiomers on crops or nonsensitive weeds. A sensitive HPLC-MS/MS method was developed to simultaneously detect two enantiomers and the metabolite 2,4-D in plants. Investigation into degradation kinetics revealed no substantial difference in the half-lives of R- and S-2,4-D EHE in maize and flixweed. Notably, the metabolite 2,4-D exhibited prolonged persistence at elevated levels on flixweed, while it degraded rapidly on maize.


Asunto(s)
Herbicidas , Espectrometría de Masas en Tándem , Zea mays , Zea mays/química , Zea mays/metabolismo , Herbicidas/química , Herbicidas/farmacología , Herbicidas/metabolismo , Estereoisomerismo , Ácido 2,4-Diclorofenoxiacético/química , Ácido 2,4-Diclorofenoxiacético/metabolismo , Cromatografía Líquida de Alta Presión , Malezas/efectos de los fármacos , Malezas/crecimiento & desarrollo , Malezas/metabolismo , Malezas/química , Cinética , Ésteres/química , Ésteres/farmacología , Ésteres/metabolismo , Araceae/química , Araceae/efectos de los fármacos , Araceae/metabolismo
12.
J Agric Food Chem ; 72(23): 12946-12955, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38809794

RESUMEN

Protoporphyrinogen IX oxidase (PPO, EC 1.3.3.4) is one of the most important targets for the discovery of green herbicides. In order to find novel PPO inhibitors with a higher herbicidal activity, a series of novel N-phenyltriazinone derivatives containing oxime ether and oxime ester groups were designed and synthesized based on the strategy of pharmacophore and scaffold hopping. Bioassay results revealed that some compounds showed herbicidal activities; especially, compound B16 exhibited broad-spectrum and excellent 100% herbicidal effects to Echinochloa crusgalli, Digitaria sanguinalis, Setaria faberii, Abutilon juncea, Amaranthus retroflexus, and Portulaca oleracea at a concentration of 37.5 g a.i./ha, which were comparable to trifludimoxazin. Nicotiana tabacum PPO (NtPPO) enzyme inhibitory assay indicated that B16 showed an excellent enzyme inhibitory activity with a value of 32.14 nM, which was similar to that of trifludimoxazin (31.33 nM). Meanwhile, compound B16 revealed more safety for crops (rice, maize, wheat, peanut, soybean, and cotton) than trifludimoxazin at a dose of 150 g a.i./ha. Moreover, molecular docking and molecular dynamics simulation further showed that B16 has a very strong and stable binding to NtPPO. It indicated that B16 can be used as a potential PPO inhibitor and herbicide candidate for application in the field.


Asunto(s)
Inhibidores Enzimáticos , Herbicidas , Oximas , Proteínas de Plantas , Malezas , Protoporfirinógeno-Oxidasa , Descubrimiento de Drogas , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Ésteres/química , Ésteres/farmacología , Éteres/química , Éteres/farmacología , Herbicidas/farmacología , Herbicidas/química , Simulación del Acoplamiento Molecular , Estructura Molecular , Oximas/química , Oximas/farmacología , Proteínas de Plantas/antagonistas & inhibidores , Proteínas de Plantas/química , Malezas/efectos de los fármacos , Malezas/enzimología , Protoporfirinógeno-Oxidasa/antagonistas & inhibidores , Protoporfirinógeno-Oxidasa/química , Relación Estructura-Actividad , Triazinas/química , Triazinas/farmacología
13.
Nat Prod Res ; : 1-10, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38695089

RESUMEN

Rubrolides are natural butyrolactones isolated from the tunicate Ritterella rubra, shows antibacterial, antiviral and plant photosynthesis inhibitory activities. In this study, a facile total synthetic method for preparing the rubrolides from benzaldehyde by a Darzens reaction, aldol reaction and vinylogous aldol condensation in five steps is presented. Three natural rubrolides (E, C and F) were synthesised in the total yields of 25-40%. The bioassay results indicate that rubrolides E, C and F exhibit some herbicidal inhibitory effect against rapeseed, in particular, rubrolide F shows the best herbicidal activities against rapeseed root with the growth inhibitory rate of 72.8%. At greenhouse treatment concentrations of 100 and 500 mg/L, rubrolide F show a positive dose-toxicity correlation towards abutilon plants. Collectively, facile total Synthesis strategy provided the base for further bioactivities study of rubrolides family. Rubrolide F may be act as inhibitor of photosynthesis, and this could be lead structure of new herbicide.

14.
Pest Manag Sci ; 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38808579

RESUMEN

BACKGROUND: Transketolase (TKL, EC 2.2.1.1) is a key enzyme in the pentose phosphate pathway and Calvin cycle, and is expected to act as a herbicidal site-of-action. On the basis of TKL, we designed and synthesized a series of 1-oxy-propionamide-pyrazole-3-carboxylate analogues and evaluated their herbicidal activities. RESULTS: Methyl 1-methyl-5-((1-oxo-1-((4-(trifluoromethyl)phenyl)amino)propan-2-yl)oxy)-1H-pyrazole-3-carboxylate (C23) and methyl 1-methyl-5-((1-oxo-1-((perfluorophenyl)amino)propan-2-yl)oxy)-1H-pyrazole-3-carboxylate (C33) were found to provide better growth-inhibition activities against Digitaria sanguinalis root than those of nicosulfuron, mesotrione and pretilachlor at 200 mg L-1 using the small-cup method. These compounds were also identified as promising compounds in pre-emergence and postemergence herbicidal-activity experiments, with relatively good inhibitory effects toward Amaranthus retroflexus and D. sanguinalis at 150 g ai ha-1. In addition, enzyme inhibition assays and molecular docking studies revealed that C23 and C33 interact favourably with SvTKL (Setaria viridis TKL). CONCLUSION: C23 and C33 are promising lead TKL inhibitors for the optimization of new herbicides. © 2024 Society of Chemical Industry.

15.
J Agric Food Chem ; 72(15): 8840-8848, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38570314

RESUMEN

A series of new 4-amino-3,5-dicholo-6-(5-aryl-substituted-1H-pyrazol-1-yl)-2-picolinic acid compounds were designed and prepared to discover herbicidal molecules. The inhibitory activities of all new compounds against the root growth ofArabidopsis thaliana were assayed. On the whole, the new synthesized compounds displayed good inhibition effects and had excellent herbicidal activities on root growth of weed at 500 µM. Importantly, a selection of compounds demonstrated comparable herbicidal properties to picloram. At the dosage of 250 g/ha, most of the compounds showed a 100% postemergence herbicidal activity to control Chenopodium album and Amaranthus retroflexus. Using compound V-2, the mechanism of action was investigated based on a phenotype study using AFB5-deficient Arabidopsis thaliana. It was found that the novel 6-pyrazolyl-2-picolinic acids were auxinic compounds. In addition, it was proposed that V-2 may be an immune activator due to its upregulation of defense genes and the increased content of jasmonic acid.


Asunto(s)
Arabidopsis , Herbicidas , Herbicidas/farmacología , Relación Estructura-Actividad , Ácidos Picolínicos/farmacología , Arabidopsis/genética
16.
Mol Divers ; 2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38609691

RESUMEN

4-Hydroxyphenylpyruvate dioxygenase (EC 1.13.11.27; HPPD) is one of the important target enzymes in the development of herbicides. To discover novel HPPD inhibitors with unique molecular, 39 cyclohexanedione derivations containing pyrazole and pyridine groups were designed and synthesized. The preliminary herbicidal activity test results showed that some compounds had obvious inhibitory effects on monocotyledon and dicotyledonous weeds. The herbicidal spectrums of the highly active compounds were further determined, and the compound G31 exhibited the best inhibitory rate over 90% against Plantago depressa Willd and Capsella bursa-pastoris at the dosages of 75.0 and 37.5 g ai/ha, which is comparable to the control herbicide mesotrione. Moreover, compound G31 showed excellent crop safety, with less than or equal to 10% injury rates to corn, sorghum, soybean and cotton at a dosage of 225 g ai/ha. Molecular docking and molecular dynamics simulation analysis revealed that the compound G31 could stably bind to Arabidopsis thaliana HPPD (AtHPPD). This study indicated that the compound G31 could be used as a lead molecular structure for the development of novel HPPD inhibitors, which provided an idea for the design of new herbicides with unique molecular scaffold.

17.
J Agric Food Chem ; 72(18): 10218-10226, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38666644

RESUMEN

In this work, a series of pyrrolidinone-containing 2-phenylpyridine derivatives were synthesized and evaluated as novel protoporphyrinogen IX oxidase (PPO, EC 1.3.3.4) inhibitors for herbicide development. At 150 g ai/ha, compounds 4d, 4f, and 4l can inhibit the grassy weeds of Echinochloa crus-galli (EC), Digitaria sanguinalis (DS), and Lolium perenne (LP) with a range of 60 to 90%. Remarkably, at 9.375 g ai/ha, these compounds showed 100% inhibition effects against broadleaf weeds of Amaranthus retroflexus (AR) and Abutilon theophrasti (AT), which were comparable to the performance of the commercial herbicides flumioxazin (FLU) and saflufenacil (SAF) and better than that of acifluorfen (ACI). Molecular docking analyses revealed significant hydrogen bonding and π-π stacking interactions between compounds 4d and 4l with Arg98, Asn67, and Phe392, respectively. Additionally, representative compounds were chosen for in vivo assessment of PPO inhibitory activity, with compounds 4d, 4f, and 4l demonstrating excellent inhibitory effects. Notably, compounds 4d and 4l induced the accumulation of reactive oxygen species (ROS) and a reduction in the chlorophyll (Chl) content. Consequently, compounds 4d, 4f, and 4l are promising lead candidates for the development of novel PPO herbicides.


Asunto(s)
Diseño de Fármacos , Inhibidores Enzimáticos , Herbicidas , Simulación del Acoplamiento Molecular , Malezas , Protoporfirinógeno-Oxidasa , Pirrolidinonas , Protoporfirinógeno-Oxidasa/antagonistas & inhibidores , Protoporfirinógeno-Oxidasa/química , Protoporfirinógeno-Oxidasa/metabolismo , Herbicidas/farmacología , Herbicidas/química , Herbicidas/síntesis química , Malezas/efectos de los fármacos , Malezas/enzimología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/síntesis química , Relación Estructura-Actividad , Pirrolidinonas/química , Pirrolidinonas/farmacología , Pirrolidinonas/síntesis química , Proteínas de Plantas/química , Proteínas de Plantas/antagonistas & inhibidores , Piridinas/química , Piridinas/farmacología , Piridinas/síntesis química , Amaranthus/efectos de los fármacos , Amaranthus/química , Echinochloa/efectos de los fármacos , Echinochloa/enzimología , Digitaria/efectos de los fármacos , Digitaria/enzimología , Digitaria/química , Lolium/efectos de los fármacos , Lolium/enzimología , Estructura Molecular
18.
Chem Biodivers ; 21(6): e202301867, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38581645

RESUMEN

Twelve novel carane-3,4-diol derivatives were designed, synthesized, and evaluated for their herbicidal activities against Lolium multiflorum Lam. and Brassica campestris for the first time. The relationships between the chemical structural factors, including types, the number or the carbon chain length of functional groups, associated with the lipophilicity and the herbicidal activity of the tested compounds were also discussed. The results showed that most of newly synthesized compounds had a dose-dependent, herbicidal activity against the root and shoot growths of Lolium multiflorum Lam. and Brassica campestris. Compared to carane-3,4-diol, most of the target derivatives possessed improved lipophilicity and certain solubilities in representative solvents with different polarities. Particularly, ester derivatives 3a-3b and 3e can be dissolved or dispersed in water, but also displayed higher herbicidal activity against Lolium multiflorum Lam. and Brassica campestris than other ester derivatives. The 50 % inhibitory concentration (IC50) value of compound 3e against shoot growth of Brassica campestris (0.485 mmol/L) was superior to that of commercial herbicide glyphosate (1.14 mmol/L), indicating that the potential application as a water-based herbicide for Brassica campestris control.


Asunto(s)
Brassica , Herbicidas , Agua , Herbicidas/farmacología , Herbicidas/síntesis química , Herbicidas/química , Brassica/efectos de los fármacos , Brassica/crecimiento & desarrollo , Agua/química , Relación Estructura-Actividad , Lolium/efectos de los fármacos , Lolium/crecimiento & desarrollo , Relación Dosis-Respuesta a Droga , Estructura Molecular
19.
J Agric Food Chem ; 72(14): 7727-7734, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38530940

RESUMEN

To discover novel transketolase (TKL, EC 2.2.1.1) inhibitors with potential herbicidal applications, a series of pyrazole acyl thiourea derivatives were designed based on a previously obtained pyrazolamide acyl lead compound, employing a scaffold hopping strategy. The compounds were synthesized, their structures were characterized, and they were evaluated for herbicidal activities. The results indicate that 7a exhibited exceptional herbicidal activity against Digitaria sanguinalis and Amaranthus retroflexus at a dosage of 90 g ai/ha, using the foliar spray method in a greenhouse. This performance is comparable to that of commercial products, such as nicosulfuron and mesotrione. Moreover, 7a showed moderate growth inhibitory activity against the young root and stem of A. retroflexus at 200 mg/L in the small cup method, similar to that of nicosulfuron and mesotrione. Subsequent mode-of-action verification experiments revealed that 7a and 7e inhibited Setaria viridis TKL (SvTKL) enzyme activity, with IC50 values of 0.740 and 0.474 mg/L, respectively. Furthermore, they exhibited inhibitory effects on the Brassica napus acetohydroxyacid synthase enzyme activity. Molecular docking predicted potential interactions between these (7a and 7e) and SvTKL. A greenhouse experiment demonstrated that 7a exhibited favorable crop safety at 150 g ai/ha. Therefore, 7a is a promising herbicidal candidate that is worthy of further development.


Asunto(s)
Ciclohexanonas , Herbicidas , Piridinas , Compuestos de Sulfonilurea , Herbicidas/farmacología , Herbicidas/química , Relación Estructura-Actividad , Simulación del Acoplamiento Molecular , Esqueleto , Pirazoles/farmacología , Pirazoles/química , Tiourea
20.
J Agric Food Chem ; 72(14): 7684-7693, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38532701

RESUMEN

Fosmidomycin (FOS) is a natural product inhibiting the DXR enzyme in the MEP pathway and has stimulated interest for finding more suitable FOS analogues. Herein, two series of FOS analogue hydroxamate-containing bisphosphonates as proherbicides were designed, with bisphosphonate replacing the phosphonic unit in FOS while retaining the hydroxamate (BPF series) or replacing it with retro-hydroxamate (BPRF series). The BPF series were synthesized through a three-step reaction sequence including Michael addition of vinylidenebisphosphonate, N-acylation, and deprotection, and the BPRF series were synthesized with a retro-Claisen condensation incorporated into the reaction sequence. Evaluation on model plants demonstrated several compounds having considerable herbicidal activities, and in particular, compound 8m exhibited multifold activity enhancement as compared to the control FOS. The proherbicide properties were comparatively validated. Furthermore, DXR enzyme assay, dimethylallyl pyrophosphate rescue, and molecular docking verified 8m to be a promising proherbicide candidate targeting the DXR enzyme. In addition, 8m also displayed good antimalarial activities.


Asunto(s)
Isomerasas Aldosa-Cetosa , Antimaláricos , Fosfomicina , Fosfomicina/análogos & derivados , Difosfonatos , Simulación del Acoplamiento Molecular , Fosfomicina/farmacología , Isomerasas Aldosa-Cetosa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA