RESUMEN
Over a reproductive cycle, the prevalence and intensity of degeneration of testicular follicles in Megapitaria squalida collected from the mining port of Santa Rosalia (a highly metal-polluted area), and San Lucas (a less polluted site), Gulf of California, Mexico, were evaluated. At San Lucas, most individuals had a typical testicular structure, and degeneration of testicular follicles was present in 9.5 % of spawning organisms. In contrast, at Santa Rosalia, 68 % of males, mainly in the ripe stage, had testicular degeneration (72 % severe intensity, mostly in medium and large-sized). Degeneration was characterized by intense hemocyte infiltration, identified as dense masses with numerous melanized cells in the follicle lumen. In both sites, males with testicular follicles degeneration had a lower condition index compared to males without degeneration. Degeneration of testicular follicles before spawning compromises and decreases the reproductive activity of M. squalida males at Santa Rosalia, which may ultimately affect the population sustainability.
Asunto(s)
Bivalvos , Reproducción , Testículo , Contaminantes Químicos del Agua , Animales , Masculino , Reproducción/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Testículo/efectos de los fármacos , Testículo/patología , Bivalvos/efectos de los fármacos , México , Monitoreo del Ambiente , Metales/toxicidadRESUMEN
N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine-quinone (6PPD-quinone), an oxidation product of the tire additive, 6PPD, has been associated with high mortality of salmonids (0.1 µg/L). The objective of this study was to determine the acute toxicity using neonates and mutagenicity (micronuclei in hemolymph of exposed adults) of 6PPD-quinone in the marine amphipod Parhyale hawaiensis. Also, we studied its mutagenicity in the Salmonella/microsome assay using five strains of Salmonella with and without metabolic system (rat liver S9, 5%). 6PPD-quinone did not present acute toxicity to P. hawaiensis from 31.25 to 500 µg/L. Micronuclei frequency increased after 96 h-exposure to 6PPD-quinone (250 and 500 µg/L) when compared to the negative control. 6PPD-quinone also showed a weak mutagenic effect for TA100 only in the presence of S9. We conclude that 6PPD-quinone is mutagenic to P. hawaiensis and weakly mutagenic to bacteria. Our work provides information for future risk assessment of the presence of 6PPD-quinone in the aquatic environment.
Asunto(s)
Anfípodos , Benzoquinonas , Mutágenos , Fenilendiaminas , Salmonella typhimurium , Animales , Pruebas de Mutagenicidad , Mutágenos/toxicidad , Salmonella typhimurium/efectos de los fármacos , Salmonella typhimurium/genética , Fenilendiaminas/toxicidad , Benzoquinonas/toxicidad , Anfípodos/efectos de los fármacos , Anfípodos/genéticaRESUMEN
Aedes aegypti are vector insects of arboviruses such as dengue, Zika, and chikungunya. All available vector control methods have limited efficacy, highlighting the urgent need to find alternative ones. Evidence shows that arachnids like ticks are sources of biologically active compounds. Moreover, chemical modulation of the locomotor and immune systems of vector insects can be used to control arbovirus transmission. The present study evaluated the effectiveness of crude saliva of female Amblyomma cajennense sensu stricto (s.s.) ticks in reducing locomotor activity and inducing an immune response in Ae. aegypti females. Additionally, the study evaluated the protein constitution of tick saliva. For this purpose, the crude saliva obtained from several semi-engorged A. cajennense females was used. A volume of 0.2 nL of crude tick saliva was administered to mosquitoes by direct intrathoracic microinjection. The effect of the tick's saliva on the locomotor activity of the mosquito was observed using Flybox, a video-automated monitoring system, and the hemolymph hemocyte levels were quantified by reading slides under a light microscope. The protein concentration of the crude tick saliva was 1.27 µg/µL, and its electrophoretic profile indicates the presence of proteins with a molecular weight ranging between â¼17 and 95 kDa. Microplusins, ixodegrins, cystatin, actins, beta-actin, calponin, albumin, alpha-globulins, and hemoglobin were the main proteins identified by proteomics in the saliva of A. cajennense. The microinjected saliva had low toxicity for Ae. aegypti females and significantly reduced their locomotor activity, especially in the transition between the light and dark phases. The crude tick saliva did not change the period and rhythmicity of the circadian cycle. The tick saliva significantly increased the number of hemocytes two days after injection and reduced it after five days. These results suggest that further evaluation of the biological properties of tick saliva proteins against Ae. aegypti would be of interest.
Asunto(s)
Aedes , Ixodidae , Infección por el Virus Zika , Virus Zika , Animales , Femenino , Saliva , Amblyomma , Hemocitos , Mosquitos Vectores , Locomoción , Virus Zika/fisiologíaRESUMEN
Hemocytes are the circulating cells of the hemolymph of oysters and are responsible for numerous physiological functions, including immune defense. The oyster Crassostrea gasar is a native species inhabiting mangrove habitat and is of great commercial interest, cultured throughout the Brazilian coast, mainly in the north and northeast. Despite its commercial importance, little is known about its immunological aspects and defense cells, the hemocytes. This work aimed to morphologically characterize hemocytes of the oyster C. gasar and to study one of the main cellular defense response, phagocytosis, using light microscopy and flow cytometry. The results showed the presence of six hemocyte populations in C. gasar hemolymph. These comprise of large and small granulocytes, large and small hyalinocytes, blast-like cells and a rare type classified as vesicular or serous hemocytes. Hyalinocytes were highly abundant and the most heterogeneous cell population, while small granulocytes, along with vesicular hemocytes were the less abundant population. Hemocytes of C. gasar oysters demonstrated capabilities to phagocytose three different types of particles tested: zymosan A, latex particles and Escherichia coli, indicating a broad defense capacity. The zymosan A were the most engulfed particles, followed by beads, mainly phagocytized by granulocytes, the most phagocytic cells, and finally E. coli, which were the least phagocytized. This study is the first characterization of C. gasar oyster hemocytes and will support future studies that aim to understand the participation of different hemocyte types in defense responses against pathogens and/or environmental changes.
RESUMEN
BACKGROUND: Mosquito-borne diseases affect millions of people. Chemical insecticides are currently employed against mosquitoes. However, many cases of insecticide resistance have been reported. Entomopathogenic fungi (EPF) have demonstrated potential as a bioinsecticide. Here, we assessed the invasion of the EPF Beauveria bassiana into Aedes aegypti larvae and changes in the activity of phenoloxidase (PO) as a proxy for the general activation of the insect innate immune system. In addition, other cellular and humoral responses were evaluated. METHODS: Larvae were exposed to blastospores or conidia of B. bassiana CG 206. After 24 and 48 h, scanning electron microscopy (SEM) was conducted on the larvae. The hemolymph was collected to determine changes in total hemocyte concentration (THC), the dynamics of hemocytes, and to observe hemocyte-fungus interactions. In addition, the larvae were macerated to assess the activity of PO using L-DOPA conversion, and the expression of antimicrobial peptides (AMPs) was measured using quantitative Real-Time PCR. RESULTS: Propagules invaded mosquitoes through the midgut, and blastopores were detected inside the hemocoel. Both propagules decreased the THC regardless of the time. By 24 h after exposure to conidia the percentage of granulocytes and oenocytoids increased while the prohemocytes decreased. By 48 h, the oenocytoid percentage increased significantly (P < 0.05) in larvae exposed to blastospores; however, the other hemocyte types did not change significantly. Regardless of the time, SEM revealed hemocytes adhering to, and nodulating, blastospores. For the larvae exposed to conidia, these interactions were observed only at 48 h. Irrespective of the propagule, the PO activity increased only at 48 h. At 24 h, cathepsin B was upregulated by infection with conidia, whereas both propagules resulted in a downregulation of cecropin and defensin A. At 48 h, blastospores and conidia increased the expression of defensin A suggesting this may be an essential AMP against EPF. CONCLUSION: By 24 h, B. bassiana CG 206 occluded the midgut, reduced THC, did not stimulate PO activity, and downregulated AMP expression in larvae, all of which allowed the fungus to impair the larvae to facilitate infection. Our data reports a complex interplay between Ae. aegypti larvae and B. bassiana CG 206 demonstrating how this fungus can infect, affect, and kill Ae. aegypti larvae.
Asunto(s)
Aedes , Beauveria , Humanos , Animales , Control Biológico de Vectores/métodos , Aedes/microbiología , Hemocitos , Microscopía Electrónica de Rastreo , Esporas Fúngicas , Larva/microbiologíaRESUMEN
Over time, a growing increase in human pollutants in the aquatic environment has been observed. The global presence of residues in water bodies reinforces the need to develop improved methods to detect them and evaluate their ecotoxicological effects in aquatic environments. Thus, this study aimed to present the main assays using Biomphalaria glabrata as a biological model for ecotoxicological studies. We performed a systematic literature review with data published up to June 2022 on the Web of Science, SCOPUS, Science Direct, PubMed, and SciELO databases. Thirty studies were selected for this review after screening. Biomphalaria glabrata has been studied as an ecotoxicological model for different substances through toxicity, embryotoxicity, cytotoxicity, genotoxicity, and bioaccumulation assays. Studies evaluating the impact of B. glabrata exposure to several substances have reported effects on their offspring, as well as toxicity and behavioral and reproductive effects. This review presents various assays using B. glabrata as a biological model for ecotoxicological studies. The use of a representative species of ecosystems from tropical regions is a necessary tool for tropical environmental monitoring. It was observed that the freshwater snail B. glabrata was effective for the evaluation of the ecotoxicity of several types of chemical substances, but further studies are needed to standardize the model.
Asunto(s)
Biomphalaria , Animales , Humanos , Ecotoxicología , Ecosistema , Agua Dulce/química , Modelos BiológicosRESUMEN
Dopamine modulates ticks and insect hemocytes and links these arthropods' nervous and immune systems. For the first time, the present study analyzed the effect of a dopamine receptor antagonist on the survival, biological parameters, phagocytic index, and dopamine detection in the hemocytes of ticks challenged by Metarhizium anisopliae. The survival and egg production index of Rhipicephalus microplus were negatively impacted when ticks were inoculated with the antagonist and fungus. Five days after the treatment, the survival of ticks treated only with fungus was 2.2 times higher than ticks treated with the antagonist (highest concentration) and fungus. A reduction in the phagocytic index of hemocytes of 68.4% was observed in the group inoculated with the highest concentration of the antagonist and fungus compared to ticks treated only with fungus. No changes were detected in the R. microplus levels of intrahemocytic dopamine or hemocytic quantification. Our results support the hypothesis that dopamine is crucial for tick immune defense, changing the phagocytic capacity of hemocytes and the susceptibility of ticks to entomopathogenic fungi.
RESUMEN
Adult ascidians have the capacity to regenerate the central nervous system (CNS) and are therefore excellent models for studies on neuroregeneration. The possibility that undifferentiated blood cells are involved in adult neuroregeneration merits investigation. We analyzed the migration, circulation, and role of hemocytes of the ascidian Styela plicata in neuroregeneration. Hemocytes were removed and incubated with superparamagnetic iron oxide nanoparticles (SPION), and these SPION-labeled hemocytes were injected back into the animals (autologous transplant), followed by neurodegeneration with the neurotoxin 3-acetylpyridine (3AP). Magnetic resonance imaging showed that 1, 5, and 10 days after injury, hemocytes migrated to the intestinal region, siphons, and CNS. Immunohistochemistry revealed that the hemocytes that migrated to the CNS were putative stem cells (P-element-induced wimpy testis + or PIWI + cells). In the cortex of the neural ganglion, migrated hemocytes started to lose their PIWI labeling 5 days after injury, and 10 days later started to show ß-III tubulin labeling. In the neural gland, however, the hemocytes remained undifferentiated during the entire experimental period. Transmission electron microscopy revealed regions in the neural gland with characteristics of neurogenic niches, not previously reported in ascidians. These results showed that migration of hemocytes to the hematopoietic tissue and to the 3AP-neurodegenerated region is central to the complex mechanism of neuroregeneration.
Asunto(s)
Urocordados , Animales , Hemocitos , Regeneración Nerviosa , Sistema Nervioso Central , Tubulina (Proteína) , Movimiento CelularRESUMEN
BACKGROUND: Snails of the genus Biomphalaria are intermediate hosts of Schistosoma mansoni, the main etiological agent of schistosomiasis mansoni, which affects about 236.6 million people in tropical and subtropical regions of the world. The World Health Organization recommends the population control of vector snails as one of the strategies to reduce the prevalence and incidence of schistosomiasis. In this study, molluscicidal and antiparasitic activities of plumbagin, a naturally sourced naphthoquinone with a range of biological effects, were evaluated against B. glabrata and cercariae of S. mansoni. RESULTS: After 24 h of exposure, plumbagin demonstrated molluscicidal activity at low concentrations against embryos (LC50 of 0.56, 0.93, 0.68, 0.51 and 0.74 µg mL-1 for the blastula, gastrula, trochophore, veliger and hippo stage, respectively) and adult snails (LC50 of 3.56 µg mL-1 ). There were no changes in exposed snails' fecundity or fertility; however, plumbagin was able to increase the frequency of DNA damage and the number of hemocytes, with apoptosis and binucleation being the main hemocyte alterations. In addition, plumbagin showed death of S. mansoni cercariae in the concentration of 1.5 µg mL-1 in 60 min, while showing moderate toxicity to Artemia salina. CONCLUSION: Plumbagin proved to be a promising substance for the control of B. glabrata population, intermediate host of S. mansoni, as well as the cercariae, infective stage for humans (definitive host), while being moderately toxic to A. salina, a crustacean widely used in ecotoxicity tests. © 2022 Society of Chemical Industry.
Asunto(s)
Biomphalaria , Naftoquinonas , Esquistosomiasis mansoni , Animales , Humanos , Biomphalaria/parasitología , Naftoquinonas/farmacología , Daño del ADNRESUMEN
This study describes for the first time the effect of saline extract and Parkia pendula seed fraction on Biomphalaria glabrata adult embryos and molluscs well as the reproductive parameters (fecundity and fertility) and survival, in addition to cytotoxicity and genotoxicity through the profile of blood cells after exposure to sublethal concentrations. Furthermore, we analyzed the action of both preparations against the cercariae of Schistosoma mansoni and their environmental safety using the bioindicator Artemia salina. The saline extract and fraction showed toxic effects for embryos (CL90 of 464.25, 479.62, 731.28, 643.28, 408.43 and 250.94, 318.03, 406.12, 635.64, 1.145 mg/mL, for blastula, gastrula, trocophore, veliger and hippo stage respectively), adult snails after 24 h of exposure (CL90 of 9.50 and 10.92 mg/mL, respectively) with increased mortality after 7 days of observation and significant decrease (p <0.05; p < 0.01 and p < 0.001) in egg mass deposition. At sublethal concentrations, an increase in quantitative and morphological changes in hemocytes was observed, and in the genotoxicity/comet assay analysis, varying degrees of nuclear damage were detected. In addition, the saline extract showed changes in the motility of the cercariae, while the fraction howed toxicity from a concentration of 1.0 mg/mL. The saline extract showed toxicity to A. salina at the highest concentrations (3.0, 4.0 and 5.0 mg/mL), while the fraction did not show ecotoxicity. Thus, the saline extract and fraction was promising in combating schistosomiasis by eliminating the intermediate host and causing alterations and/or mortality to the infectious agent.
Asunto(s)
Biomphalaria , Moluscocidas , Esquistosomiasis , Animales , Daño del ADN , Moluscocidas/farmacología , Extractos Vegetales/toxicidad , Schistosoma mansoni , Esquistosomiasis/tratamiento farmacológico , SemillasRESUMEN
Ticks are hematophagous ectoparasites with importance to animal and human health. In recent years, the study of ticks has had significant development, including immune response, vector-host interactions, physiological and multi-omics approaches. However, one of the main impediments is obtaining a significant amount of high-quality hemolymph. For this reason, we developed a protocol that allows obtaining up to 100 µl of hemolymph free of host blood per engorged tick. The technique consists of continuous hipocuticular punctures of the tick dorsum and an anticoagulant buffer that impedes hemolymph coagulation, allowing constant extravasation and ensuring high yields. Additionally, the hemocytes recovered with this protocol are intact and can be used for further analysis. The high-quality hemolymph obtained using this protocol and its applications will help to better understand the processes involving the hemolymph and its components. Although there are other hemolymph extraction protocols, the method developed here is very well suited for Rhipicephalus microplus, and in our experience, results in better yields and high-quality samples.
RESUMEN
Entomopathogenic fungi (EPF) have been widely explored for their potential in the biological control of insect pests and as an environmentally friendly alternative to acaricides for limiting tick infestation in the field. The arthropod cuticle is the main barrier against fungal infection, however, an understanding of internal defense mechanisms after EPF intrusion into the invertebrate hemocoel is still rather limited. Using an infection model of the European Lyme borreliosis vector Ixodes ricinus with the EPF Metarhizium robertsii, we demonstrated that ticks are capable of protecting themselves to a certain extent against mild fungal infections. However, tick mortality dramatically increases when the capability of tick hemocytes to phagocytose fungal conidia is impaired. Using RNAi-mediated silencing of tick thioester-containing proteins (TEPs), followed by in vitro and/or in vivo phagocytic assays, we found that C3-like complement components and α2-macroglobulin pan-protease inhibitors secreted to the hemolymph play pivotal roles in M. robertsii phagocytosis.
Asunto(s)
Ixodes , Enfermedad de Lyme , Metarhizium , Animales , HemocitosRESUMEN
The Theraphosidae family includes the largest number of species of the Mygalomorphae infraorder, with hundreds of species currently catalogued. However, there is a huge lack on physiologic and even ecologic information available, especially in Brazil, which is the most biodiverse country in the world. Over the years, spiders have been presented as a source of multiple biologically active compounds with basic roles, such as primary defense against pathogenic microorganisms or modulation of metabolic pathways and as specialized hunters. Spider venoms also evolved in order to enable the capture of prey by interaction with a diversity of molecular targets of interest, raising their pharmaceutical potential for the development of new drugs. Among the activities found in compounds isolated from venoms and hemocytes of Brazilian Theraphosidae there are antimicrobial, antifungal, antiparasitic and antitumoral, as well as properties related to proteinase action and neuromuscular blockage modulated by ionic voltage-gated channel interaction. These characteristics are present in different species from multiple genera, which is strong evidence of the important role in spider survival. The present review aims to compile the main results of studies from the last decades on Brazilian Theraphosidae with special focus on results obtained with the crude venom or compounds isolated from both venom and hemocytes, and their physiological and chemical characterization.
RESUMEN
Dopamine (DA) is a biogenic monoamine reported to modulate insect hemocytes. Although the immune functions of DA are known in insects, there is a lack of knowledge of DA's role in the immune system of ticks. The use of Metarhizium anisopliae has been considered for tick control, driving studies on the immune response of these arthropods challenged with fungi. The present study evaluated the effect of DA on the cellular immune response and survival of Rhipicephalus microplus inoculated with M. anisopliae blastospores. Exogenous DA increased both ticks' survival 72 h after M. anisopliae inoculation and the number of circulating hemocytes compared to the control group, 24 h after the treatment. The phagocytic index of tick hemocytes challenged with M. anisopliae did not change upon injection of exogenous DA. Phenoloxidase activity in the hemolymph of ticks injected with DA and the fungus or exclusively with DA was higher than in untreated ticks or ticks inoculated with the fungus alone, 72 h after treatment. DA was detected in the hemocytes of fungus-treated and untreated ticks. Unveiling the cellular immune response in ticks challenged with entomopathogenic fungi is important to improve strategies for the biological control of these ectoparasites.
RESUMEN
Schistosomiasis is a public health problem in many developing countries. The mollusc Biomphalaria glabrata is the most important vector of Schistosoma mansoni in South America. The population control of this vector to prevent the spread of schistosomiasis is currently done with the application of highly toxic molluscicide to the environment. The screening of substances in sublethal concentrations that have deleterious effects on physiological parameters is very relevant for the control of schistosomiasis, since the effectiveness of disease prevention increases if it acts on population control of the vector and on reproduction and elimination in S. mansoni cercariae. The objective of this study was to evaluate the reproductive parameters (fecundity and fertility), intra-mollusk effect (sporocysts I (72 h) and II (14 days after)) on the development of cercariae of S. mansoni and the immune cell profile of B. glabrata exposed to sublethal concentrations (LC25 - 0.5 µg/mL and LC50 - 0.92 µg/mL) of the usnic acid potassium salt (potassium usnate). LC 25 and LC 50 significantly reduced (p < 0.05) the fecundity of B. glabrata when treated infected and/or not exposed to infection, while unviable embryos were not observed in sporocyst stage I, being only significant (p < 0.05) for mollusks infected and treated with LC50 on sporocyst II. LC25 and LC50 of the potassium usnate caused significant reductions (p < 0.05) in the production and cercarial shedding when evaluated on sporocysts I and II. In addition, the mortality of infected and treated B. glabrata in the sporocyst II phase was quite marked after the 9th week of infection. Regarding the immunological cell profile of uninfected B. glabrata, both concentrations led to immunomodulatory responses, with significant morphological changes predominant of hemocytes that entered programmed cell death (apoptosis). It was concluded that the application of LC25 and LC50 from the potassium usnate could be useful in the population control of B. glabrata, since it interferes both in their biology and physiology and in the reproduction of the infectious agent of schistosomiasis mansoni.
Asunto(s)
Benzofuranos/farmacología , Biomphalaria , Animales , Biomphalaria/efectos de los fármacos , Biomphalaria/parasitología , Potasio , Schistosoma mansoniRESUMEN
Aedes aegypti mosquitoes are vectors for arboviruses of medical importance such as dengue (DENV) and Zika (ZIKV) viruses. Different innate immune pathways contribute to the control of arboviruses in the mosquito vector including RNA interference, Toll and Jak-STAT pathways. However, the role of cellular responses mediated by circulating macrophage-like cells known as hemocytes remains unclear. Here we show that hemocytes are recruited to the midgut of Ae. aegypti mosquitoes in response to DENV or ZIKV. Blockade of the phagocytic function of hemocytes using latex beads induced increased accumulation of hemocytes in the midgut and a reduction in virus infection levels in this organ. In contrast, inhibition of phagocytosis by hemocytes led to increased systemic dissemination and replication of DENV and ZIKV. Hence, our work reveals a dual role for hemocytes in Ae. aegypti mosquitoes, whereby phagocytosis is not required to control viral infection in the midgut but is essential to restrict systemic dissemination. Further understanding of the mechanism behind this duality could help the design of vector-based strategies to prevent transmission of arboviruses.
Asunto(s)
Aedes/citología , Aedes/virología , Virus del Dengue/fisiología , Hemocitos/inmunología , Hemocitos/virología , Virus Zika/fisiología , Aedes/anatomía & histología , Animales , Femenino , Hemocitos/fisiología , Mosquitos Vectores , Fagocitos/virología , FagocitosisRESUMEN
Oyster production in Brazil has been highlighted as an important economic activity and is directly impacted by the quality of the environment, which is largely the result of human interference and climate change. Harmful algal blooms occur in aquatic ecosystems worldwide, including coastal marine environments which have been increasing over the last decades as a result of global change and anthropogenic activities. In this study, the native oysters Crassostrea gasar from Northeast of Brazil were exposed to two toxic benthic dinoflagellate species, Prorocentrum lima and Ostreopsis cf. ovata. Their respective effects on C. gasar physiology and defense mechanisms were investigated. Oyster hemocytes were first exposed in vitro to different concentrations of both dinoflagellate species to assess their effects on hemocyte functions, such as phagocytosis, production of reactive oxygen species, as well as mortality. Results highlighted an alteration of hemocyte phagocytosis and viability in presence of O. cf. ovata, whereas P. lima did not affect the measured hemocyte functions. In a second experiment, oysters were exposed for 4 days in vivo to toxic culture of O. cf. ovata to assess its effects on hemocyte parameters, tissues damages and pathogenic Perkinsus spp. infection. An increase in hemocyte mortality was also observed in vivo, associated with a decrease of ROS production. Histopathological analyses demonstrated a thinning of the epithelium of the digestive tubules of the digestive gland, inflammatory reaction and a significant increase in the level of infection by Perkinsus spp. in oysters exposed to O. cf. ovata. These results indicate that oysters C. gasar seem to be pretty resilient to an exposure to P. lima and may be more susceptible to O. cf. ovata. Furthermore, the latter clearly impaired oyster physiology and defense mechanisms, thus highlighting that harmful algal blooms of O. cf. ovata could potentially lead to increased susceptibility of C. gasar oysters to parasite infections.
Asunto(s)
Crassostrea/inmunología , Dinoflagelados/fisiología , Floraciones de Algas Nocivas , Animales , Brasil , Crassostrea/efectos de los fármacos , Ecosistema , Hemocitos/inmunología , Humanos , Inmunidad , FagocitosisRESUMEN
Dopamine (DA) is an important molecule that plays a role in the nervous and immune systems. DA is produced by a wide variety of animals and it is considered one of the oldest neurotransmitters. However, its specific function in immune cells has not been completely revealed. In a group of chordate animals, the ascidians, DA is reported to be produced by cells in the central nervous system (CNS); however, no dopaminergic receptor in their genomes has been described until now. Because this is an integrating characteristic of the ascidian dopamine system, here it was investigated the pharmacology, function, and phylogeny of DA and dopaminergic receptors (DRs) in the modulation of nitric oxide (NO) in the Phallusia nigra immune cells. The data disclosed, for the first time, that DA modulates NO production by immune cells. Its modulation probably occurs though adrenergic receptors, which display a special characteristic, in that they are capable of binding to noradrenaline (NA) and DA. A pharmacological analysis revealed that receptors present on the ascidian immune cells showed a high affinity to butaclamol, a non-selective D2-class receptor, increasing NO production. In addition, calcium intracellular mobilization was observed when DA was added to immune cells. In conclusion, the data revealed novel insights about the presence of catecholaminergic receptors (CRs) on the P. nigra immune cells, indicating that ascidian CRs have special pharmacological characteristics that are worth highlighting from an evolutionary point of view.
Asunto(s)
Dopamina/farmacología , Neurotransmisores/farmacología , Receptores de Dopamina D2/metabolismo , Transducción de Señal/efectos de los fármacos , Urocordados/inmunología , Animales , Dopamina/metabolismo , FilogeniaRESUMEN
The Theraphosidae family includes the largest number of species of the Mygalomorphae infraorder, with hundreds of species currently catalogued. However, there is a huge lack on physiologic and even ecologic information available, especially in Brazil, which is the most biodiverse country in the world. Over the years, spiders have been presented as a source of multiple biologically active compounds with basic roles, such as primary defense against pathogenic microorganisms or modulation of metabolic pathways and as specialized hunters. Spider venoms also evolved in order to enable the capture of prey by interaction with a diversity of molecular targets of interest, raising their pharmaceutical potential for the development of new drugs. Among the activities found in compounds isolated from venoms and hemocytes of Brazilian Theraphosidae there are antimicrobial, antifungal, antiparasitic and antitumoral, as well as properties related to proteinase action and neuromuscular blockage modulated by ionic voltage-gated channel interaction. These characteristics are present in different species from multiple genera, which is strong evidence of the important role in spider survival. The present review aims to compile the main results of studies from the last decades on Brazilian Theraphosidae with special focus on results obtained with the crude venom or compounds isolated from both venom and hemocytes, and their physiological and chemical characterization.(AU)
Asunto(s)
Animales , Péptido Hidrolasas , Venenos de Araña , Arañas , Hemocitos , Antiparasitarios , Preparaciones FarmacéuticasRESUMEN
Abstract The Theraphosidae family includes the largest number of species of the Mygalomorphae infraorder, with hundreds of species currently catalogued. However, there is a huge lack on physiologic and even ecologic information available, especially in Brazil, which is the most biodiverse country in the world. Over the years, spiders have been presented as a source of multiple biologically active compounds with basic roles, such as primary defense against pathogenic microorganisms or modulation of metabolic pathways and as specialized hunters. Spider venoms also evolved in order to enable the capture of prey by interaction with a diversity of molecular targets of interest, raising their pharmaceutical potential for the development of new drugs. Among the activities found in compounds isolated from venoms and hemocytes of Brazilian Theraphosidae there are antimicrobial, antifungal, antiparasitic and antitumoral, as well as properties related to proteinase action and neuromuscular blockage modulated by ionic voltage-gated channel interaction. These characteristics are present in different species from multiple genera, which is strong evidence of the important role in spider survival. The present review aims to compile the main results of studies from the last decades on Brazilian Theraphosidae with special focus on results obtained with the crude venom or compounds isolated from both venom and hemocytes, and their physiological and chemical characterization.