Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 917
Filtrar
1.
Curr Res Food Sci ; 9: 100836, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39290651

RESUMEN

The resurgence of interest in amaranth and buckwheat as nutrient-rich and versatile grains has incited extensive research aimed at exploring their potential benefits for sustainable agriculture and human nutrition. Amaranth is renowned for its gluten-free nature and exceptional nutritional profile, offering high-quality proteins, fiber, minerals, and bioactive compounds. Similarly, buckwheat is recognized for its functional and nutraceutical properties, offering a plethora of health benefits attributed to its diverse array of biologically active constituents; flavonoids, phytosterols, and antioxidants. This comprehensive review comprehends the existing understanding of the composition, anti-nutritional factors, biological activity, and potential application of these grains, emphasizing their pivotal role in addressing global food insecurity. Developed functional foods using these grains are having enhanced physicochemical properties, mineral content, phenolic content and overall sensory acceptability. In addition, the consumption of developed functional food products proved their health benefits against various type of anomalies. Moreover, enrichment of both grains in the animal feeds also showing positive health benefits.

2.
Foods ; 13(17)2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39272622

RESUMEN

The effects of single- (Lactobacillus fermentum) or mixed-strain (Lactobacillus fermentum, Kluyveromyces marxianus) fermentation of red bean with or without wheat bran on sourdough bread quality and nutritional aspects were investigated. The results showed that, compared to unfermented controls, the tannins, phytic acid, and trypsin inhibitor levels were significantly reduced, whereas the phytochemical (TPC, TFC, and gallic acid) and soluble dietary fiber were increased in sourdough. Meanwhile, more outstanding changes were obtained in sourdough following a mixed-strain than single-strain fermentation, which might be associated with its corresponding ß-glucosidase, feruloyl esterase, and phytase activities. An increased specific volume, reduced crumb firmness, and greater sensory evaluation of bread was achieved after mixed-strain fermentation. Moreover, diets containing sourdough, especially those prepared with mixed-strain-fermented red bean with wheat bran, significantly decreased serum pro-inflammatory cytokines levels, and improved the lipid profile, HDL/LDL ratio, glucose tolerance, and insulin sensitivity of mice. Moreover, gut microbiota diversity increased towards beneficial genera (e.g., Bifidobacterium), accompanied with a greater increase in short-chain fatty acid production in mice fed on sourdough-based bread diets compared to their controls and white bread. In conclusion, mixed-strain fermentation's synergistic effect on high fiber-legume substrate improved the baking, sensory quality, and prebiotic effect of bread, leading to potential health benefits in mice.

3.
Curr Res Food Sci ; 9: 100824, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39263207

RESUMEN

In recent years, there has been a burgeoning interest in the utilization of microbial exopolysaccharides (EPS) because of the added advantage of their renewable, biocompatible, and biodegradable nature in addition to intended applications. The endowed properties of bacterial EPS make them valuable candidates for a wide array of industrial applications. Modification of native EPS is known to enhance various physico-chemical and functional properties. Various modifications such as physical, chemical, biological, and enzymatic modifications were practiced improving the bioactivity of EPS. This paper comprehensively aims to review the most recent chemical modification techniques employed to modify the physico-chemical and functional changes of bacterial EPS in comparison with the unmodified forms. Chemical modification entails strategic alterations to the structure and properties of EPS through various synthetic and semi-synthetic methodologies. Emphasis is given to the antioxidant potential and functional role of these EPS derivatives in human health. Antioxidant properties reveal a significant augmentation in activity compared to their native counterparts. Such enhancement holds a strong promise for potential benefits and therapeutic applications. Chemical derivatives of EPS with overwhelming functional benefits could surely encourage EPS application, particularly as potential hydrocolloids in industrial and biomedical contexts.

4.
BMC Public Health ; 24(1): 2468, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39256687

RESUMEN

BACKGROUND: Tropical oils such as palm and coconut oils are renowned for their high saturated fat content and culinary versatility. However, their consumption has sparked debate regarding their health benefits and production concerns. The purpose of this review was to map existing evidence on the health benefits and challenges associated with the consumption of tropical oils. METHOD: The recommendations for conducting a scoping review by Arksey and O'Malley were followed. PubMed, Dimensions AI, Central, JSTOR Google, Google Scholar, and ProQuest databases were searched for relevant papers. The predetermined keywords used were Consumption" AND "Tropical oil," as well as "Health benefits" OR "Health challenges" AND "Tropical Countries." Peer-reviewed and grey literature published in English were eligible for this review. RESULT: Tropical oils, such as palm and coconut oils, provide health benefits including essential vitamins (A and E) that enhance ocular health, boost immunity, and support growth. They are also recognised for their role in managing high blood sugar, obesity, and cholesterol levels, while offering antioxidant and anti-inflammatory properties. These oils have wound-healing abilities and are commonly used in infant nutrition and traditional cooking. Nevertheless, prolonged and repeated use of tropical oils to high temperature can degrade vitamin E, whereas excessive intake may result in overdose. Health concerns include oxidative risks, diabetes, cancer, coronary heart disease, high blood pressure, and acrylamide formation due to production challenges excessive consumption. Additional issues include obesity, suboptimal oil production, misconceptions, regulatory obstacles, and preferences for alternative fats. CONCLUSION: This review suggest that tropical oils provide essential health benefits, including vitamins and antioxidant properties, but pose significant health risks and production challenges, particularly when exposed to high temperatures and through excessive intake. Guidelines on the consumption of tropical oils in the tropical regions are necessary to regulate their consumption.


Asunto(s)
Aceite de Coco , Clima Tropical , Humanos , Aceite de Palma , Aceites de Plantas , Guías como Asunto
5.
Environ Sci Ecotechnol ; 22: 100474, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39247805

RESUMEN

Improving electrification feasibility is essential for reducing emissions from non-electric energy sources, thereby enhancing air quality and public health. Concurrently, climate mitigation actions, such as carbon pricing policies, have significant potential to alleviate increasing carbon dioxide (CO2) and other co-emitted air pollutants. However, the interactions between climate policy and the improvement of electrification feasibility at the provincial level remain unclear, collectively impacting the net-zero transition of energy-intensive sectors. Here we combine a technologically rich economic-energy-environment model with air quality modeling across China to examine the health, climate, and economic implications of large-scale upgrades in electrification feasibility and climate policies from 2017 to 2030. The results indicate that advancing electrification feasibility, coupled with adopting carbon pricing policies, is likely to facilitate a transition towards electricity-dominant energy systems. Improved electrification feasibility is projected to yield a 7-25% increase in nationwide climate benefits and a 5-14% increase in health benefits by 2030. These incremental benefits, coupled with reduced economic costs, result in a 22-68% increase in net benefits. However, regionally, improvements in electrification feasibility will lead to heightened power demand and unintended emissions from electric energy production in certain provinces (e.g., Nei Mongol) due to the coal-dominated power system. Additionally, in major coal-producing provinces like Shanxi and Shaanxi, enhanced electrification feasibility exacerbates the negative economic impacts of climate policies. This study provides quantitative insights into how improving electrification feasibility reshapes energy evolution and the benefit-cost profile of climate policy at the provincial level. The findings underscore the necessity of a well-designed compensation scheme between affected and unaffected provinces and coordinated emission mitigation across the power and other end-use sectors.

6.
Crit Rev Food Sci Nutr ; : 1-22, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39106211

RESUMEN

Milk fat globule membrane (MFGM) is a three-layer membrane-like structure encasing natural milk fat globules (MFGs). MFGM holds promise as a nutritional supplement because of the numerous physiological functions of its constituent protein. This review summarizes and compares the differences in MFGM protein composition across various species, including bovines, goats, camels, mares, and donkeys, and different lactation periods, such as colostrum and mature milk, as assessed by techniques such as proteomics and mass spectrometry. We also discuss the health benefits of MFGM proteins throughout life. MFGM proteins promote intestinal development, neurodevelopment, and glucose and lipid metabolism by upregulating tight junction protein expression, brain function-related genes, and glucose and fatty acid biosynthesis processes. We focus on the mechanisms underlying these beneficial effects of MFGM proteins. MFGM proteins activate key substances in in signaling pathways, such as the phosphatidylinositol 3-kinase/protein kinase B, mitogen-activated protein kinase, and myosin light chain kinase signaling pathways. Overall, the consumption of MFGM proteins plays an essential role in conferring health benefits, some of which are important throughout the mammalian life cycle.


Types and amounts of MFGM proteins in mammals, as assessed by proteomic and mass spectrometry analysis, are summarized.Colostrum MFGM contains more acute phase proteins, whereas mature milk has higher levels of mucins (1 and 15), ADPH, XDH, and FABP.Health benefits of MFGM proteins, including intestinal development, neurodevelopment, and immune activity enhancement, are summarized.MFGM proteins have been shown to significantly activate the PI3K/Akt/mTOR signaling pathway, promoting cell proliferation and glycolipid metabolism.

7.
Womens Health Rep (New Rochelle) ; 5(1): 588-593, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39183769

RESUMEN

Introduction: Parental leave yields significant health benefits for parents and children. While many medical associations endorse parental leave, it is unknown what parental leave they provide for their employees. Objective: To assess parental leave policies of national physician societies for their employees including paid versus unpaid and parity between birth mothers and non-birthing parents. Methods and Materials: A cross-sectional analysis in 2023 examined parental leave policies of national physician societies, including the American Medical Association (AMA), American Osteopathic Association (AOA), and six specialty societies: American College of Obstetricians and Gynecologists (ACOG), American College of Osteopathic Obstetricians and Gynecologists (ACOOG), American Academy of Pediatrics (AAP), American College of Osteopathic Pediatricians (ACOP), American Academy of Family Physicians (AAFP), and American College of Osteopathic Family Physicians (ACOFP). Examination of policies included: duration, whether paid or unpaid; qualifications before receiving benefit; and whether non-birthing, adoptive, and foster parents were covered. Results: Among the eight societies surveyed, two (25%) did not disclose their policies (ACOG, ACOP), and one (12.5%) lacked a policy (ACOOG). Of the remaining five, two (40%) offered paid leave (AMA, AAP), while three (60%) provided unpaid leave in line with legal requirements (AOA, AAFP, ACOFP). Benefits for non-birthing parents mirrored those for birth mothers, although the AMA offered birth mothers enhanced benefits. Conclusions: Only a minority of surveyed physician societies provide paid parental leave. Physician societies should consider providing paid parental leave for their employees and making their policies publicly available to promote and model the benefit of paid parental leave.

8.
Heliyon ; 10(15): e35638, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39170453

RESUMEN

This literature review offers an extensive exploration of Chaga mushrooms (Inonotus obliquus), focusing on their phytochemical composition, health-promoting attributes, and mechanisms of action. The aim was to provide an up-to-date overview of Chaga's significance in the medicinal sector, emphasizing its potential role in diverse health benefits. The review highlights Chaga's remarkable anticancer, antioxidant, anti-diabetic, anti-inflammatory, antimicrobial, and immunomodulating properties. By synthesizing recent findings, this work underscores Chaga's importance in the medicinal industries and provides valuable insights into its pharmacological potential.

9.
Int J Biol Macromol ; 278(Pt 3): 134919, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39179070

RESUMEN

Chrysanthemum morifolium Ramat. (C. morifolium), as a traditional ornamental plant, it has multiple values, including edible, economic, nutritional and even medicinal values, which is used as herbal medicine and a new food resource in the world. Polysaccharides are one of the main bioactive components in C. morifolium, which have various health benefits such as improving functional constipation, improving colitis, anti-glycosylation, antioxidant, anti-angiogenesis, immunomodulation, prebiotic, and α-glucosidase inhibitory activities. This paper describes the extraction, purification, structural characteristics, health benefits, structural-activity relationships, applications, and analyses the shortcomings of the major relevant studies exist on C. morifolium polysaccharides. In addition, the potential mechanisms of the health benefits of C. morifolium polysaccharides were summarized. This study can provide reference and direction for further research and development of C. morifolium polysaccharides.


Asunto(s)
Chrysanthemum , Polisacáridos , Polisacáridos/química , Polisacáridos/farmacología , Polisacáridos/aislamiento & purificación , Chrysanthemum/química , Relación Estructura-Actividad , Antioxidantes/química , Antioxidantes/farmacología , Antioxidantes/aislamiento & purificación , Humanos , Animales , Extractos Vegetales/química , Extractos Vegetales/farmacología , Extractos Vegetales/aislamiento & purificación
10.
Foods ; 13(15)2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39123560

RESUMEN

Arabinoxylans (AXs) are non-starch polysaccharides with complex structures naturally occurring in grains (i.e., barley, corn, and others), providing many health benefits, especially as prebiotics. AXs can be classified as water-extractable (WEAX) and water-unextractable (WUAX) based on their solubility, with properties influenced by grain sources and extraction methods. Numerous studies show that AXs exert an important health impact, including glucose and lipid metabolism regulation and immune system enhancement, which is induced by the interactions between AXs and the gut microbiota. Recent research underscores the dependence of AX physiological effects on structure, advocating for a deeper understanding of structure-activity relationships. While systematic studies on WEAX are prevalent, knowledge gaps persist regarding WUAX, despite its higher grain abundance. Thus, this review reports recent data on WUAX structural properties (chemical structure, branching, and MW) in cereals under different treatments. It discusses WUAX applications in baking and the benefits deriving from gut fermentation.

11.
Plant Foods Hum Nutr ; 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39150636

RESUMEN

The fruit of the jujube tree is high in nutrients and has various health benefits. China is a major producer of jujube, and it is now cultivated all around the world. Numerous studies have demonstrated the nutritional value and potential health advantages of bioactive compounds found in the jujube tree. Furthermore, the jujube tree has a remarkable 7000-year agricultural history. The jujube plant has developed a rich gene pool, making it a valuable resource for germplasm. Different studies have focused on the developmental stages of jujube fruits to identify the optimal time for harvest and to assess the changes in their bioactive natural compounds or products during the process of development but the molecular mechanism underlying the production of bioactive natural products in Z. jujuba is still poorly understood. Moreover, the potential differential expressed genes (DEGs) identified as responsible for the synthesis of these compounds should be further functionally verified. It has been noticed that the contents of total flavonoids, total phenolic, and vitamin C increase significantly during the ripening process, while the contents of soluble sugars and organic acids decrease gradually. In this review, we have also scrutinized the challenges that hinder the utilization of jujube fruit resources and suggested potential areas for further research. As such, our review serves as a valuable resource for the future development of jujube-based nutritional compounds and the incorporation of their nutritional elements into the functional foods industry.

12.
Foodborne Pathog Dis ; 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39180438

RESUMEN

Probiotics are live yeast or bacterial organisms that have beneficial effects on the host. Several microorganisms exhibit probiotic properties, the most common types being lactic acid bacteria, Bifidobacteria, spore-forming bacteria, and some yeast strains. Saccharomyces cerevisiae var. boulardii is the most important probiotic yeast species. However, another group of foodborne microorganisms, the so-called non-Saccharomyces yeasts (NSYs), has recently been re-evaluated and shown to have enormous potential in various fields of application, ranging from food fermentation to human and animal applications. NSYs are able to produce a range of bioactive compounds such as antimicrobials, mannoproteins, enzymes, polyunsaturated fatty acids, essential amino acids, vitamins, and ß-glucans, which increases their potential applications as a new class of probiotics and/or alternatives to antibiotics in animal husbandry. In this review, we aim to highlight the potential and benefits of NSYs as probiotics and natural antimicrobials to improve animal health. Furthermore, the use of NSYs as biological alternatives to antibiotics to control foodborne pathogens in animal production is discussed.

13.
Molecules ; 29(16)2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39202940

RESUMEN

Terpenoids are a large class of natural secondary plant metabolites which are highly diverse in structure, formed from isoprene units (C-5), associated with a wide range of biological properties, including antioxidant, antimicrobial, anti-inflammatory, antiallergic, anticancer, antimetastatic, antiangiogenesis, and apoptosis induction, and are considered for potential application in the food, cosmetics, pharmaceutical, and medical industries. In plants, terpenoids exert a variety of basic functions in growth and development. This review gives an overview, highlighting the current knowledge of terpenoids and recent advances in our understanding of the organization, regulation, and diversification of core and specialized terpenoid metabolic pathways and addressing the most important functions of volatile and non-volatile specialized terpenoid metabolites in plants. A comprehensive description of different aspects of plant-derived terpenoids as a sustainable source of bioactive compounds, their biosynthetic pathway, the several biological properties attributed to these secondary metabolites associated with health-promoting effects, and their potential industrial applications in several fields will be provided, and emerging and green extraction methods will also be discussed. In addition, future research perspectives within this framework will be highlighted. Literature selection was carried out using the National Library of Medicine, PubMed, and international reference data for the period from 2010 to 2024 using the keyword "terpenoids". A total of 177,633 published papers were found, of which 196 original and review papers were included in this review according to the criteria of their scientific reliability, their completeness, and their relevance to the theme considered.


Asunto(s)
Terpenos , Terpenos/química , Terpenos/metabolismo , Terpenos/farmacología , Humanos , Plantas/química , Plantas/metabolismo , Antioxidantes/farmacología , Antioxidantes/química , Antiinflamatorios/farmacología , Antiinflamatorios/química , Extractos Vegetales/química , Extractos Vegetales/farmacología , Antiinfecciosos/farmacología , Antiinfecciosos/química
14.
Foods ; 13(16)2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39200479

RESUMEN

Developing of functional foods is a promising strategy to reduce the increasing burden of colorectal cancer worldwide. Fruit pomace, particularly polyphenol and anthocyanin-rich chokeberry and blueberry, is a valuable ingredient for functional foods and nutraceuticals. Our study aimed to evaluate the anti-inflammatory and antiproliferative effects of chokeberry and blueberry pomace extracts on C2BBe1 colorectal carcinoma cells and explore the underlying signaling pathways. We analyzed both pomace extracts for total polyphenols and anthocyanins using Folin-Ciocalteu method and ultra-performance liquid chromatography, while antioxidative activity was assessed via the 2,2-diphenyl-1-picrylhydrazyl radical scavenging method. We evaluated the in vitro anti-inflammatory and antiproliferative effects using trypan blue exclusion, MTT and LDH assays, and assessed protein levels of p-Erk1/2, Akt-1, STAT1, STAT3, occludin, oxidized proteins, and MDA-protein adducts through western blotting, as well as analysis of a 37-plex panel of inflammatory markers. Chokeberry extracts exhibited higher total polyphenol content, anthocyanin levels, and antioxidative activity compared to blueberry extracts, however, blueberry extracts effects on cell viability and proliferation in C2BBe1 cells were stronger. Both fruit pomaces induced non-inflammatory cell death characterized by membrane integrity loss, beneficial in cancer therapy. Our data suggests chokeberry's cytotoxicity may be mediated by Erk signaling and Akt-1 inhibition, while blueberry uniquely decreased occludin levels. These berries pomaces' potential to mitigate cancer risks and enhance treatment efficacy is promising, warranting further investigation for functional foods development.

16.
J Sci Food Agric ; 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38961686

RESUMEN

Hyacinth bean [Lablab purpureus (L.) Sweet], a plant belonging to the leguminous family and traditionally used for medicinal purposes in China, is a valuable resource with a wide range of health benefits. This review examines the bioactive compounds, health-promoting properties and functional food potential of hyacinth bean, highlighting its role in protecting against metabolic diseases and the underlying molecular mechanisms. According to existing research, hyacinth bean contains a diverse array of bioactive compounds, Consumption of hyacinth beans and hyacinth bean-related processed food products, as well as their use in medicines, is associated with a variety of health benefits that are increasingly favoured by the scientific community. In light of these findings, we posit that hyacinth bean holds great promise for further research and food application. © 2024 Society of Chemical Industry.

17.
Food Chem ; 459: 140340, 2024 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-38986197

RESUMEN

This article presents a comprehensive overview of tiger milk mushroom (TMM), covering its nutritional composition, phytochemicals, health benefits, and related scientific advancements. It describes various potential positive health benefits of TMM, including anticancer, anti-inflammatory, respiratory function enhancement, antioxidant, anti-aging, neuroprotective, photoprotective, antidiabetic, wound-healing, and anti-HIV, among others. This article also underlines the importance of further research into the phytochemicals present in TMM for additional discoveries. It underscores the importance of further research into phytochemicals content of TMM for additional discoveries and emphasizes the potential applications of TMM in nutrition, health, and well-being. Sophisticated techniques, such as chemometrics and multi-omics technologies revealed latest scientific advancements of TMM. This comprehensive overview provides a foundation for future research and development in harnessing TMM's potential for human health.


Asunto(s)
Agaricales , Valor Nutritivo , Fitoquímicos , Humanos , Agaricales/química , Multiómica , Fitoquímicos/química , Fitoquímicos/análisis
18.
Int J Biol Macromol ; 275(Pt 1): 133529, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38950806

RESUMEN

Consumption of wheat bran is associated with health benefits. However, the insoluble cell layer fiber and considerable levels of anti-nutritional factors limit bioavailability of wheat bran, which can be effectively improved through fermentation. To comprehensively elucidate the precise biotransformation and health benefits mechanisms underlying wheat bran fermentation. This review investigates current fermentation biotechnology for wheat bran, nutritional effects of fermented wheat bran, mechanisms by which fermented wheat bran induces health benefits, and the application of fermented wheat bran in food systems. The potential strategies to improve fermented wheat bran and existing limitations on its application are also covered. Current findings support that microorganisms produce enzymes that degrade the cell wall fiber of wheat bran during the fermentation, releasing nutrients and producing new active substances while degrading anti-nutrient factors in order to effectively improve nutrient bioavailability, enhance antioxidant activity, and regulate gut microbes for health effects. Fermentation has been an effective way to degrade cell wall fiber, thereby improving nutrition and quality of whole grain or bran-rich food products. Currently, there is a lack of standardization in fermentation and human intervention studies. In conclusion, understanding effects of fermentation on wheat bran should guide the development and application of bran-rich products.


Asunto(s)
Biotecnología , Pared Celular , Fibras de la Dieta , Fermentación , Fibras de la Dieta/metabolismo , Pared Celular/metabolismo , Biotecnología/métodos , Humanos
19.
Heliyon ; 10(13): e33905, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39050454

RESUMEN

Background: Fish contains high-quality omega-3 fatty acids, protein, vitamins, and minerals and due to this it is termed as an essential component of a balanced diet. But there have been concerns raised about the risks of consuming fish that is contaminated with toxins such as methylmercury, polychlorinated biphenyls (PCBs), dioxins, pesticides, and plastic waste. Consumption of contaminated fish containing these pollutants is raising global mortality and morbidity rates. Scope and approaches: The review examines the current research outputs on the health benefits and potential health risks of fish consumption. The review also discusses various approaches to mitigating the health problems caused by fish consumption, highlights the roles of balancing the risks and benefits when consuming fish. Key findings and conclusion: Different findings indicated that contaminants cause cancer, kidney failure, adverse neurological effect, cardiovascular diseases, and so on to vulnerable groups such as pregnant, child breast-feeding and children. In conclusion, there is a need to get more tangible evidence about the advantages and disadvantages of fish consumption to safeguard the wellbeing of the society.

20.
Heliyon ; 10(13): e33501, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39035485

RESUMEN

Water kefir is a convenient dairy-free alternative to dairy-based fermented beverages. It is prepared by fermenting a sucrose solution with fresh and dried fruits using water kefir grains, and demineralized whey can be used in water kefir production. This review describes current knowledge on water kefir production and its health effects. The main aims of this paper are to focus on the microbial composition, potential health-promoting properties, limitations in human consumption, and challenges in the production of water kefir. Water kefir grains and substrates, including brown sugar, dried and fresh fruits, vegetables, and molasses, used in the production influence the fermentation characteristics and composition of water kefir. Lactic acid bacteria, acetic acid bacteria, and yeasts are the microorganisms involved in the fermentation process. Lactobacillus species are the most common microorganisms found in water kefir. Water kefir contains various bioactive compounds that have potential health benefits. Water kefir may inhibit the growth of certain pathogenic microorganisms and food spoilage bacteria, resulting in various health-promoting properties, including immunomodulatory, antihypertensive, anti-inflammatory, anti-ulcerogenic, antiobesity, hypolipidemic, and hepatoprotective activities.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA