Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 18(28): 18368-18378, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38970500

RESUMEN

All-solid-state batteries (ASSBs) have garnered considerable attention as promising candidates for next-generation energy storage systems due to their potentially simultaneously enhanced safety capacities and improved energy densities. However, the solid future still calls for materials with high ionic conductivity, electrochemical stability, and favorable interfacial compatibility. In this study, we present a series of halide solid-state electrolytes (SSEs) utilizing a doping strategy with highly valent elements, demonstrating an outstanding combination of enhanced ionic conductivity and oxidation stability. Among these, Li2.6In0.8Ta0.2Cl6 emerges as the standout performer, displaying a superionic conductivity of up to 4.47 mS cm-1 at 30 °C, along with a low activation energy barrier of 0.321 eV for Li+ migration. Additionally, it showcases an extensive oxidation onset of up to 5.13 V (vs Li+/Li), enabling high-voltage ASSBs with promising cycling performance. Particularly noteworthy are the ASSBs employing LiCoO2 cathode materials, which exhibit an extended cyclability of over 1400 cycles, with 70% capacity retention under 4.6 V (vs Li+/Li), and a capacity of up to 135 mA h g-1 at a 4 C rate, with the loading of active materials at 7.52 mg cm-2. This study demonstrates a feasible approach to designing desirable SSEs for energy-dense, highly stable ASSBs.

2.
ACS Appl Mater Interfaces ; 15(36): 42481-42489, 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37651226

RESUMEN

The development of all-solid-state lithium-ion batteries (ASSLIBs) is highly dependent on solid-state electrolyte (SSEs) performance. However, current SSEs cannot satisfactorily meet the requirements for high interfacial stability and Li-ion conductivity, especially under high-voltage cycling conditions. To overcome the intractable problems, we theoretically develop the chemistry of structural units to build a series of MX6-unit mixed framework Li5M10.5M20.5X8 (total 184 halides) for use as SSEs and recommend six halide candidates that combine the (electro)chemical stability with a low Li-ion migration barrier. Among them, three Li5M10.5M20.5F8 compounds (M1 = Ca and Mg; M2 = Ti and Zr) exhibit expansive electrochemical windows with a high cathodic limit (6.3 V vs µLi) and three-dimensional Li diffusion associated with moderate Li-migration barriers. To discuss their stability and compatibility (and in turn as a reference for experiments), the energy above the convex hull, the electrochemical stability window, the predicted (electro)reaction products, and the calculated reaction energies of Li5M10.5M20.5X8 in combination with Li-metal and several cathodes are tabulated. We stress that the importance of the cation-mixed effect and specific moieties for the halide anion leads to a design principle for a halide class of Li-ion SSEs. We provide insight into selecting the optimal halide anion and cations and open a new avenue of broad compositional spaces for stable Li-ion SSEs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA