Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Heart Fail Rev ; 29(5): 1079-1096, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39093495

RESUMEN

Due to the discrepancy between patients awaiting a heart transplant and the availability of donor hearts, strategies to expand the donor pool and improve the transplant's success are crucial. This review aims to summarize current knowledge on the ex vivo heart preservation (EVHP) experience as an alternative to standard cold static storage (CSS). EVHP techniques can improve the preservation of the donor's heart before transplantation and allow for pre-transplant organ evaluation.


Asunto(s)
Trasplante de Corazón , Preservación de Órganos , Perfusión , Humanos , Trasplante de Corazón/métodos , Preservación de Órganos/métodos , Perfusión/métodos , Donantes de Tejidos
2.
Front Cardiovasc Med ; 11: 1325169, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38638886

RESUMEN

Cold static storage (CSS) for up to 6 h is the gold standard in heart preservation. Although some hearts stored over 6 h have been transplanted, longer CSS times have increased posttransplant morbimortality. Transmedics® Organ Care System (OCS™) is the only FDA-approved commercial system that provides an alternative to CSS using normothermic ex situ heart perfusion (NEHP) in resting mode with aortic perfusion (Langendorff method). However, it is also limited to 6 h and lacks an objective assessment of cardiac function. Developing a system that can perfuse hearts under NEHP conditions for >24 h can facilitate organ rehabilitation, expansion of the donor pool, and objective functional evaluation. The Extracorporeal Life Support Laboratory at the University of Michigan has worked to prolong NEHP to >24 h with an objective assessment of heart viability during NEHP. An NEHP system was developed for aortic (Langendorff) perfusion using a blood-derived perfusate (leukocyte/thrombocyte-depleted blood). Porcine hearts (n = 42) of different sizes (6-55 kg) were divided into five groups and studied during 24 h NEHP with various interventions in three piglets (small-size) heart groups: (1) Control NEHP without interventions (n = 15); (2) NEHP + plasma exchange (n = 5); (3) NEHP + hemofiltration (n = 10) and two adult-size (juvenile pigs) heart groups (to demonstrate the support of larger hearts); (4) NEHP + hemofiltration (n = 5); and (5) NEHP with intermittent left atrial (iLA) perfusion (n = 7). All hearts with NEHP + interventions (n = 27) were successfully perfused for 24 h, whereas 14 (93.3%) control hearts failed between 10 and 21 h, and 1 control heart (6.6%) lasted 24 h. Hearts in the piglet hemofiltration and plasma exchange groups performed better than those in the control group. The larger hearts in the iLA perfusion group (n = 7) allowed for real-time heart functional assessment and remained stable throughout the 24 h of NEHP. These results demonstrate that heart preservation for 24 h is feasible with our NEHP perfusion technique. Increasing the preservation period beyond 24 h, infection control, and nutritional support all need optimization. This proves the concept that NEHP has the potential to increase the organ pool by (1) considering previously discarded hearts; (2) performing an objective assessment of heart function; (3) increasing the donor/recipient distance; and (4) developing heart-specific perfusion therapies.

3.
Clin Exp Pharmacol Physiol ; 51(2): e13835, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37994166

RESUMEN

Ischemic reperfusion injury, caused by oxidative stress during reperfusion, is an inevitable outcome of organ transplantation, especially when the organ preservation time is prolonged. Prolonged ischaemic preservation is a valuable technique for improving the success of organ transplantation, but numerous challenges remain. 3-nitro-N-methyl salicylamide (3-NNMS), an inhibitor of mitochondrial electron transport chain complex III, can be used to reduce reactive oxygen species production during blood reperfusion by slowing the electron flow rate of the respiratory chain. Based on this property, a novel preservation solution was developed for the preservation of isolated rat heart and its cardioprotective effect was investigated during an 8-h cold ischaemia preservation time for the first time. For comparison, 3-NNMS was also included in the histidine-tryptophan-ketoglutarate (HTK) solution. Compared to HTK, HTK supplemented with 3-NNMS significantly improved the heart rate of isolated rat hearts after 8 h of cold storage. Both 3-NNMS solution and HTK supplemented with 3-NNMS solution decreased cardiac troponin T and lactate dehydrogenase levels in perfusion fluid and reduced reactive oxygen species and malondialdehyde levels in the myocardium. The 3-NNMS also maintained the membrane potential of myocardial mitochondria and significantly increased superoxide dismutase levels. These results showed that the new 3-NNMS solution can protect mitochondrial and cardiomyocyte function by increasing antioxidant capacity and reducing oxidative stress in cryopreserved rat hearts during a prolonged preservation time, resulting in less myocardial injury and better heart rate.


Asunto(s)
Corazón , Soluciones Preservantes de Órganos , Ratas , Animales , Soluciones Preservantes de Órganos/farmacología , Especies Reactivas de Oxígeno , Miocardio , Glucosa/farmacología , Manitol/farmacología , Salicilamidas/farmacología
4.
JACC Heart Fail ; 12(3): 427-437, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38032571

RESUMEN

Historically, heart transplantation (HT) has relied on the use of traditional cold storage for donor heart preservation. This organ preservation modality has several limitations, including the risk for ischemic and cold-induced graft injuries that may contribute to primary graft dysfunction and poor post-HT outcomes. In recent years, several novel donor heart preservation modalities have entered clinical practice, including the SherpaPak Cardiac Transport System of controlled hypothermic preservation, and the Transmedics Organ Care System of ex vivo perfusion. Such technologies are altering the landscape of HT by expanding the geographic reach of procurement teams and enabling both donation after cardiac death and the use of expanded criteria donor hearts. This paper will review the emerging evidence on the association of these modalities with improved post-HT outcomes, and will also suggest best practices for selecting between donor heart preservation techniques.


Asunto(s)
Insuficiencia Cardíaca , Trasplante de Corazón , Humanos , Trasplante de Corazón/métodos , Donantes de Tejidos , Corazón , Preservación de Órganos/métodos
5.
Front Cardiovasc Med ; 10: 1248606, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38028479

RESUMEN

Heart transplantation, the gold standard treatment for end-stage heart failure, is limited by heart graft shortage, justifying expansion of the donor pool. Currently, static cold storage (SCS) of hearts from donations after brainstem death remains the standard practice, but it is usually limited to 240 min. Prolonged cold ischemia and ischemia-reperfusion injury (IRI) have been recognized as major causes of post-transplant graft failure. Continuous ex situ perfusion is a new approach for donor organ management to expand the donor pool and/or increase the utilization rate. Continuous ex situ machine perfusion (MP) can satisfy the metabolic needs of the myocardium, minimizing irreversible ischemic cell damage and cell death. Several hypothermic or normothermic MP methods have been developed and studied, particularly in the preclinical setting, but whether MP is superior to SCS remains controversial. Other approaches seem to be interesting for extending the pool of heart graft donors, such as blocking the paths of apoptosis and necrosis, extracellular vesicle therapy, or donor heart-specific gene therapy. In this systematic review, we summarize the mechanisms involved in IRI during heart transplantation and existing targeting therapies. We also critically evaluate all available data on continuous ex situ perfusion devices for adult donor hearts, highlighting its therapeutic potential and current limitations and shortcomings.

6.
Transpl Int ; 36: 11089, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37547752

RESUMEN

Extending selection criteria to face donor organ shortage in heart transplantation (HTx) may increase the risk of mortality. Ex-vivo normothermic perfusion (EVP) limits ischemic time allowing assessment of graft function. We investigated the outcome of HTx in 80 high-risk recipients transplanted with marginal donor and EVP-preserved grafts, from 2016 to 2021. The recipients median age was 57 years (range, 13-75), with chronic renal failure in 61%, impaired liver function in 11% and previous cardiac surgery in 90%; 80% were mechanically supported. Median RADIAL score was 3. Mean graft ischemic time was 118 ± 25 min, "out-of-body" time 420 ± 66 min and median cardiopulmonary bypass (CPB) time 228 min (126-416). In-hospital mortality was 11% and ≥moderate primary graft dysfunction 16%. At univariable analysis, CPB time and high central venous pressure were risk factors for mortality. Actuarial survival at 1 and 3 years was 83% ± 4%, and 72% ± 7%, with a median follow-up of 16 months (range 2-43). Recipient and donor ages, pre-HTx extracorporeal life support and intra-aortic balloon pump were risk factors for late mortality. In conclusion, the use of EVP allows extension of the graft pool by recruitment of marginal donors to successfully perform HTx even in high-risk recipients.


Asunto(s)
Oxigenación por Membrana Extracorpórea , Trasplante de Corazón , Obtención de Tejidos y Órganos , Humanos , Persona de Mediana Edad , Donantes de Tejidos , Perfusión , Preservación de Órganos , Supervivencia de Injerto
7.
Organ Transplantation ; (6): 479-2023.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-978488

RESUMEN

High-quality donor heart is the prerequisite and fundamental guarantee for successful heart transplantation. Reasonable donor heart preservation technique plays a key role in improving the quality of donor heart and the prognosis of heart transplantation. Static cold storage (SCS) is currently the standard preservation technique for cardiac allograft. However, it is prone to cause severe cold ischemia injury to the donor heart, and it is impossible to evaluate heart function during SCS. As an important emerging technique of organ preservation, machine perfusion better matches with physiological conditions compared with SCS, which may remove metabolic wastes and provide basic substances for metabolic needs during organ preservation, prolong the preservation time and improve the preservation effect to a certain extent. Besides, it may also effectively evaluate organ function and improve clinical prognosis of heart transplantation. Meantime, it can also repair organ damage, significantly optimize organ quality and improve the utilization rate of donor organs. In this article, research status of machine perfusion of donor heart was reviewed.

8.
J Clin Med ; 11(19)2022 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-36233630

RESUMEN

Heart transplantation has become the accepted treatment for advanced heart failure, with over 4000-5000 performed in the world annually. Although the number of yearly transplants performed has been increasing over the last decade, the number of candidates in need of transplantation continues to grow at an even faster rate. To distribute these scarce and precious resources equitably, donor heart placement is based on clinical need with priority given to those who are more critically ill. As a result, donors are matched with recipient candidates over increasingly farther distances, which may subject these organs to longer ischemic times. One of the mainstays of successful heart transplantation is successful organ preservation while the donor organ is ex vivo from the time of donor procurement to recipient implantation. In order to adapt to a new era of heart transplantation where organs are shared across wider ranges, preservation strategies must evolve to accommodate longer ischemia times while mitigating the harmful sequalae of ischemia-reperfusion injury. Additionally, in order to address the ever-growing supply demand mismatch of donor organs, evolving perfusion technologies may allow for further evaluation of donor grafts outside of conventional acceptance practices, thus enlarging the effective donor pool. Herein this review, we discuss the history of organ preservation, current strategies and modalities employed in current practice, along with developing technologies in preclinical stages. Lastly, we introduce the concept of donation after circulatory death (DCD), which has been until recently a largely unexplored avenue of heart donation that relies much on current preservation techniques.

9.
Transpl Int ; 35: 10258, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35401041

RESUMEN

Currently, static cold storage (SCS) of hearts from donations after brainstem death remains the standard clinically. However, machine perfusion (MP) is considered an approach for donor organ management to extend the donor pool and/or increase the utilization rate. This review summarizes and critically assesses the available clinical data on MP in heart transplantation. We searched Medline (PubMed), Cochrane, Embase, and clinicaltrials.gov, along with reference lists of the included publications and identified 40 publications, including 18 articles, 17 conference abstracts, and five ongoing clinical trials. Two types of MP were used: hypothermic MP (HMP) and normothermic MP (NMP). Three studies evaluated HMP, and 32 evaluated NMP. Independent of the system, MP resulted in clinical outcomes comparable to traditional SCS. However, NMP seemed especially beneficial for high-risk cases and donation after circulatory death (DCD) hearts. Based on currently available data, MP is non-inferior to standard SCS. Additionally, single-centre studies suggest that NMP could preserve the hearts from donors outside standard acceptability criteria and DCD hearts with comparable results to SCS. Finally, HMP is theoretically safer and simpler to use than NMP. If a machine malfunction or user error occurs, NMP, which perfuses a beating heart, would have a narrower margin of safety. However, further well-designed studies need to be conducted to draw clear conclusions.


Asunto(s)
Trasplante de Corazón , Preservación de Órganos , Corazón , Humanos , Preservación de Órganos/métodos , Perfusión/métodos , Donantes de Tejidos
10.
Artif Organs ; 46(7): 1346-1357, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35167122

RESUMEN

BACKGROUND: Donation after circulatory death (DCD) hearts requires machine perfusion preservation, the conditions of which are not well defined. METHODS: To achieve this, rat hearts were procured following a DCD or control beating-heart donation (CBD) model, and perfused for 60 min with one of three machine perfusion solutions-St. Thomas (ST), University of Wisconsin (UW), or Polyethylene Glycol-20k (PEG)-at one of two temperatures, 4°C or 15°C. At 15-min intervals, perfusion pressure was measured as a marker of vascular resistance. Colored microspheres were added to capture the distribution of perfusate into the metabolically active sub-endocardium, and the eluate was collected for troponin assays. Analyses compared groups using Wilcoxon rank-sum and ANOVA. RESULTS: Perfusion pressure was significantly higher for DCD than CBD hearts at 15°C regardless of solutions. The lowest rise in perfusion pressure over time was observed with PEG at 15°C. Except for PEG at 15°C, ST and UW solutions at 4 or 15°C had decreased sub-endocardial perfusion in DCD hearts. Troponin release from DCD hearts with UW and PEG solutions was comparable to CBD hearts but was significantly higher with ST solution at 15°C. CONCLUSIONS: Optimal preservation conditions for DCD hearts were observed with PEG machine perfusion solution at 15°C.


Asunto(s)
Trasplante de Corazón , Soluciones Preservantes de Órganos , Animales , Corazón , Humanos , Preservación de Órganos , Soluciones Preservantes de Órganos/farmacología , Perfusión , Ratas , Troponina
11.
Front Cardiovasc Med ; 9: 941374, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36698958

RESUMEN

Background: Hydrogen sulfide (H2S) is known for its unpleasant odor and severe toxicity. However, an in-depth study of H2S showed that it can be used as an important messenger, which can play important physiological and pathological roles in vitro and in vivo. In recent years, the application of H2S in the field of cardiac preservation has attracted the interest and attention of scholars worldwide. H2S plays an effective and protective role in cardiac ischemia/reperfusion injury through antioxidant, anti-inflammatory, and antiapoptotic mechanisms. Objective: The purpose of this study is to analyze the current scientific achievements on the application of H2S in the field of cardiac preservation and to provide new ideas for further research. Methods: TS = ("hydrogen sulfide" OR "hydrogen sulfide") AND TS = ("cardiac" OR "heart" OR "myocardium" OR "hearts") AND TS = ("reperfusion" or "transplantation" or "implanted" or "transplant" or "implantation" or "migration" or "preservation" or "grafting" OR "ischemia" OR "perfusion" or "conservation" or "preserve" or "reservation") AND DT = (Article OR Review) AND LA = (English) were used as search strategies for data collection from the Science Citation Index-Expanded database of the Web of Science Core Collection. CiteSpace 5.8. R3 and Microsoft Office Excel 2019 were used for data analysis. Results: A total of 429 related articles were included, and the total number of articles showed a fluctuating upward trend. We used CiteSpace 5.8. R3 and Microsoft Excel 2019 to evaluate and visualize the results, analyzing institutions, countries, journals, authors, co-cited references, and keywords. Conclusions: As increasing evidence shows that H2S plays an indispensable role in the field of cardiac preservation, its mechanistic research and clinical application may become the main focus of future research.

12.
J Mol Cell Cardiol ; 164: 1-12, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34774548

RESUMEN

BACKGROUND: Heart transplantation, a life-saving approach for patients with end-stage heart disease, is limited by shortage of donor organs. While prolonged storage provides more organs, it increases the extent of ischemia. Therefore, we seek to understand molecular mechanisms underlying pathophysiological changes of donor hearts during prolonged storage. Additionally, considering mesenchymal stromal cell (MSC)-derived paracrine protection, we aim to test if MSC secretome preserves myocardial transcriptome profile and whether MSC secretome from a certain source provides the optimal protection in donor hearts during cold storage. METHODS AND RESULTS: Isolated mouse hearts were divided into: no cold storage (control), 6 h cold storage (6 h-I), 6 h-I + conditioned media from bone marrow MSCs (BM-MSC CM), and 6 h-I + adipose-MSC CM (Ad-MSC CM). Deep RNA sequencing analysis revealed that compared to control, 6 h-I led to 266 differentially expressed genes, many of which were implicated in modulating mitochondrial performance, oxidative stress response, myocardial function, and apoptosis. BM-MSC CM and Ad-MSC CM restored these gene expression towards control. They also improved 6 h-I-induced myocardial functional depression, reduced inflammatory cytokine production, decreased apoptosis, and reduced myocardial H2O2. However, neither MSC-exosomes nor exosome-depleted CM recapitulated MSC CM-ameliorated apoptosis and CM-improved mitochondrial preservation during cold ischemia. Knockdown of Per2 by specific siRNA abolished MSC CM-mediated these protective effects in cardiomyocytes following 6 h cold storage. CONCLUSIONS: Our results demonstrated that using MSC secretome (BM-MSCs and Ad-MSCs) during prolonged cold storage confers preservation of the normal transcriptional "fingerprint", and reduces donor heart damage. MSC-released soluble factors and exosomes may synergistically act for donor heart protection.


Asunto(s)
Trasplante de Corazón , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Animales , Médula Ósea , Humanos , Peróxido de Hidrógeno/metabolismo , Trasplante de Células Madre Mesenquimatosas/métodos , Células Madre Mesenquimatosas/metabolismo , Ratones , Secretoma , Donantes de Tejidos , Transcriptoma
13.
Front Cell Dev Biol ; 9: 733183, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34532321

RESUMEN

OBJECTIVE: The adoption of hearts from donation after circulatory death (DCD) is a promising approach for the shortage of suitable organs in heart transplantation. However, DCD hearts suffer from serious ischemia/reperfusion injury (IRI). Recent studies demonstrate that nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome-mediated pyroptosis is a novel target to ameliorate myocardial IRI. Melatonin is shown to inhibit NLRP3 inflammasome-mediated pyroptosis. Therefore, this study is designed to verify the hypothesis that melatonin can protect the heart graft preserved with ex vivo heart perfusion (EVHP) against myocardial IRI via inhibiting NLRP3 inflammasome-mediated pyroptosis in a rat model of DCD. METHODS: Donor-heart rats were randomly divided into three groups: (1) Control group: non-DCD hearts were harvested from heart-beating rats and immediately preserved with allogenic blood-based perfusate at constant flow for 105 min in the normothermic EVHP system; (2) DCD-vehicle group; and (3) DCD-melatonin group: rats were subjected to the DCD procedure with 25 min of warm ischemia injury and preserved by the normothermic EVHP system for 105 min. Melatonin (200 µmol/L) or vehicle was perfused in the cardioplegia and throughout the whole EVHP period. Cardiac functional assessment was performed every 30 min during EVHP. The level of oxidative stress, inflammatory response, apoptosis, and NLRP3 inflammasome-mediated pyroptosis of heart grafts submitted to EVHP were evaluated. RESULTS: Twenty five-minute warm ischemia injury resulted in a significant decrease in the developed pressure (DP), dP/dt max , and dP/dt min of left ventricular of the DCD hearts, while the treatment with melatonin significantly increased the DP, dP/dt max of the left ventricular of DCD hearts compared with DCD-vehicle group. Furthermore, warm ischemia injury led to a significant increase in the level of oxidative stress, inflammatory response, apoptosis, and NLRP3 inflammasome-mediated pyroptosis in the hearts preserved with EVHP. However, melatonin added in the cardioplegia and throughout the EVHP period significantly attenuated the level of oxidative stress, inflammatory response, apoptosis, and NLRP3 inflammasome-mediated pyroptosis compared with DCD-vehicle group. CONCLUSION: EVHP combined with melatonin post-conditioning attenuates myocardial IRI in DCD hearts by inhibiting NLRP3 inflammasome-mediated pyroptosis, which might expand the donor pool by the adoption of transplantable DCD hearts.

14.
Ann Biomed Eng ; 49(12): 3154-3164, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34414529

RESUMEN

The advantages of oxygenated perfusion are continuing to be demonstrated by many groups focused on improving the efficacy of tissue preservation for transplant, bioreactors for studies of basic tissue physiology, and closed-loop resuscitation. This work presents a novel and portable device that supplies oxygenated and pulsatile perfusion, both of which are regulated by a single pump-oxygenator component comprised of silicone tubes that are cyclically inflated/deflated with compressed oxygen. In this study, pump variables (oxygen supply pressure and length of a silicone tube) were evaluated against hydraulic elements that mimicked the vascular resistance of kidneys, livers, and hearts. The perfusion pressures, flow rates, and oxygenation rates produced by the device were characterized for all configurations of pump variables, and the pulse rates were tuned to improve performance. The device supplied perfusion pressures ranging from 3.5 to 109 mmHg, flow rates ranging from 1.4 to 71.8 mL min-1, and oxygenation rates up to 316.6 µmol min-1. From those results, it was determined that the device was capable of achieving perfusion parameters used in previous kidney, liver, and heart preservation studies. Ultimately, this research demonstrated the efficacy of a novel device that is designed to supply oxygenated perfusion across a range of applications.


Asunto(s)
Preservación de Órganos/instrumentación , Oxigenadores , Flujo Pulsátil , Diseño de Equipo , Resistencia Vascular
15.
Front Cardiovasc Med ; 8: 639701, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34368241

RESUMEN

Background: In heart transplantation, the adoption of hearts from donation after circulatory death (DCD) is considered to be a promising approach to expanding the donor pool. Normothermic ex situ heart perfusion (ESHP) is emerging as a novel preservation strategy for DCD hearts. Therefore, pre-clinical animal models of ESHP are essential to address some key issues before efficient clinical translation. We aim to develop a novel, reproducible, and economical rat model of DCD protocol combined with normothermic ESHP. Methods: Circulatory death of the anesthetized rats in the DCD group was declared when systolic blood pressure below 30 mmHg or asystole was observed after asphyxiation. Additional 15 min of standoff period was allowed to elapse. After perfusion of cold cardioplegia, the DCD hearts were excised and perfused with allogenic blood-based perfusate at constant flow for 90 min in the normothermic ESHP system. Functional assessment and blood gas analysis were performed every 30 min during ESHP. The alteration of DCD hearts submitted to different durations of ESHP (30, 60, and 90 min) in oxidative stress, apoptosis, tissue energy state, inflammatory response, histopathology, cell swelling, and myocardial infarction during ESHP was evaluated. Rats in the non-DCD group were treated similarly but not exposed to warm ischemia and preserved by the normothermic ESHP system for 90 min. Results: The DCD hearts showed compromised function at the beginning of ESHP and recovered over time, while non-DCD hearts presented better cardiac function during ESHP. The alteration of DCD hearts in oxidative stress, apoptosis, tissue energy state, histopathological changes, cell swelling, and inflammatory response didn't differ among different durations of ESHP. At the end of 90-min ESHP, DCD, and non-DCD hearts presented similarly in apoptosis, oxidative stress, inflammatory response, myocardial infarction, and histopathological changes. Moreover, the DCD hearts had lower energy storage and more evident cell swelling compared to the non-DCD hearts. Conclusion: We established a reproducible, clinically relevant, and economical rat model of DCD protocol combined with normothermic ESHP, where the DCD hearts can maintain a stable state during 90-min ESHP.

16.
Artículo en Inglés | MEDLINE | ID: mdl-34143579

RESUMEN

A heart transplant is the gold standard treatment for end stage heart failure. Preservation of the donor heart during its transfer from the hospital of the donor to that of the recipient has a significant impact on the outcome of the transplant procedure. Icebox storage is a conventional method utilized for this purpose that may not provide uniform cooling of the donor heart and does not allow monitoring of the temperature of the donor heart during preservation. The Paragonix SherpaPak Cardiac Transport System offers uniform cooling by suspending the donor heart in a preservation solution and provides continuous temperature monitoring.


Asunto(s)
Preservación de Órganos/instrumentación , Frío , Trasplante de Corazón , Humanos
17.
J Cardiovasc Dev Dis ; 8(4)2021 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-33917701

RESUMEN

Heart transplantation became a reality at the end of the 1960s as a life-saving option for patients with end-stage heart failure. Static cold storage (SCS) at 4-6 °C has remained the standard for heart preservation for decades. However, SCS only allows for short-term storage that precludes optimal matching programs, requires emergency surgeries, and results in the unnecessary discard of organs. Among the alternatives seeking to extend ex vivo lifespan and mitigate the shortage of organs are sub-zero or machine perfusion modalities. Sub-zero approaches aim to prolong cold ischemia tolerance by deepening metabolic stasis, while machine perfusion aims to support metabolism through the continuous delivery of oxygen and nutrients. Each of these approaches hold promise; however, complex barriers must be overcome before their potential can be fully realized. We suggest that one barrier facing all experimental efforts to extend ex vivo lifespan are limited research tools. Mammalian models are usually the first choice due to translational aspects, yet experimentation can be restricted by expertise, time, and resources. Instead, there are instances when smaller vertebrate models, like the zebrafish, could fill critical experimental gaps in the field. Taken together, this review provides a summary of the current gold standard for heart preservation as well as new technologies in ex vivo lifespan extension. Furthermore, we describe how existing tools in zebrafish research, including isolated organ, cell specific and functional assays, as well as molecular tools, could complement and elevate heart preservation research.

18.
Adv Clin Exp Med ; 30(2): 147-152, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33650329

RESUMEN

BACKGROUND: Resveratrol (RES) is a polyphenolic compound and natural phytoalexin that plays a potential role in various human diseases. Studies have confirmed that RES has an important function in cardioprotection. OBJECTIVES: To investigate the effect of RES on HO-1 protein expression in rat heart after different duration of hypothermic preservation. MATERIAL AND METHODS: The Langendorff model of isolated rat heart was used. After being stored in 4°C different Celsior solution for 9 h, Sprague-Dawley rats hearts were divided into 6 groups randomly: control group, 9 h group, 3 µM RES group, 10 µM RES group, 30 µM RES group, and 100 µM RES group. The morphological changes of cardiomyocytes were detected with the hematoxylin & eosin (H&E) staining using a light microscope. The mRNA and protein expression of HO-1 were detected using reverse-transcription polymerase chain reaction (RT-PCR) and western blotting. RESULTS: Compared with the control group, cardiomyocytes were obviously injured in the 9 h group and the protein and mRNA expression of HO-1 were obviously decreased. Compared with the 9 h group, the mRNA and protein expression of HO-1 were increased in dose-dependent manner in the 3 µM RES, 10 µM RES and 30 µM RES group. Compared with the 9 h group, rat myocardial injury was gradually alleviated in 3 µM RES, 10 µM RES and 30 µM RES groups. However, the rat myocardial injury in the 100 µM RES group showed no more obvious improvement than in the 30 µM RES group. CONCLUSIONS: In the isolated rat heart, RES protects cardiomyocytes against hypothermic preservation injury through increasing HO-1 protein expression.


Asunto(s)
Criopreservación , Preservación de Órganos , Animales , Corazón , Ratas , Ratas Sprague-Dawley , Resveratrol
19.
Xenotransplantation ; 28(1): e12636, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32841431

RESUMEN

BACKGROUND: Successful preclinical transplantations of porcine hearts into baboon recipients are required before commencing clinical trials. Despite years of research, over half of the orthotopic cardiac xenografts were lost during the first 48 hours after transplantation, primarily caused by perioperative cardiac xenograft dysfunction (PCXD). To decrease the rate of PCXD, we adopted a preservation technique of cold non-ischemic perfusion for our ongoing pig-to-baboon cardiac xenotransplantation project. METHODS: Fourteen orthotopic cardiac xenotransplantation experiments were carried out with genetically modified juvenile pigs (GGTA1- KO/hCD46/hTBM) as donors and captive-bred baboons as recipients. Organ preservation was compared according to the two techniques applied: cold static ischemic cardioplegia (IC; n = 5) and cold non-ischemic continuous perfusion (CP; n = 9) with an oxygenated albumin-containing hyperoncotic cardioplegic solution containing nutrients, erythrocytes and hormones. Prior to surgery, we measured serum levels of preformed anti-non-Gal-antibodies. During surgery, hemodynamic parameters were monitored with transpulmonary thermodilution. Central venous blood gas analyses were taken at regular intervals to estimate oxygen extraction, as well as lactate production. After surgery, we measured troponine T and serum parameters of the recipient's kidney, liver and coagulation functions. RESULTS: In porcine grafts preserved with IC, we found significantly depressed systolic cardiac function after transplantation which did not recover despite increasing inotropic support. Postoperative oxygen extraction and lactate production were significantly increased. Troponin T, creatinine, aspartate aminotransferase levels were pathologically high, whereas prothrombin ratios were abnormally low. In three of five IC experiments, PCXD developed within 24 hours. By contrast, all nine hearts preserved with CP retained fully preserved systolic function, none showed any signs of PCXD. Oxygen extraction was within normal ranges; serum lactate as well as parameters of organ functions were only mildly elevated. Preformed anti-non-Gal-antibodies were similar in recipients receiving grafts from either IC or CP preservation. CONCLUSIONS: While standard ischemic cardioplegia solutions have been used with great success in human allotransplantation over many years, our data indicate that they are insufficient for preservation of porcine hearts transplanted into baboons: Ischemic storage caused severe impairment of cardiac function and decreased tissue oxygen supply, leading to multi-organ failure in more than half of the xenotransplantation experiments. In contrast, cold non-ischemic heart preservation with continuous perfusion reliably prevented early graft failure. Consistent survival in the perioperative phase is a prerequisite for preclinical long-term results after cardiac xenotransplantation.


Asunto(s)
Trasplante de Corazón , Animales , Xenoinjertos , Papio , Perfusión , Porcinos , Trasplante Heterólogo
20.
J Heart Lung Transplant ; 40(1): 69-86, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33162304

RESUMEN

Despite the advancements in medical treatment, mechanical support, and stem cell therapy, heart transplantation remains the most effective treatment for selected patients with advanced heart failure. However, with an increase in heart failure prevalence worldwide, the gap between donor hearts and patients on the transplant waiting list keeps widening. Ex situ machine perfusion has played a key role in augmenting heart transplant activities in recent years by enabling the usage of donation after circulatory death hearts, allowing longer interval between procurement and implantation, and permitting the safe use of some extended-criteria donation after brainstem death hearts. This exciting field is at a hinge point, with 1 commercially available heart perfusion machine, which has been used in hundreds of heart transplantations, and a number of devices being tested in the pre-clinical and Phase 1 clinical trial stage. However, no consensus has been reached over the optimal preservation temperature, perfusate composition, and perfusion parameters. In addition, there is a lack of objective measurement for allograft quality and viability. This review aims to comprehensively summarize the lessons about ex situ heart perfusion as a platform to preserve, assess, and repair donor hearts, which we have learned from the pre-clinical studies and clinical applications, and explore its exciting potential of revolutionizing heart transplantation.


Asunto(s)
Trasplante de Corazón/tendencias , Preservación de Órganos/tendencias , Perfusión/tendencias , Donantes de Tejidos , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA