Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros











Intervalo de año de publicación
1.
Sci Rep ; 14(1): 21443, 2024 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-39271750

RESUMEN

Selenium nanoparticles (SeNPs) are used in several sectors as antitumor, antimicrobial, and environmental adsorbents. Thus, the present research objective was the production of bacterial-SeNPs as an active and environmentally-friendly antibacterial and adsorbent agents and application into novel nanocomposite filter. From a total of 25 samples (soil, wastewater, and water) obtained from different locations in Egypt, 60 selenium-resistant bacterial isolates were obtained (on a mineral salt medium supplemented with selenium ions). After screening (based on the conversion of selenium from ionic form to nanoform), a superior bacterial isolate for SeNPs formation was obtained and molecular identified as Bacillus pumilus isolate OR431753. The high yield of SeNPs was noted after optimization (glucose as carbon source, pH 9 at 30 °C). The produced SeNPs were characterized as approximately 15 nm-diameter spherical nanoparticles, in addition to the presence of organic substances around these particles like polysaccharides and aromatic amines (protein residues). Also, they have antibacterial activity increased after formation of nanocomposite with nano-chitosan (SeNPs/NCh) against several pathogens. The antibacterial activity (expressed as a diameter of the inhibitory zone) averaged between 2.1 and 4.3, 2.7 and 4.8 cm for SeNPs and SeNPs/NCh, respectively compared with 1.1 to 1.8 cm for Amoxicillin. The produced nanoselenium/chitosan was used as a biofilter to remove mercury (Hg) and AgNPs as model chemicals with serious toxicity and potential pollutant for water bodies in many industries. The new SeNPs/NCh biofilter has proven highly effective in individually removing mercury and AgNPs from their synthetic wastewaters, with an efficiency of up to 99%. Moreover, the removal efficiency of AgNPs stabilized at 99% after treating them with the syringe filter-Se nanocomposite for 4 cycles of treatment (5 min each).


Asunto(s)
Biodegradación Ambiental , Mercurio , Nanocompuestos , Selenio , Plata , Aguas Residuales , Purificación del Agua , Aguas Residuales/química , Nanocompuestos/química , Selenio/química , Mercurio/química , Mercurio/aislamiento & purificación , Purificación del Agua/métodos , Plata/química , Contaminantes Químicos del Agua/química , Nanopartículas del Metal/química , Antibacterianos/farmacología , Antibacterianos/química , Desinfección/métodos , Filtración/métodos , Bacillus/metabolismo , Bacillus/efectos de los fármacos , Quitosano/química , Quitosano/farmacología
2.
Environ Sci Pollut Res Int ; 31(32): 44649-44668, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38963627

RESUMEN

Free water surface constructed wetlands (FWSCWs) for the treatment of various wastewater types have evolved significantly over the last few decades. With an increasing need and interest in FWSCWs applications worldwide due to their cost-effectiveness and other benefits, this paper reviews recent literature on FWSCWs' ability to remove different types of pollutants such as nutrients (i.e., TN, TP, NH4-N), heavy metals (i.e., Fe, Zn, and Ni), antibiotics (i.e., oxytetracycline, ciprofloxacin, doxycycline, sulfamethazine, and ofloxacin), and pesticides (i.e., Atrazine, S-Metolachlor, imidacloprid, lambda-cyhalothrin, diuron 3,4-dichloroanilin, Simazine, and Atrazine) that may co-exist in wetland inflow, and discusses approaches for simulating hydraulic and pollutant removal processes. A bibliometric analysis of recent literature reveals that China has the highest number of publications, followed by the USA. The collected data show that FWSCWs can remove an average of 61.6%, 67.8%, 54.7%, and 72.85% of inflowing nutrients, heavy metals, antibiotics, and pesticides, respectively. Optimizing each pollutant removal process requires specific design parameters. Removing heavy metal requires the lowest hydraulic retention time (HRT) (average of 4.78 days), removing pesticides requires the lowest water depth (average of 0.34 m), and nutrient removal requires the largest system size. Vegetation, especially Typha spp. and Phragmites spp., play an important role in FWSCWs' system performance, making significant contributions to the removal process. Various modeling approaches (i.e., black-box and process-based) were comprehensively reviewed, revealing the need for including the internal process mechanisms related to the biological processes along with plants spp., that supported by a further research with field study validations. This work presents a state-of-the-art, systematic, and comparative discussion on the efficiency of FWSCWs in removing different pollutants, main design factors, the vegetation, and well-described models for performance prediction.


Asunto(s)
Contaminantes Químicos del Agua , Humedales , Metales Pesados , Eliminación de Residuos Líquidos/métodos , Aguas Residuales/química , Purificación del Agua/métodos , Plaguicidas
3.
Sci Total Environ ; 945: 173972, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38897477

RESUMEN

The spread of heavy metals throughout the ecosystem has extremely endangered human health, animals, plants, and natural resources. Hydrochar has emerged as a promising adsorbent for removal of heavy metals from water and wastewater. Hydrochar, obtained from hydrothermal carbonization of biomass, owns unique physical and chemical properties that are highly potent in capturing heavy metals via surface complexation, electrostatic interactions, and ion exchange mechanisms. This review focuses on removing heavy metals by hydrochar adsorbents from water bodies. The article discusses factors affecting the adsorption capacity of hydrochars, such as contact time, pH, initial metal concentration, temperature, and competing ions. Literature on optimization approaches such as surface modification, composite development, and hybrid systems are reviewed to enlighten mechanisms undertaking the efficiency of hydrochars in heavy metals removal from wastewater. The review also addresses challenges such as hydrochar regeneration and reusability, alongside potential issues related to its disposal and metal leaching. Integration with current water purification methods and the significance of ongoing research and initiatives promoting hydrochar-based technologies were also outlined. The article concludes that combining hydrochar with modern technologies such as nanotechnology and advanced oxidation techniques holds promise for improving heavy metal remediation. Overall, this comprehensive analysis provides valuable insights to guide future studies and foster the development of effective, affordable, and environmentally friendly heavy metal removal technologies to ensure the attainment of safer drinking water for communities worldwide.


Asunto(s)
Metales Pesados , Contaminantes Químicos del Agua , Purificación del Agua , Adsorción , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos , Cinética , Carbón Orgánico/química , Eliminación de Residuos Líquidos/métodos , Aguas Residuales/química
4.
Environ Monit Assess ; 196(7): 606, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38856948

RESUMEN

Toxic pollutants in the form of heavy metals are added through various anthropogenic activities daily into the aquatic ecosystem beyond their permissible limits, and their bioaccumulation capacity makes them hazardous substances for the survival of all organisms. Thus, their removal from aquatic ecosystems is the need of the hour. Treatment of wastewater containing heavy metals through biosorption is gaining popularity and is being explored all around the world due to its various advantages over conventional methods of treatment. Utilization of animal waste as a biomaterial could be the best solution to remove it from the ecosystem. Such treatment methods are a blessing for developing and underdeveloped countries due to their low cost. This paper provides in-depth details about heavy metals, their health implications, mechanisms of toxicity, modes of transportation, and conventional treatment approaches. A comprehensive understanding of the biosorption process, encompassing its world scenario, evolution, mechanisms, factors affecting the process, and advantages, will also be covered. Finally, animal wastes and their applicability in the removal of heavy metal pollutants from wastewater shall also be thoroughly reviewed, followed by their future utility and recommendations.


Asunto(s)
Ecosistema , Metales Pesados , Aguas Residuales , Contaminantes Químicos del Agua , Metales Pesados/análisis , Contaminantes Químicos del Agua/análisis , Animales , Aguas Residuales/química , Eliminación de Residuos Líquidos/métodos , Adsorción
5.
Chemosphere ; 361: 142532, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38844109

RESUMEN

Ladle slag, a by-product of steelmaking, presents a valuable strategy for waste reduction and valorization in wastewater treatment. This work demonstrates the successful simultaneous removal of Al(III), B(III), Ba(II), Cr(III), Mg(II), Sr(II), Pb(II), and Zn(II), from electroplating wastewater by ladle slag. First, Cr(III) and Pb(II) removals were evaluated in single synthetic systems by analyzing the influence of pH, temperature, and ladle slag dosage. Competitive removal was observed in binary batch experiments of Cr(III) - Pb(II), achieving 88% and 96% removal, respectively, with fast kinetics following a pseudo-second-order model. The findings of XRD, SEM, EDX, and FTIR of the slag after removal helped to elucidate the synergic removal mechanism involving ladle slag dissolution, precipitation, ion exchange, and adsorption in a tight relationship with the solution pH. Lastly, ladle slag was tested in real electroplating wastewater with the aforementioned ions at concentrations ranging from <1 to 1700 mg/L. The removal was performed in two steps, the first attained the following efficiencies: 73% for Al(III), 88% for B(III), 98% for Ba(II), 80% for Cr(III), 82% for Mg(II), 99% for Pb(II), 88% for Sr(II), and 88% for Zn(II). Visual MINTEQ simulation was utilized to identify the different species of ions present during the removal process. Furthermore, the leaching tests indicated a minimal environmental risk of secondary pollution in its application. The results promote an effective and sustainable approach to wastewater treatment within the circular economy.


Asunto(s)
Galvanoplastia , Metales Pesados , Eliminación de Residuos Líquidos , Aguas Residuales , Contaminantes Químicos del Agua , Aguas Residuales/química , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/química , Metales Pesados/aislamiento & purificación , Metales Pesados/análisis , Metales Pesados/química , Eliminación de Residuos Líquidos/métodos , Adsorción , Concentración de Iones de Hidrógeno , Cinética , Residuos Industriales/análisis , Acero/química
6.
Sci Rep ; 14(1): 5086, 2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-38429371

RESUMEN

This study aimed to assess the value of Pachira aquatica Aubl. fruit peels by exploring their applicability in the biosorption process for the removal of Ni(II) and Cd(II) metal ions. The Pachira aquatica Aubl. fruit peel biochar (PAB) was extensively characterized through various techniques, including proximate analysis, helium pycnometer, XRD, SEM, point of zero charge determination, zeta potential measurement, and Boehm titration. Subsequently, kinetic, isotherm, and thermodynamic batch biosorption studies were conducted, followed by column biosorption tests. The characteristics of PAB, including low moisture content, a neutral point of zero charge, porosity, an irregular and heterogeneous structure, a negatively charged surface, and the presence of functional groups, indicate its remarkable capacity for efficiently binding with heavy metals. Biosorption equilibrium time was achieved at 300 min for both ions, fitting well with a pseudo second-order kinetic model and Langmuir isotherm model. These data suggest that the biosorption process occurred chemically in monolayer. The column C presented an exhaust volume of 1200 mL for Ni(II) and 1080 for Cd(II) and removal of 98% and 99% of removal for Ni(II) and Cd(II), respectively. In summary, PAB demonstrates substantial potential as a biosorbent for effectively removing heavy metals, making a valuable contribution to the valorization of this co-product and the mitigation of environmental pollution.


Asunto(s)
Bombacaceae , Carbón Orgánico , Metales Pesados , Cadmio/análisis , Níquel , Biomasa , Adsorción , Concentración de Iones de Hidrógeno , Metales Pesados/análisis , Iones
7.
Sci Total Environ ; 926: 171981, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38547997

RESUMEN

Floating Vegetated System (FVS) emerged as a green and sustainable technology, presenting a viable solution for treating heavy metals (HMs) contaminated water without disrupting the food web. Pistia stratiotes has been used in the design of FVS due to its abundance of aerenchyma tissues, which contribute to its ability to remain buoyant. FVS exhibited significant HMs removal efficiencies, with Pb top at average 84.4 %, followed by Zn (81.1 %), Cr (78.5 %), Cu (76.5 %) and Ni (73 %). Bio-concentration Factor (BCF) and Translocation Factor (TF) values evaluated the plant's adeptness in metal uptake. For plants treated with Cu, the highest post-treatment chlorophyll content of 9 ± 1 mg.ml-1 was observed while Zn induced plant shows the lowest content of 7.1 ± 0.4 mg.ml-1. Using Box-Behnken Design (BBD), the system achieved 81.48 % Pb removal under optimized conditions such as initial Pb conc. of 9.25 mg. l-1, HRT of 24.49 days and a water depth of 26.52 cm. ANOVA analysis highlighted the significant impact of all the factors such as initial HM conc., HRT and wastewater depth on FVS performance. Kinetic analysis estimated a closer observance to the zero-order model, supported by high determination coefficient (R2) values. In conclusion, the FVS, as one of the most eco-friendly technologies, demonstrates higher potential for treating polluted water bodies, offering a sustainable remedy to global metal pollution challenges. Research on FVS for HMs removal is an area of ongoing interest and there are several potential future studies that could be pursued to further understand and optimize their effectiveness such as optimization of plant species, enhancement of plant-metal interactions, effects of environmental factors, economic feasibility studies, disposal of heavy metals accumulated plant, scale-up and application in real-world settings, etc.


Asunto(s)
Araceae , Metales Pesados , Contaminantes Químicos del Agua , Plomo , Cinética , Contaminantes Químicos del Agua/análisis , Metales Pesados/análisis , Agua , Zinc/análisis
8.
Ecotoxicol Environ Saf ; 275: 116224, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38518610

RESUMEN

Depletion of fossil fuel and pollution by heavy metals are two major global issues. The cell wall of algae consists of polymers of polysaccharides such as cellulose, hemicellulose, alginate, starch, and many others that are readily hydrolyzed to monosaccharides and hence are amenable to fermentation into bioethanol. Moreover, algae contain lipids that may undergo trans-esterification to biodiesel, and can be absorbed by heavy metals. In this study, extraction of lipids from Turbinaria turbinata (common brown alga) from the beach of Sharma, NEOM, Tabuk, Saudi Arabia by different solvents hexane, methanol, and hexane: methanol (1:1), and trans-esterification was performed to obtain biodiesel and investigated by GC.MS. The alga residue after fats extractions by different solvents was used in bioremediation synthetic wastewater containing 50 ppm of As-3, Co+2, Cu+2, Fe+2, Mn+2, and Zn+2. The residue of defatted alga was hydrolyzed by 2% H2SO4 and then fermented to obtain bioethanol. The combination of hexane: methanol (1:1) gave the greatest amount of petroleum hydrocarbons, which contain Tetradecane, 5-methyl, Octacosane, Pentatriacontane, and a small amount of Cyclotrisiloxane, Hexamethyl. The most effective removal % was obtained with alga residue defatted by hexane: methanol (1:1), and methanol, 100% removal of As-3, 83% Co+2, 95% Cu+2, 97.25% Fe+2, Mn+2 79.69%, Zn+2 90.15% with 2 g alga /L at 3 hours. The lowest value of sugar was obtained with hexane: methanol residue but gave the highest bioethanol efficiency. Thus, it is possible to use Turbinaria turbinata, or brown alga as a feedstock to produce bio-diesel, and bioethanol, and to remove heavy metals from wastewater, which may have a great economic and environmental significance.


Asunto(s)
Metales Pesados , Phaeophyceae , Biocombustibles , Hexanos , Metanol , Aguas Residuales , Metales Pesados/análisis , Plantas , Biodegradación Ambiental , Lípidos , Solventes
9.
J Hazard Mater ; 469: 133993, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38461661

RESUMEN

The presence of organic-complexed copper and zinc in anaerobic digestate effluent (ADE) poses persistent ecological toxicity. This study investigated the detoxification performance and biotic responses of indigenous bacteria against ethylene diamine tetraacetic acid (EDTA)-complexed Cu(II) and Zn(II). Heavy metals (HMs) stress induced reactive oxygen species (ROS) generation and enhanced extracellular polymeric substances (EPS) secretion. At a Cu(II) influent concentration of 20.0 mg·L-1, indigenous bacteria removed 88.2% of Cu(II) within nine days. The majority of copper and zinc sequestered by bacteria were stored in the cell envelope, with over 50% of copper and 60% of zinc being immobilized. Transmission electron microscopy mapping (TEM-mapping) revealed significant mineralization of copper and zinc on the cell wall. Proteins abundant in EPS, alongside humic acid-like substances, effectively adsorbed HMs. Indigenous bacteria exhibited the capacity to reduce cupric to the cuprous state and cupric is preferentially reduced to cuprous before reaching reducing capacity saturation. Sulfur precipitation emerges as a crucial pathway for Zn(II) removal. Metagenomic analysis indicated that indigenous bacteria upregulated genes related to HMs homeostasis, efflux, and DNA repair, enhancing its resistance to high concentrations HMs. This study provided theoretical guidance for employing bacterial consortia to eliminate HMs in complex aquatic environments.


Asunto(s)
Cobre , Metales Pesados , Cobre/toxicidad , Cobre/metabolismo , Zinc/toxicidad , Zinc/metabolismo , Anaerobiosis , Metales Pesados/metabolismo , Bacterias/genética , Bacterias/metabolismo , Compuestos Orgánicos/metabolismo
10.
Gels ; 10(2)2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38391472

RESUMEN

The presence of organic dyes and heavy metal ions in water sources poses a significant threat to human health and the ecosystem. In this study, hydrogel adsorbents for water pollution remediation were synthesized using Guipi residue (GP), a cellulose material from Chinese herbal medicine, and chitosan (CTS) through radical polymerization with acrylamide (AM) and acrylic acid (AA). The characteristics of the hydrogels were analyzed from a physicochemical perspective, and their ability to adsorb was tested using model pollutants such as Pb2+, Cd2+, Rhodamine B (RhB), and methyl orange (MO). The outcomes revealed that GP/CTS/AA-co-AM, which has improved mechanical attributes, effectively eliminated these pollutants. At a pH of 4.0, a contact duration of 120 min, and an initial concentration of 600 mg/L for Pb2+ and 500 mg/L for Cd2+, the highest adsorption capabilities were 314.6 mg/g for Pb2+ and 289.1 mg/g for Cd2+. Regarding the dyes, the GP/CTS/AA-co-AM hydrogel displayed adsorption capacities of 106.4 mg/g for RhB and 94.8 mg/g for MO, maintaining a stable adsorption capacity at different pHs. Compared with other competitive pollutants, GP/CTS/AA-co-AM demonstrated a higher absorption capability, mainly targeted toward Pb2+. The adsorption processes for the pollutants conformed to pseudo-second-order kinetics models and adhered to the Langmuir models. Even after undergoing five consecutive adsorption and desorption cycles, the adsorption capacities for heavy metals and dyes remained above 70% and 80%. In summary, this study effectively suggested the potential of the innovative GP/CTS/AA-co-AM hydrogel as a practical and feasible approach for eliminating heavy metals and dyes from water solutions.

11.
Materials (Basel) ; 17(4)2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38399203

RESUMEN

The studies aimed to test the adsorption capacity of two silica-enriched porous materials, synthetic Na-X zeolite and Mn-containing carbon composite, towards Pb(II) and Zn(II) ions in single and mixed systems and in the presence of diclofenac (DCF) and (or) poly(acrylic acid) (PAA). The synthetic zeolite was characterized by a well-developed surface area of 728 m2/g and a pore diameter of 1.73 nm, while the carbon composite exhibited 268 m2/g and 7.37 nm, respectively. Na-X was found to be more efficient than the carbon composite (75-212 mg/g) in adsorbing heavy metal ions in both single and bimetallic systems (322-333 mg/g). In turn, the C/Mn/SiO2 composite was more effective in removing Pb(II) ions from the systems that simultaneously contained DCF or PAA (480 and 476 mg/g, respectively). The Na-X zeolite demonstrated the greatest stability in all the systems studied. The highest stability was observed in the DCF + Pb(II) mixture, in contrast to the carbon composites where the stability was much lower. To evaluate the possibility of regeneration of the solids, HCl proved to be the best desorbent for heavy metal ions (efficiency of 99%). In general, both adsorbents offer promising potential for solving environmental problems.

12.
Toxics ; 11(10)2023 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-37888679

RESUMEN

Water quality depends on its physicochemical and biological parameters. Changes in parameters such as pH, temperature, and essential and non-essential trace metals in water can render it unfit for human use. Moreover, the characteristics of the local environment, geological processes, geochemistry, and hydrological properties of water sources also affect water quality. Generally, groundwater is utilized for drinking purposes all over the globe. The surface is also utilized for human use and industrial purposes. There are several natural and anthropogenic activities responsible for the heavy metal contamination of water. Industrial sources, including coal washery, steel industry, food processing industry, plastic processing, metallic work, leather tanning, etc., are responsible for heavy metal contamination in water. Domestic and agricultural waste is also responsible for hazardous metallic contamination in water. Contaminated water with heavy metal ions like Cr (VI), Cd (II), Pb (II), As (V and III), Hg (II), Ni (II), and Cu (II) is responsible for several health issues in humans, like liver failure, kidney damage, gastric and skin cancer, mental disorders and harmful effects on the reproductive system. Hence, the evaluation of heavy metal contamination in water and its removal is needed. There are several physicochemical methods that are available for the removal of heavy metals from water, but these methods are expensive and generate large amounts of secondary pollutants. Biological methods are considered cost-effective and eco-friendly methods for the remediation of metallic contaminants from water. In this review, we focused on water contamination with toxic heavy metals and their toxicity and eco-friendly bioremediation approaches.

13.
Environ Pollut ; 339: 122753, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37852314

RESUMEN

The presence of antibiotics in water poses significant threats to both human health and the environment. Addressing this issue requires the effective treatment of medical wastewater. Photoelectrochemical advanced oxidation processes (PEAOPs) are emerging as promising solutions for wastewater treatment. This process utilizes photocatalysts to convert charge carriers into reactive species such as hydroxyl radicals and superoxide ions, which are essential for degrading pollutants in wastewater. However, limitations in charge carrier separation and transport have hindered the efficiency of photoelectrochemical advanced oxidation processes. To overcome these limitations, we designed WS2@CoFe2O4 heterojunctions, optimizing their energy levels to enhance charge transport and separation. This improvement significantly increased the oxidation of antibiotics such as amoxicillin and azithromycin. Multiple reactions occurred at the WS2@CoFe2O4 heterojunctions during photoelectrochemical advanced oxidation processes, leading to the impressive degradation of up to 99% of antibiotics under visible light irradiation at 0.8 V. Urea and H2O2 acted as oxidation agents within photoelectrochemical advanced oxidation processes, amplifying the generation of hydroxyl radicals and superoxide ions, further enhancing antibiotic oxidation. Moreover, the WS2@CoFe2O4 photoanode efficiently oxidized toxic antibiotics while converting As(III) into the less harmful As(V). Crucially, recyclability tests confirmed the robustness of the WS2@CoFe2O4 photoanode, ensuring its suitability for prolonged use in photoelectrochemical advanced oxidation processes. Integrating WS2@CoFe2O4 photoanodes into water purification systems can enhance efficiency, reduce energy consumption, and improve economic viability. This technology's scalability and its ability to protect ecosystems while conserving water resources make it a promising solution for addressing the critical issue of antibiotic pollution in water environments.


Asunto(s)
Metales Pesados , Contaminantes Químicos del Agua , Humanos , Aguas Residuales , Antibacterianos , Peróxido de Hidrógeno/química , Superóxidos , Ecosistema , Agua , Radical Hidroxilo , Oxidación-Reducción , Contaminantes Químicos del Agua/análisis
14.
Materials (Basel) ; 16(17)2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37687464

RESUMEN

Increasing year-by-year vehicle production is related to the expanding volume of used tires; therefore, exploring waste management strategies is strongly recommended. The global tire market reached 2.27 billion units in 2021 and is expected to reach 2.67 billion units by 2027. Dumping tires in landfills can cause significant environmental impacts, so waste tire utilisation plays an important role. Predominantly, the following three directions are employed for waste tire disposal: retreading, energy recovery and material recovery. The review shows that used tires can remove environmental pollution from both aqueous solutions containing heavy metal ions, dyes, pharmaceutical compounds, and benzene, toluene, ethylbenzene and xylene (BTEX). Particularly high efficiency was achieved in the removal of dyes (72%), taking into account the high initial concentration of impurities. The adsorption process depends on multiple factors, including, in particular, the following: pH, initial concentration of pollution, contact time and the properties of the sorbent used. The optimal pH range was identified to be between 6 and 7. Considering the principles of circular economy as well as based on the current state of knowledge, it can be concluded that the solid fraction obtained from the combustion of waste tires can be practically utilised for various environmental purposes.

15.
Nanomaterials (Basel) ; 13(10)2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37242012

RESUMEN

Magnetic chitosan/cellulose nanofiber-Fe(III) [M-Ch/CNF-Fe(III)] composites were isolated for the elimination of Cr(VI), Cu(II), and Pb(II) from aqueous solution. Various analytical methods, such as field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FT-IR), X-ray diffraction analysis (XRD), and thermogravimetric analysis (TGA) were employed to determine the morphological, physicochemical, and thermal properties of the isolated M-Ch/CNF-Fe(III) composites. It was found that the M-Ch/CNF-Fe(III) composites were porous materials, and they have the potential to be implemented as an adsorbent for heavy metals removal. The adsorption efficiency of M-Ch/CNF-Fe(III) composites was determined for Cr(VI), Cu(II), and Pb(II) elimination with changing pH (pH 1.0-8.0), adsorbent doses (0.05-1.0 g), time (15-90 min), and temperature (28-80 °C). In addition, isothermal and kinetics studies were conducted to assess the adsorption behavior and mass transfer phenomena of M-Ch/CNF-Fe(III) composites as an adsorbent for Cr(VI), Cu(II) and Pb(II) elimination from aqueous solution. The outcomes of the present study reveal that the M-Ch/CNF-Fe(III) composites could be utilized as an adsorbent for the Cr(VI), Cu(II), and Pb(II) elimination from industrial effluents.

16.
Chemosphere ; 324: 138297, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36893869

RESUMEN

The application of commercial membranes is limited by the secondary pollution such as the usage of toxic chemicals for the membrane preparation and the disposal of aged membranes. Therefore, the green and environmentally friendly membranes are extremely promising for the sustainable development of membrane filtration in water treatment. In this study, the comparison of wood membrane with the pore size of tens microns (µm) and polymer membrane with the pore size of 0.45 µm was made to study the heavy metals removal in drinking water treatment by gravity-driven membrane (GDM) filtration system, and there was an improvement in the removal of Fe, Cu and Mn by wood membrane. The sponge-like structure of fouling layer for wood membrane made the retention time of heavy metals prolonged in contrast to the cobweb-like structure of polymer membrane. The carboxylic group (-COOH) content of fouling layer for wood membrane was greater than that for polymer membrane. Additionally, the population abundance of heavy metal-capturing microbes on the surface of wood membrane was higher compared with polymer membrane. The wood membrane provides a promising route to producing facile, biodegradable and sustainable membrane as a green alternative to polymer membranes in heavy metal removal from drinking water.


Asunto(s)
Agua Potable , Metales Pesados , Purificación del Agua , Agua Potable/análisis , Polímeros/análisis , Madera/química , Metales Pesados/análisis
17.
Environ Monit Assess ; 195(2): 326, 2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36692638

RESUMEN

Considering that landfilling still remains among the most commonly used methods for the confrontation of solid wastes, effective methods should be applied to treat the leachate generated, due to its recalcitrant nature. In this work, a full-scale system consisting of two SBRs operating in parallel (350 m3 each) and two activated carbon (AC) columns operating in series (3 m3 each) was retrofitted by introducing a coagulation/flocculation/sedimentation (C/F/S) unit of 7.8 m3 and an ultrafiltration (UF) membrane of 100 m2 to effectively treat landfill leachate. The raw leachate was characterized by high COD and NH4+-N concentration, i.e., 3095 ± 706 mg/L and 1054 ± 141 mg/L respectively, a BOD/COD ratio of 0.22, and high concentrations of certain heavy metals. Leachate processing in this retrofitted multistage treatment system resulted in total COD removal efficiency of 89.84%, with biological treatment, C/F, UF, and AC contributing 46.31%, 4.68%, 15.98%, and 22.87% to the overall organic content removal. The retrofitted scheme achieved an overall NH4+-N and TKN removal of 92.03% and 91.75% respectively, attributed mostly to the activity of an effective nitrifying community. Color number (CN) was reduced by 26.96%, 10.29%, 15.94%, and 5.39% after the activated sludge, the C/F, the UF, and the AC adsorption process respectively, corresponding to a 58.91% overall decrease. Regarding heavy metal removal, all elements examined, apart from Ni, i.e., effluent As, Cd, Co, Cr, Cu, Hg, Mg, Mn, and Pb, were below the legislative limits set by the national authorities for restricted or unrestricted irrigation. Lastly, total operating expenses (OPEX) were estimated as equal to 72,687 €/year or 6.64 €/m3.


Asunto(s)
Metales Pesados , Contaminantes Químicos del Agua , Floculación , Ultrafiltración , Monitoreo del Ambiente
18.
Environ Technol ; : 1-13, 2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36511645

RESUMEN

Four novel magnetic-activated carbons (MACs) were prepared, characterised, and used as adsorbents to remove heavy metal ions from wastewater samples. The MACs prepared, are advanced adsorbents for the removal of Hg(II), Cr(III), Cd(II), and Pb(II). The nature of the acid, amount, composition of the MACs, and the remotion time were evaluated in aqueous solutions. The ions removal percentages obtained, under the best conditions, were 93% for Hg(II) and higher than 99% for Pb(II), Cr(III), and Cd(II) (100 mg L-1, initial concentration in solution), with 100 mg of the MAC-3 in HNO3 3 mM. The capacity of the best adsorbent, MAC-3, for removing heavy metals ions Hg(II), Cr(III), Cd(II), and Pb(II) was studied using Langmuir and Freundlich adsorption isotherms under the best condition. The maximum adsorption capacities of Hg(II), Cr(III), Cd(II), and Pb(II) were found to be 10.72, 11.51, 11.49 and 11.49 mg g-1, the values of constants of Freundlich models were 17.98, 26.83, 9.18, and 7.18 mg g-1 respectively. For Hg(II) and Pb(II) the correlation factor (R2) was better for Freundlich model, while Cr(III) and Cd(II) showed better R2 with Langmuir model. Finally, the treatment for the elimination of heavy metal ions was carried out, with wastewater samples of industrial and domestic origin, and used for crop irrigation. The samples were collected in Irrigation District 003, Hidalgo, Mexico. The MAC-3 removes heavy metal ions from the wastewater matrix above 99%.

19.
Artículo en Inglés | MEDLINE | ID: mdl-36498112

RESUMEN

The practical application of nanoscale zero-valent iron (NZVI) is restricted by its easy oxidation and aggregation. Here, sludge biochar (SB) was used as a carrier to stabilize NZVI for Cd2+ and Cu2+ removal. SB supported NZVI (SB-NZVI) was synthesized using the carbothermic method. The superior preparation conditions, structural characteristics, and performance and mechanisms of the SB-NZVI composites for the removal of Cd2+ and Cu2+ were investigated via batch experiments and characterization analysis. The optimal removal capacities of 55.94 mg/g for Cd2+ and 97.68 mg/g for Cu2+ were achieved at a Fe/sludge mass ratio of 1:4 and pyrolysis temperature of 900 °C. Batch experiments showed that the SB-NZVI (1:4-900) composite had an excellent elimination capacity over a broad pH range, and that weakly acidic to neutral solutions were optimal for removal. The XPS results indicated that the Cd2+ removal was mainly dependent on the adsorption and precipitation/coprecipitation, while reduction and adsorption were the mechanisms that play a decisive role in Cu2+ removal. The presence of Cd2+ had an opposite effect on the Cu2+ removal. Moreover, the SB-NZVI composites made of municipal sludge greatly reduces the leaching toxicity and bio-availability of heavy metals in the municipal sludge, which can be identified as an environmentally-friendly material.


Asunto(s)
Hierro , Contaminantes Químicos del Agua , Hierro/química , Cadmio , Aguas del Alcantarillado , Contaminantes Químicos del Agua/análisis , Adsorción
20.
Polymers (Basel) ; 14(18)2022 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-36145880

RESUMEN

Worldwide, concerns about heavy metal contamination from manmade and natural sources have increased in recent decades. Metals released into the environment threaten human health, mostly due to their integration into the food chain and persistence. Nature offers a large range of materials with different functionalities, providing also a source of inspiration for scientists working in the field of material synthesis. In the current study, a new type of copolymer is introduced, which was synthesized for the first time by combining chitosan and poly(benzofurane-co-arylacetic acid), for use in the adsorption of toxic heavy metals. Such naturally derived materials can be easily and inexpensively synthesized and separated by simple filtration, thus becoming an attractive alternative solution for wastewater treatment. The new copolymer was investigated by solid-state nuclear magnetic resonance, thermogravimetric analysis, scanning electron microscopy, Fourier transform infrared spectroscopy, and X-ray photon electron microscopy. Flame atomic absorption spectrometry was utilized to measure heavy metal concentrations in the investigated samples. Equilibrium isotherms, kinetic 3D models, and artificial neural networks were applied to the experimental data to characterize the adsorption process. Additional adsorption experiments were performed using metal-contaminated water samples collected in two seasons (summer and winter) from two former mining areas in Romania (Roșia Montana and Novaț-Borșa). The results demonstrated high (51-97%) adsorption efficiency for Pb and excellent (95-100%) for Cd, after testing on stock solutions and contaminated water samples. The recyclability study of the copolymer indicated that the removal efficiency decreased to 89% for Pb and 58% for Cd after seven adsorption-desorption cycles.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA