Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Liver Int ; 44(9): 2235-2250, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38888238

RESUMEN

Heme is a primordial macrocycle upon which most aerobic life on Earth depends. It is essential to the survival and health of nearly all cells, functioning as a prosthetic group for oxygen-carrying proteins and enzymes involved in oxidation/reduction and electron transport reactions. Heme is essential for the function of numerous hemoproteins and has numerous other roles in the biochemistry of life. In mammals, heme is synthesised from glycine, succinyl-CoA, and ferrous iron in a series of eight steps. The first and normally rate-controlling step is catalysed by 5-aminolevulinate synthase (ALAS), which has two forms: ALAS1 is the housekeeping form with highly variable expression, depending upon the supply of the end-product heme, which acts to repress its activity; ALAS2 is the erythroid form, which is regulated chiefly by the adequacy of iron for erythroid haemoglobin synthesis. Abnormalities in the several enzymes of the heme synthetic pathway, most of which are inherited partial enzyme deficiencies, give rise to rare diseases called porphyrias. The existence and role of heme importers and exporters in mammals have been debated. Recent evidence established the presence of heme transporters. Such transporters are important for the transfer of heme from mitochondria, where the penultimate and ultimate steps of heme synthesis occur, and for the transfer of heme from cytoplasm to other cellular organelles. Several chaperones of heme and iron are known and important for cell health. Heme and iron, although promoters of oxidative stress and potentially toxic, are essential cofactors for cellular energy production and oxygenation.


Asunto(s)
5-Aminolevulinato Sintetasa , Metabolismo Energético , Hemo , Hierro , Hemo/metabolismo , Hemo/biosíntesis , Humanos , Hierro/metabolismo , Animales , 5-Aminolevulinato Sintetasa/metabolismo , 5-Aminolevulinato Sintetasa/genética , Transporte Biológico
2.
Mol Microbiol ; 121(6): 1217-1227, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38725184

RESUMEN

The hmuR operon encodes proteins for the uptake and utilization of heme as a nutritional iron source in Bradyrhizobium japonicum. The hmuR operon is transcriptionally activated by the Irr protein and is also positively controlled by HmuP by an unknown mechanism. An hmuP mutant does not express the hmuR operon genes nor does it grow on heme. Here, we show that hmuR expression from a heterologous promoter still requires hmuP, suggesting that HmuP does not regulate at the transcriptional level. Replacement of the 5' untranslated region (5'UTR) of an HmuP-independent gene with the hmuR 5'UTR conferred HmuP-dependent expression on that gene. Recombinant HmuP bound an HmuP-responsive RNA element (HPRE) within the hmuR 5'UTR. A 2 nt substitution predicted to destabilize the secondary structure of the HPRE abolished both HmuP binding activity in vitro and hmuR expression in cells. However, deletion of the HPRE partially restored hmuR expression in an hmuP mutant, and it rescued growth of the hmuP mutant on heme. These findings suggest that the HPRE is a negative regulatory RNA element that is suppressed when bound by HmuP to express the hmuR operon.


Asunto(s)
Regiones no Traducidas 5' , Proteínas Bacterianas , Bradyrhizobium , Regulación Bacteriana de la Expresión Génica , Operón , Proteínas de Unión al ARN , Bradyrhizobium/genética , Bradyrhizobium/metabolismo , Operón/genética , Regiones no Traducidas 5'/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Hemo/metabolismo , Regiones Promotoras Genéticas , ARN Bacteriano/metabolismo , ARN Bacteriano/genética , Unión Proteica
3.
J Bacteriol ; 206(6): e0002724, 2024 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-38814789

RESUMEN

Iron acquisition systems are crucial for pathogen growth and survival in iron-limiting host environments. To overcome nutritional immunity, bacterial pathogens evolved to use diverse mechanisms to acquire iron. Here, we examine a heme acquisition system that utilizes hemophores called hemophilins which are also referred to as HphAs in several Gram-negative bacteria. In this study, we report three new HphA structures from Stenotrophomonas maltophilia, Vibrio harveyi, and Haemophilus parainfluenzae. Structural determination of HphAs revealed an N-terminal clamp-like domain that binds heme and a C-terminal eight-stranded ß-barrel domain that shares the same architecture as the Slam-dependent Neisserial surface lipoproteins. The genetic organization of HphAs consists of genes encoding a Slam homolog and a TonB-dependent receptor (TBDR). We investigated the Slam-HphA system in the native organism or the reconstituted system in Escherichia coli cells and found that the efficient secretion of HphA depends on Slam. The TBDR also played an important role in heme uptake and conferred specificity for its cognate HphA. Furthermore, bioinformatic analysis of HphA homologs revealed that HphAs are conserved in the alpha, beta, and gammaproteobacteria. Together, these results show that the Slam-dependent HphA-type hemophores are prevalent in Gram-negative bacteria and further expand the role of Slams in transporting soluble proteins. IMPORTANCE: This paper describes the structure and function of a family of Slam (Type IX secretion System) secreted hemophores that bacteria use to uptake heme (iron) while establishing an infection. Using structure-based bioinformatics analysis to define the diversity and prevalence of this heme acquisition pathway, we discovered that a large portion of gammaproteobacterial harbors this system. As organisms, including Acinetobacter baumannii, utilize this system to facilitate survival during host invasion, the identification of this heme acquisition system in bacteria species is valuable information and may represent a target for antimicrobials.


Asunto(s)
Proteínas Bacterianas , Bacterias Gramnegativas , Hemo , Bacterias Gramnegativas/genética , Bacterias Gramnegativas/metabolismo , Hemo/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Hierro/metabolismo
4.
Structure ; 32(4): 411-423.e6, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38325368

RESUMEN

Pathogenic bacteria, such as Pseudomonas aeruginosa, depend on scavenging heme for the acquisition of iron, an essential nutrient. The TonB-dependent transporter (TBDT) PhuR is the major heme uptake protein in P. aeruginosa clinical isolates. However, a comprehensive understanding of heme recognition and TBDT transport mechanisms, especially PhuR, remains limited. In this study, we employed single-particle cryogenic electron microscopy (cryo-EM) and a phage display-generated synthetic antibody (sAB) as a fiducial marker to enable the determination of a high-resolution (2.5 Å) structure of PhuR with a bound heme. Notably, the structure reveals iron coordination by Y529 on a conserved extracellular loop, shedding light on the role of tyrosine in heme binding. Biochemical assays and negative-stain EM demonstrated that the sAB specifically targets the heme-bound state of PhuR. These findings provide insights into PhuR's heme binding and offer a template for developing conformation-specific sABs against outer membrane proteins (OMPs) for structure-function investigations.


Asunto(s)
Hemo , Pseudomonas aeruginosa , Pseudomonas aeruginosa/metabolismo , Microscopía por Crioelectrón , Hemo/química , Proteínas de la Membrana/química , Hierro/metabolismo , Chaperonas Moleculares/metabolismo , Anticuerpos/metabolismo , Proteínas Bacterianas/química
5.
FEBS J ; 291(6): 1186-1198, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38087972

RESUMEN

Trypanosoma cruzi, a heme auxotrophic parasite, can control intracellular heme content by modulating heme responsive gene (TcHRG) expression when a free heme source is added to an axenic culture. Herein, we explored the role of TcHRG protein in regulating the uptake of heme derived from hemoglobin in epimastigotes. We demonstrate that the endogenous TcHRG (protein and mRNA) responded similarly to bound (hemoglobin) and free (hemin) heme. Endogenous TcHRG was found in the flagellar pocket boundaries and partially overlapping with the mitochondrion. On the other hand, endocytic null parasites were able to develop and exhibited a similar heme content compared to wild-type when fed with hemoglobin, indicating that endocytosis is not the main entrance pathway for hemoglobin-derived heme in this parasite. Moreover, the overexpression of TcHRG led to an increase in heme content when hemoglobin was used as the heme source. Taken together, these results suggest that the uptake of hemoglobin-derived heme likely occurs through extracellular proteolysis of hemoglobin via the flagellar pocket, and this process is governed by TcHRG. In sum, T. cruzi epimastigotes control heme homeostasis by modulating TcHRG expression independently of the available source of heme.


Asunto(s)
Trypanosoma cruzi , Trypanosoma cruzi/fisiología , Hemo/metabolismo , Transporte Biológico , Hemoglobinas/metabolismo , Mitocondrias/metabolismo
6.
mBio ; : e0150923, 2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-37929956

RESUMEN

Heme trafficking is a fundamental biological process, yet its direct study has been hampered due to heme's tight intracellular regulation, heme cytotoxicity, and the transient nature of trafficking. The bacterial System I and System II cytochrome c biogenesis pathways are developing into models to interrogate heme trafficking mechanisms, as they function to transport heme from inside to outside the cell for attachment to apocytochrome c. Cytochromes c require heme for folding and to function in the context of electron transport chains for critical cellular functions, such as respiration. We focus on System I, comprised of eight membrane proteins, CcmABCDEFGH, proposed to function in two steps: CcmABCD mediates the transfer of heme and attachment to CcmE. HoloCcmE chaperones heme to CcmFH for attachment to apocytochrome c. While CcmFH is known to be the holocytochrome c synthase, the mechanism of heme interaction and positioning for attachment to apocytochrome c remains to be elucidated. A comprehensive structure-function analysis of the conserved WWD domain in CcmF was undertaken utilizing alanine-scanning and cysteine-scanning, revealing residues critical for CcmF's synthase function and residues required for interaction with the 2- and 4-vinyls of heme. This analysis demonstrates for the first time that the CcmF WWD domain directly interacts with heme and that heme interactions within this domain are required for attachment to apocytochrome c. This in-depth interrogation of heme binding now allows for comparison across cytochrome c biogenesis proteins CcmF, CcmC, and CcsBA, revealing common mechanisms of heme interaction in these heme trafficking pathways.IMPORTANCEHeme is an essential co-factor for proteins involved with critical cellular functions, such as energy production and oxygen transport. Thus, understanding how heme interacts with proteins and is moved through cells is a fundamental biological question. This work studies the System I cytochrome c biogenesis pathway, which in some species (including Escherichia coli) is composed of eight integral membrane or membrane-associated proteins called CcmA-H that are proposed to function in two steps to transport and attach heme to apocytochrome c. Cytochrome c requires this heme attachment to function in electron transport chains to generate cellular energy. A conserved WWD heme-handling domain in CcmFH is analyzed and residues critical for heme interaction and holocytochrome c synthase activity are identified. CcmFH is the third member of the WWD domain-containing heme-handling protein family to undergo a comprehensive structure-function analysis, allowing for comparison of heme interaction across this protein family.

7.
bioRxiv ; 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37577460

RESUMEN

Pathogenic bacteria, such as Pseudomonas aeruginosa, depend on scavenging heme for the acquisition of iron, an essential nutrient. The TonB-dependent transporter (TBDT) PhuR is the major heme uptake protein in P. aeruginosa clinical isolates. However, a comprehensive understanding of heme recognition and TBDT transport mechanisms, especially PhuR, remains limited. In this study, we employed single-particle cryogenic electron microscopy (cryo-EM) and a phage display-generated synthetic antibody (sAB) as a fiducial marker to enable the determination of a high-resolution (2.5 Å) structure of PhuR with a bound heme. Notably, the structure reveals iron coordination by Y529 on a conserved extracellular loop, shedding light on the role of tyrosine in heme binding. Biochemical assays and negative-stain EM demonstrated that the sAB specifically targets the heme-bound state of PhuR. These findings provide insights into PhuR's heme binding and offer a template for developing conformation-specific sABs against outer membrane proteins (OMPs) for structure-function investigations.

8.
bioRxiv ; 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-37066141

RESUMEN

Trypanosoma cruzi, a heme auxotrophic parasite, can control intracellular heme content by modulating TcHRG expression when a free heme source is added to axenic culture. Herein, we explore the role of TcHRG protein in regulating the uptake of heme derived from hemoglobin in epimastigotes. It was found that the parasités endogenous TcHRG (protein and mRNA) responds similarly to bound (hemoglobin) and free (hemin) heme. Additionally, the overexpression of TcHRG leads to an increase in intracellular heme content. The localization of TcHRG is also not affected in parasites supplemented with hemoglobin as the sole heme source. Endocytic null epimastigotes do not show a significant difference in growth profile, intracellular heme content and TcHRG protein accumulation compared to WT when feeding with hemoglobin or hemin as a source of heme. These results suggest that the uptake of hemoglobin-derived heme likely occurs through extracellular proteolysis of hemoglobin via the flagellar pocket, and this process is governed by TcHRG. In sum, T. cruzi epimastigotes controls heme homeostasis by modulating TcHRG expression independently of the source of available heme.

9.
Infect Immun ; 91(4): e0049622, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-36912636

RESUMEN

Among the unfavorable conditions bacteria encounter within the host is restricted access to essential trace metals such as iron. To overcome iron deficiency, bacteria deploy multiple strategies to scavenge iron from host tissues, with abundant examples of iron acquisition systems being implicated in bacterial pathogenesis. Yet the mechanisms utilized by the major nosocomial pathogen Enterococcus faecalis to maintain intracellular iron balance are poorly understood. In this study, we conducted a systematic investigation to identify and characterize the iron acquisition mechanisms of E. faecalis and to determine their contribution to virulence. Bioinformatic analysis and literature surveys revealed that E. faecalis possesses three conserved iron uptake systems. Through transcriptomics, we discovered two novel ABC-type transporters that mediate iron uptake. While inactivation of a single transporter had minimal impact on the ability of E. faecalis to maintain iron homeostasis, inactivation of all five systems (Δ5Fe strain) disrupted intracellular iron homeostasis and considerably impaired cell growth under iron deficiency. Virulence of the Δ5Fe strain was generally impaired in different animal models but showed niche-specific variations in mouse models, leading us to suspect that heme can serve as an iron source to E. faecalis during mammalian infections. Indeed, heme supplementation restored growth of Δ5Fe under iron depletion and virulence in an invertebrate infection model. This study revealed that the collective contribution of five iron transporters promotes E. faecalis virulence and that the ability to acquire and utilize heme as an iron source is critical to the systemic dissemination of E. faecalis.


Asunto(s)
Transportadoras de Casetes de Unión a ATP , Proteínas Bacterianas , Transporte Biológico , Enterococcus faecalis , Hierro , Enterococcus faecalis/metabolismo , Enterococcus faecalis/patogenicidad , Virulencia , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Hierro/metabolismo , Regulación Bacteriana de la Expresión Génica , Proteínas Bacterianas/metabolismo , Hemo/metabolismo , Infecciones por Bacterias Grampositivas/metabolismo , Infecciones por Bacterias Grampositivas/microbiología , Humanos
10.
Appl Environ Microbiol ; 89(3): e0190122, 2023 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-36853042

RESUMEN

Co2+ induces the increase of the labile-Fe pool (LIP) by Fe-S cluster damage, heme synthesis inhibition, and "free" iron import, which affects cell viability. The N2-fixing bacteria, Sinorhizobium meliloti, is a suitable model to determine the roles of Co2+-transporting cation diffusion facilitator exporters (Co-eCDF) in Fe2+ homeostasis because it has a putative member of this subfamily, AitP, and two specific Fe2+-export systems. An insertional mutant of AitP showed Co2+ sensitivity and accumulation, Fe accumulation and hydrogen peroxide sensitivity, but not Fe2+ sensitivity, despite AitP being a bona fide low affinity Fe2+ exporter as demonstrated by the kinetic analyses of Fe2+ uptake into everted membrane vesicles. Suggesting concomitant Fe2+-dependent induced stress, Co2+ sensitivity was increased in strains carrying mutations in AitP and Fe2+ exporters which did not correlate with the Co2+ accumulation. Growth in the presence of sublethal Fe2+ and Co2+ concentrations suggested that free Fe-import might contribute to Co2+ toxicity. Supporting this, Co2+ induced transcription of Fe-import system and genes associated with Fe homeostasis. Analyses of total protoporphyrin content indicates Fe-S cluster attack as the major source for LIP. AitP-mediated Fe2+-export is likely counterbalanced via a nonfutile Fe2+-import pathway. Two lines of evidence support this: (i) an increased hemin uptake in the presence of Co2+ was observed in wild-type (WT) versus AitP mutant, and (ii) hemin reversed the Co2+ sensitivity in the AitP mutant. Thus, the simultaneous detoxification mediated by AitP aids cells to orchestrate an Fe-S cluster salvage response, avoiding the increase in the LIP caused by the disassembly of Fe-S clusters or free iron uptake. IMPORTANCE Cross-talk between iron and cobalt has been long recognized in biological systems. This is due to the capacity of cobalt to interfere with proper iron utilization. Cells can detoxify cobalt by exporting mechanisms involving membrane proteins known as exporters. Highlighting the cross-talk, the capacity of several cobalt exporters to also export iron is emerging. Although biologically less important than Fe2+, Co2+ induces toxicity by promoting intracellular Fe release, which ultimately causes additional toxic effects. In this work, we describe how the rhizobia cells solve this perturbation by clearing Fe through a Co2+ exporter, in order to reestablish intracellular Fe levels by importing nonfree Fe, heme. This piggyback-ride type of transport may aid bacterial cells to survive in free-living conditions where high anthropogenic Co2+ content may be encountered.


Asunto(s)
Sinorhizobium meliloti , Simportadores , Sinorhizobium meliloti/genética , Sinorhizobium meliloti/metabolismo , Hemina/metabolismo , Hierro/metabolismo , Homeostasis , Cobalto/metabolismo , Hemo/metabolismo
11.
mSphere ; 8(2): e0057322, 2023 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-36749044

RESUMEN

Mycobacterium tuberculosis (Mtb) is transmitted through aerosols and primarily colonizes within the lung. The World Health Organization estimates that Mtb kills ~1.4 million people every year. A key aspect that makes Mtb such a successful pathogen is its ability to overcome iron limitation mounted by the host immune response. In our previous studies, we have shown that Mtb can utilize iron from heme, the largest source of iron in the human host, and that it uses two redundant heme utilization pathways. In this study, we show that the ESX-4 type VII secretion system (T7SS) is necessary for extracellular heme uptake into the Mtb cell through both heme utilization pathways. ESX-4 influences the secretion of the culture filtrate proteins Rv0125 and Rv1085c, which are also necessary for efficient heme utilization. We also discovered that deletion of the alternative sigma factor SigM significantly reduced Mtb heme utilization through both pathways and predict that SigM is a global positive regulator of core heme utilization genes of both pathways. Finally, we present the first direct evidence that some mycobacterial PPE (proline-proline-glutamate motif) proteins of the PPE protein family are pore-forming membrane proteins. Altogether, we identified core components of both Mtb Heme utilization pathways that were previously unknown and identified a novel channel-forming membrane protein of Mtb. IMPORTANCE M. tuberculosis (Mtb) is completely dependent on iron acquisition in the host to cause disease. The largest source of iron for Mtb in the human host is heme. Here, we show that the ancestral ESX-4 type VII secretion system is required for the efficient utilization of heme as a source of iron, which is an essential nutrient. This is another biological function identified for ESX-4 in Mtb, whose contribution to Mtb physiology is poorly understood. A most exciting finding is that some mycobacterial PPE (proline-proline-glutamate motif) proteins that have been implicated in the nutrient acquisition are membrane proteins that can form channels in a lipid bilayer. These observations have far-reaching implications because they support an emerging theme that PPE proteins can function as channel proteins in the outer mycomembrane for nutrient acquisition. Mtb has evolved a heme uptake system that is drastically different from all other known bacterial heme acquisition systems.


Asunto(s)
Mycobacterium tuberculosis , Sistemas de Secreción Tipo VII , Humanos , Sistemas de Secreción Tipo VII/genética , Sistemas de Secreción Tipo VII/metabolismo , Proteínas Bacterianas/metabolismo , Hemo/metabolismo , Hierro/metabolismo , Proteínas de la Membrana/metabolismo , Equipo de Protección Personal
12.
Biol Chem ; 403(11-12): 1017-1029, 2022 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-36228088

RESUMEN

Heme is an indispensable cofactor for almost all aerobic life, including the human host and many bacterial pathogens. During infection, heme and hemoproteins are the largest source of bioavailable iron, and pathogens have evolved various heme acquisition pathways to satisfy their need for iron and heme. Many of these pathways are regulated transcriptionally by intracellular iron levels, however, host heme availability and intracellular heme levels have also been found to regulate heme uptake in some species. Knowledge of these pathways has helped to uncover not only how these bacteria incorporate host heme into their metabolism but also provided insight into the importance of host heme as a nutrient source during infection. Within this review is covered multiple aspects of the role of heme at the host pathogen interface, including the various routes of heme biosynthesis, how heme is sequestered by the host, and how heme is scavenged by bacterial pathogens. Also discussed is how heme and hemoproteins alter the behavior of the host immune system and bacterial pathogens. Finally, some unanswered questions about the regulation of heme uptake and how host heme is integrated into bacterial metabolism are highlighted.


Asunto(s)
Infecciones Bacterianas , Hemo , Humanos , Hemo/metabolismo , Hierro/metabolismo , Bacterias/metabolismo , Transporte Biológico , Proteínas Bacterianas/metabolismo
13.
Microbiol Spectr ; 10(5): e0360422, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36169423

RESUMEN

Heme is both an essential cofactor and an abundant source of nutritional iron for the human pathogen Mycobacterium tuberculosis. While heme is required for M. tuberculosis survival and virulence, it is also potentially cytotoxic. Since M. tuberculosis can both synthesize and take up heme, the de novo synthesis of heme and its acquisition from the host may need to be coordinated in order to mitigate heme toxicity. However, the mechanisms employed by M. tuberculosis to regulate heme uptake, synthesis, and bioavailability are poorly understood. By integrating ratiometric heme sensors with mycobacterial genetics, cell biology, and biochemistry, we determined that de novo-synthesized heme is more bioavailable than exogenously scavenged heme, and heme availability signals the downregulation of heme biosynthetic enzyme gene expression. Ablation of heme synthesis does not result in the upregulation of known heme import proteins. Moreover, we found that de novo heme synthesis is critical for survival from macrophage assault. Altogether, our data suggest that mycobacteria utilize heme from endogenous and exogenous sources differently and that targeting heme synthesis may be an effective therapeutic strategy to treat mycobacterial infections. IMPORTANCE Mycobacterium tuberculosis infects ~25% of the world's population and causes tuberculosis (TB), the second leading cause of death from infectious disease. Heme is an essential metabolite for M. tuberculosis, and targeting the unique heme biosynthetic pathway of M. tuberculosis could serve as an effective therapeutic strategy. However, since M. tuberculosis can both synthesize and scavenge heme, it was unclear if inhibiting heme synthesis alone could serve as a viable approach to suppress M. tuberculosis growth and virulence. The importance of this work lies in the development and application of genetically encoded fluorescent heme sensors to probe bioavailable heme in M. tuberculosis and the discovery that endogenously synthesized heme is more bioavailable than exogenously scavenged heme. Moreover, it was found that heme synthesis protected M. tuberculosis from macrophage killing, and bioavailable heme in M. tuberculosis is diminished during macrophage infection. Altogether, these findings suggest that targeting M. tuberculosis heme synthesis is an effective approach to combat M. tuberculosis infections.


Asunto(s)
Infecciones por Mycobacterium , Mycobacterium tuberculosis , Tuberculosis Ganglionar , Humanos , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Hemo/metabolismo , Proteínas Bacterianas/metabolismo , Hierro/metabolismo
14.
Microbiol Spectr ; 10(5): e0243722, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36098531

RESUMEN

Pseudomonas aeruginosa is an opportunistic pathogen that has been declared by the World Health Organization as a "priority 1 critical pathogen" needing immediate new strategies for chemotherapy. During infection, P. aeruginosa uses redundant mechanisms to acquire ferric, heme (Hm), or ferrous iron from the host to survive and colonize. Significant efforts have been undertaken to develop siderophore blockers to inhibit ferric iron acquisition by P. aeruginosa, but there is a lack of inhibitors that can block Hm or ferrous iron acquisition by P. aeruginosa. We developed and employed a targeted high-throughput screen (HTS) and identified a molecule(s) that can specifically inhibit the Hm and ferrous iron acquisition systems of P. aeruginosa. Our targeted approach relies on screening a small-molecule library against P. aeruginosa under three growth conditions, where the only variable was the iron source (ferric, Hm, or ferrous iron). Each condition served as a counterscreen for the other, and we identified molecules that inhibit the growth of P. aeruginosa in the presence of only Hm or ferrous iron. Our data indicate that econazole, bithionate, and raloxifene inhibit the growth of P. aeruginosa in the presence of Hm and that oxyquinoline inhibits the growth of P. aeruginosa in the presence of ferrous iron. These iron-specific inhibitors do not interfere with the activity of meropenem, a commercial antipseudomonal, and can also increase meropenem activity. In conclusion, we present a proof of concept of a successful targeted conditional screening method by which we can identify specific iron acquisition inhibitors. This approach is highly adaptable and can easily be extended to any other pathogen. IMPORTANCE Since acquiring iron is paramount to P. aeruginosa's survival and colonization in the human host, developing novel strategies to block the access of P. aeruginosa to host iron will allow us to starve it of an essential nutrient. P. aeruginosa uses siderophore, heme, or ferrous iron uptake systems to acquire iron in the human host. We have developed a novel approach through which we can directly identify molecules that can prevent P. aeruginosa from utilizing heme or ferrous iron. This approach overcomes the need for the in silico design of molecules and identifies structurally diverse biologically active inhibitor molecules. This screening approach is adaptable and can be extended to any pathogen. Since Gram-negative pathogens share many similarities in iron acquisition at both the mechanistic and molecular levels, our screening approach presents a significant opportunity to develop novel broad-spectrum iron acquisition inhibitors of Gram-negative pathogens.


Asunto(s)
Pseudomonas aeruginosa , Sideróforos , Proteínas Bacterianas , Econazol , Hemo , Hierro , Meropenem , Oxiquinolina , Clorhidrato de Raloxifeno
15.
BMC Biol ; 20(1): 126, 2022 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-35655259

RESUMEN

BACKGROUND: The heme group constitutes a major functional form of iron, which plays vital roles in various biological processes including oxygen transport and mitochondrial respiration. Heme is an essential nutrient, but its pro-oxidant nature may have toxic cellular effects if present at high levels, and its synthesis is therefore tightly regulated. Deficiency and excess of heme both lead to pathological processes; however, our current understanding of metazoan heme transport is largely limited to work in mammals and the worm Caenorhabditis elegans, while functional analyses of heme transport in the genetically amenable Drosophila melanogaster and other arthropods have not been explored. RESULTS: We implemented a functional screening in Schneider 2 (S2) cells to identify putative heme transporters of D. melanogaster. A few multidrug resistance-associated protein (MRP) members were found to be induced by hemin and/or involved in heme export. Between the two plasma membrane-resident heme exporters CG4562 and CG7627, the former is responsible for heme transit across the intestinal epithelium. CG4562 knockdown resulted in heme accumulation in the intestine and lethality that could be alleviated by heme synthesis inhibition, human MRP5 (hMRP5) expression, heme oxygenase (HO) expression, or zinc supplement. CG4562 is mainly expressed in the gastric caeca and the anterior part of the midgut, suggesting this is the major site of heme absorption. It thus appears that CG4562 is the functional counterpart of mammalian MRP5. Mutation analyses in the transmembrane and nucleotide binding domains of CG4562 characterized some potential binding sites and conservative ATP binding pockets for the heme transport process. Furthermore, some homologs in Aedes aegypti, including that of CG4562, have also been characterized as heme exporters. CONCLUSIONS: Together, our findings suggest a conserved heme homeostasis mechanism within insects, and between insects and mammals. We propose the fly model may be a good complement to the existing platforms of heme studies.


Asunto(s)
Drosophila melanogaster , Hemo , Animales , Caenorhabditis elegans , Drosophila melanogaster/genética , Hierro , Mamíferos , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética
16.
J Biol Chem ; 298(6): 101995, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35500652

RESUMEN

Staphylococcus aureus is a major cause of deadly nosocomial infections, a severe problem fueled by the steady increase of resistant bacteria. The iron surface determinant (Isd) system is a family of proteins that acquire nutritional iron from the host organism, helping the bacterium to proliferate during infection, and therefore represents a promising antibacterial target. In particular, the surface protein IsdH captures hemoglobin (Hb) and acquires the heme moiety containing the iron atom. Structurally, IsdH comprises three distinctive NEAr-iron Transporter (NEAT) domains connected by linker domains. The objective of this study was to characterize the linker region between NEAT2 and NEAT3 from various biophysical viewpoints and thereby advance our understanding of its role in the molecular mechanism of heme extraction. We demonstrate the linker region contributes to the stability of the bound protein, likely influencing the flexibility and orientation of the NEAT3 domain in its interaction with Hb, but only exerts a modest contribution to the affinity of IsdH for heme. Based on these data, we suggest that the flexible nature of the linker facilitates the precise positioning of NEAT3 to acquire heme. In addition, we also found that residues His45 and His89 of Hb located in the heme transfer route toward IsdH do not play a critical role in the transfer rate-determining step. In conclusion, this study clarifies key elements of the mechanism of heme extraction of human Hb by IsdH, providing key insights into the Isd system and other protein systems containing NEAT domains.


Asunto(s)
Antígenos Bacterianos , Hemo , Hierro , Receptores de Superficie Celular , Staphylococcus aureus , Antígenos Bacterianos/química , Antígenos Bacterianos/metabolismo , Hemo/metabolismo , Hemoglobinas/química , Humanos , Hierro/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Unión Proteica , Dominios Proteicos , Receptores de Superficie Celular/química , Receptores de Superficie Celular/metabolismo , Infecciones Estafilocócicas/metabolismo , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/metabolismo
17.
mBio ; 12(1)2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33531389

RESUMEN

Enterococcus faecalis is a commensal Gram-positive pathogen found in the intestines of mammals and is also a leading cause of severe infections occurring mainly among antibiotic-treated dysbiotic hospitalized patients. Like most intestinal bacteria, E. faecalis does not synthesize heme (in this report, heme refers to iron protoporphyrin IX regardless of the iron redox state). Nevertheless, environmental heme can improve E. faecalis fitness by activating respiration metabolism and a catalase that limits hydrogen peroxide stress. Since free heme also generates toxicity, its intracellular levels need to be strictly controlled. Here, we describe a unique transcriptional regulator, FhtR (named FhtR for faecalis heme transport regulator), which manages heme homeostasis by controlling an HrtBA-like efflux pump (named HrtBA Ef for the HrtBA from E. faecalis). We show that FhtR, by managing intracellular heme concentration, regulates the functional expression of the heme-dependent catalase A (KatA), thus participating in heme detoxification. The biochemical features of FhtR binding to DNA, and its interaction with heme that induces efflux, are characterized. The FhtR-HrtBA Ef system is shown to be relevant in a mouse intestinal model. We further show that FhtR senses heme from blood and hemoglobin but also from crossfeeding by Escherichia coli These findings bring to light the central role of heme sensing by FhtR in response to heme fluctuations within the gastrointestinal tract, which allow this pathogen to limit heme toxicity while ensuring expression of an oxidative defense system.IMPORTANCEEnterococcus faecalis, a normal and harmless colonizer of the human intestinal flora can cause severe infectious diseases in immunocompromised patients, particularly those that have been heavily treated with antibiotics. Therefore, it is important to understand the factors that promote its resistance and its virulence. E. faecalis, which cannot synthesize heme, an essential but toxic metabolite, needs to scavenge this molecule from the host to respire and fight stress generated by oxidants. Here, we report a new mechanism used by E. faecalis to sense heme and trigger the synthesis of a heme efflux pump that balances the amount of heme inside the bacteria. We show in a mouse model that E. faecalis uses this mechanisms within the gastrointestinal tract.


Asunto(s)
Proteínas Bacterianas/fisiología , Enterococcus faecalis/metabolismo , Hemo/metabolismo , Animales , Femenino , Tracto Gastrointestinal/microbiología , Homeostasis , Ratones , Ratones Endogámicos BALB C , Transporte de Proteínas
18.
mSystems ; 6(1)2021 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-33531406

RESUMEN

Heme is an essential metabolite for most life on earth. Bacterial pathogens almost universally require iron to infect a host, often acquiring this nutrient in the form of heme. The Gram-negative pathogen Pseudomonas aeruginosa is no exception, where heme acquisition and metabolism are known to be crucial for both chronic and acute infections. To unveil unknown genes and pathways that could play a role with heme metabolic flux in this pathogen, we devised an omic-based approach we dubbed "Met-Seq," for metabolite-coupled transposon sequencing. Met-Seq couples a biosensor with fluorescence-activated cell sorting (FACS) and massively parallel sequencing, allowing for direct identification of genes associated with metabolic changes. In this work, we first construct and validate a heme biosensor for use with P. aeruginosa and exploit Met-Seq to identify 188 genes that potentially influence intracellular heme levels. Identified genes largely consisted of metabolic pathways not previously associated with heme, including many secreted virulence effectors, as well as 11 predicted small RNAs (sRNAs) and riboswitches whose functions are not currently understood. We verify that five Met-Seq hits affect intracellular heme levels; a predicted extracytoplasmic function (ECF) factor, a phospholipid acquisition system, heme biosynthesis regulator Dnr, and two predicted antibiotic monooxygenase (ABM) domains of unknown function (PA0709 and PA3390). Finally, we demonstrate that PA0709 and PA3390 are novel heme-binding proteins. Our data suggest that Met-Seq could be extrapolated to other biological systems and metabolites for which there is an available biosensor, and provides a new template for further exploration of iron/heme regulation and metabolism in P. aeruginosa and other pathogens.IMPORTANCE The ability to simultaneously and more directly correlate genes with metabolite levels on a global level would provide novel information for many biological platforms yet has thus far been challenging. Here, we describe a method to help address this problem, which we dub "Met-Seq" (metabolite-coupled Tn sequencing). Met-Seq uses the powerful combination of fluorescent biosensors, fluorescence-activated cell sorting (FACS), and next-generation sequencing (NGS) to rapidly identify genes that influence the levels of specific intracellular metabolites. For proof of concept, we create and test a heme biosensor and then exploit Met-Seq to identify novel genes involved in the regulation of heme in the pathogen Pseudomonas aeruginosa Met-Seq-generated data were largely comprised of genes which have not previously been reported to influence heme levels in this pathogen, two of which we verify as novel heme-binding proteins. As heme is a required metabolite for host infection in P. aeruginosa and most other pathogens, our studies provide a new list of targets for potential antimicrobial therapies and shed additional light on the balance between infection, heme uptake, and heme biosynthesis.

19.
Appl Environ Microbiol ; 86(18)2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32680867

RESUMEN

Lactobacillus sakei is a nonpathogenic lactic acid bacterium and a natural inhabitant of meat ecosystems. Although red meat is a heme-rich environment, L. sakei does not need iron or heme for growth, although it possesses a heme-dependent catalase. Iron incorporation into L. sakei from myoglobin and hemoglobin was previously shown by microscopy and the L. sakei genome reveals the complete equipment for iron and heme transport. Here, we report the characterization of a five-gene cluster (from lsa1836 to lsa1840 [lsa1836-1840]) encoding a putative metal iron ABC transporter. Interestingly, this cluster, together with a heme-dependent catalase gene, is also conserved in other species from the meat ecosystem. Our bioinformatic analyses revealed that the locus might correspond to a complete machinery of an energy coupling factor (ECF) transport system. We quantified in vitro the intracellular heme in the wild type (WT) and in our Δlsa1836-1840 deletion mutant using an intracellular heme sensor and inductively coupled plasma mass spectrometry for quantifying incorporated 57Fe heme. We showed that in the WT L. sakei, heme accumulation occurs rapidly and massively in the presence of hemin, while the deletion mutant was impaired in heme uptake; this ability was restored by in trans complementation. Our results establish the main role of the L. sakei Lsa1836-1840 ECF-like system in heme uptake. Therefore, this research outcome sheds new light on other possible functions of ECF-like systems.IMPORTANCELactobacillus sakei is a nonpathogenic bacterial species exhibiting high fitness in heme-rich environments such as meat products, although it does not need iron or heme for growth. Heme capture and utilization capacities are often associated with pathogenic species and are considered virulence-associated factors in the infected hosts. For these reasons, iron acquisition systems have been deeply studied in such species, while for nonpathogenic bacteria the information is scarce. Genomic data revealed that several putative iron transporters are present in the genome of the lactic acid bacterium L. sakei In this study, we demonstrate that one of them is an ECF-like ABC transporter with a functional role in heme transport. Such evidence has not yet been brought for an ECF; therefore, our study reveals a new class of heme transport system.


Asunto(s)
Genes Bacterianos/genética , Hemo/metabolismo , Latilactobacillus sakei/genética , Familia de Multigenes/genética , Transporte Biológico/genética , Latilactobacillus sakei/metabolismo
20.
Metabolism ; 110: 154306, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32621820

RESUMEN

BACKGROUND: Iron is finely regulated due to its vital roles in organisms and the peroxidase reactivity if excess. Solute Carrier Family 46 Member 1 (SLC46A1), also named PCFT or HCP1, is the main importer of heme­iron in the intestine, but has a high abundance in the liver. Since the liver has a central role in iron homeostasis, whether SLC46A1 regulates hepatic iron metabolism is of interest to be identified. METHODS: The recombinant adeno-associated virus vectors were used to hepatic-specifically inhibit SLC46A1 expression to observe its effects on hepatic iron metabolism. Then the abilities of SLC46A1 in importing heme and folate, and consequent alterations of iron content in hepatocytes were determined. Furthermore, effects of iron on SLC46A1 expression were investigated both in vitro and in vivo. RESULTS: The hepatocyte-specific inhibition of SLC46A1 decreases iron content in the liver and increases iron content in serum. Expressions of iron-related molecules, transferrin receptor 1, hepcidin and ferroportin, are correspondingly altered. Interestingly, free heme concentration in serum is increased, indicating a decreased import of heme by the liver. In hepatocytes, SLC46A1 is capable of importing hemin, increasing intracellular iron content. The import of hemin by SLC46A1 is unaffected by its other substrate, folate. Instead, hemin treatment decreases SLC46A1 expression, reducing the import of folate. In addition, SLC46A1 itself shows to be iron-responsive both in vivo and in vitro, making it available for regulating iron metabolism. CONCLUSION: The results elucidate that SLC46A1 regulates iron metabolism in the liver through a folate-independent manner of importing heme. The iron-responsive characters of SLC46A1 give us a new clue to link heme or iron overload with folate deficiency diseases.


Asunto(s)
Hemo/metabolismo , Hierro/metabolismo , Hígado/metabolismo , Transportador de Folato Acoplado a Protón/fisiología , Animales , Células Cultivadas , Hemina/metabolismo , Hepatocitos/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Transportador de Folato Acoplado a Protón/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA