Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Int Immunopharmacol ; 139: 112657, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39024749

RESUMEN

Long-term exposure to ultraviolet radiation may cause photoaging of skin tissues. Coreopsis tinctoria Nutt. riches a variety of flavonoids with strong antioxidant activities. In the present study, the main antioxidant flavonoid was isolated from C. tinctoria and identified as okanin by Mass spectrum and Nuclear Magnetic Resonance Spectroscopy. Okanin was found to effectively reduce the malondialdehyde content, increase various intracellular antioxidant enzyme activities, relieve epidermal hyperplasia and dermal damage caused by UVB irradiation, and increase the collagen fibers' content in the dorsal skin tissue of mice. Immunohistochemical analysis showed that okanin effectively counteracted the photoaging effect of UVB-induced by down-regulating IL-1, IL-6, TNF-α, and COX-2, and up-regulating COL-1, COL-3, and HYP expression. In addition, okanin can inhibit skin photoaging by regulating TNF-ß/Smad2-3, MAPK, P13K/AKT, and NF-κB signaling pathways. In particular, the three key markers of photoaging, MMP (MMP-1/-3/-9), were down-regulated and five collagen synthesis genes (COL1A1, COL3A1, COL5A2, COL6A1, and COL7A1) were up-regulated, underlines the direct anti-photoaging mechanism of okanin in preventing collagen degradation and promoting collagen synthesis. The current investigation provides new insights into the great potential of okanin in alleviating skin photoaging and lays theoretical references for the development ofanti-photoaging products.


Asunto(s)
Coreopsis , Envejecimiento de la Piel , Piel , Rayos Ultravioleta , Animales , Envejecimiento de la Piel/efectos de los fármacos , Envejecimiento de la Piel/efectos de la radiación , Rayos Ultravioleta/efectos adversos , Ratones , Piel/efectos de los fármacos , Piel/patología , Piel/efectos de la radiación , Transducción de Señal/efectos de los fármacos , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Citocinas/metabolismo , Humanos , Colágeno/metabolismo , Femenino , Flavonoides/farmacología , Flavonoides/uso terapéutico , Metaloproteinasas de la Matriz/metabolismo , Metaloproteinasas de la Matriz/genética
2.
Sci Rep ; 14(1): 12874, 2024 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-38834629

RESUMEN

Atopic dermatitis is a chronic complex inflammatory skin disorder that requires sustainable treatment methods due to the limited efficacy of conventional therapies. Sargassum serratifolium, an algal species with diverse bioactive substances, is investigated in this study for its potential benefits as a therapeutic agent for atopic dermatitis. RNA sequencing of LPS-stimulated macrophages treated with ethanolic extract of Sargassum serratifolium (ESS) revealed its ability to inhibit a broad range of inflammation-related signaling, which was proven in RAW 264.7 and HaCaT cells. In DNCB-induced BALB/c or HR-1 mice, ESS treatment improved symptoms of atopic dermatitis within the skin, along with histological improvements such as reduced epidermal thickness and infiltration of mast cells. ESS showed a tendency to improve serum IgE levels and inflammation-related cytokine changes, while also improving the mRNA expression levels of Chi3l3, Ccr1, and Fcεr1a genes in the skin. Additionally, ESS compounds (sargachromanol (SCM), sargaquinoic acid (SQA), and sargahydroquinoic acid (SHQA)) mitigated inflammatory responses in LPS-treated RAW264.7 macrophages. In summary, ESS has an anti-inflammatory effect and improves atopic dermatitis, ESS may be applied as a therapeutics for atopic dermatitis.


Asunto(s)
Dermatitis Atópica , Dinitroclorobenceno , Modelos Animales de Enfermedad , Ratones Endogámicos BALB C , Sargassum , Animales , Dermatitis Atópica/tratamiento farmacológico , Dermatitis Atópica/inducido químicamente , Dermatitis Atópica/patología , Sargassum/química , Ratones , Células RAW 264.7 , Humanos , Etanol/química , Extractos Vegetales/farmacología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Piel/efectos de los fármacos , Piel/patología , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Inmunoglobulina E/sangre , Citocinas/metabolismo
3.
Dermatology ; 240(3): 453-461, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38599196

RESUMEN

INTRODUCTION: Ultraviolet radiation (UVR) is the primary risk factor for keratinocyte carcinomas. Oral supplementation with nicotinamide (NAM) is reported to reduce the formation of new keratinocyte carcinomas. NAM's photoprotection is mediated by enhanced DNA repair. We wanted to explore whether NAM in combination with antiproliferative (metformin [Met]) or antioxidant (phloroglucinol [PG]) compounds could potentially enhance its photoprotective effects. METHODS: Hairless mice (C3.Cg-Hrhr/TifBomTac) were treated orally with either a standard dose of NAM monotherapy (NAM-mono; 600 mg/kg) or NAM (400 mg/kg) combined with Met (200 mg/kg) (NAM-Met) or PG (75 mg/kg) (NAM-PG). Mice were irradiated with 3.5 standard erythema doses of UVR three times per week to induce tumour development. Photoprotective effects were based on (i) tumour onset of the first three tumours, (ii) skin photodamage, and (iii) DNA damage (cyclobutane pyrimidine dimers [CPDs] and pyrimidine-pyrimidone (6-4) photoproducts [6-4PPs]). RESULTS: All mice treated with NAM demonstrated a delay in tumour onset and reduced tumour burden compared to the UV control group (NAM, NAM-Met, NAM-PG vs. UV control: p ≤ 0.015). NAM-mono and NAM-PG increased time until all three tumours with no difference between them, indicating a similar degree of photoprotection. NAM-mono had no effect on DNA damage compared to the UV control group (p > 0.05), whereas NAM-PG reduced 6-4PP lesions (p < 0.01) but not CPDs (p > 0.05) compared to NAM-mono. NAM-Met delayed the onset of the third tumour compared to the UV control but demonstrated a quicker onset compared to NAM-mono, suggesting inferior photoprotection compared to nicotinamide monotherapy. CONCLUSION: NAM-PG was as effective in delaying UVR-induced tumour onset as NAM-mono. The reduction in 6-4PP lesions may indicate that the mechanism of NAM-PG is better suited for photoprotection than NAM-mono. NAM-mono was superior to NAM-Met, indicating a dose dependency of NAM's photoprotection. These results highlight the potential for combining photoprotective compounds to enhance photoprotection.


Asunto(s)
Metformina , Ratones Pelados , Niacinamida , Neoplasias Cutáneas , Rayos Ultravioleta , Animales , Niacinamida/uso terapéutico , Niacinamida/farmacología , Neoplasias Cutáneas/prevención & control , Rayos Ultravioleta/efectos adversos , Ratones , Metformina/farmacología , Metformina/uso terapéutico , Neoplasias Inducidas por Radiación/prevención & control , Neoplasias Inducidas por Radiación/etiología , Quimioterapia Combinada , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Daño del ADN/efectos de los fármacos , Daño del ADN/efectos de la radiación , Femenino , Complejo Vitamínico B/uso terapéutico , Complejo Vitamínico B/farmacología
4.
Photochem Photobiol Sci ; 23(3): 517-526, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38337129

RESUMEN

Squamous cell carcinoma represents the second most common type of keratinocyte carcinoma with ultraviolet radiation (UVR) making up the primary risk factor. Oral photoprotection aims to reduce incidence rates through oral intake of photoprotective compounds. Recently, drug repurposing has gained traction as an interesting source of chemoprevention. Because of their reported photoprotective properties, we investigated the potential of bucillamine, carvedilol, metformin, and phenformin as photoprotective compounds following oral intake in UVR-exposed hairless mice. Tumour development was observed in all groups in response to UVR, with only the positive control (Nicotinamide) demonstrating a reduction in tumour incidence (23.8%). No change in tumour development was observed in the four repurposed drug groups compared to the UV control group, whereas nicotinamide significantly reduced carcinogenesis (P = 0.00012). Metformin treatment significantly reduced UVR-induced erythema (P = 0.012), bucillamine and phenformin increased dorsal pigmentation (P = 0.0013, and P = 0.0005), but no other photoprotective effect was observed across the repurposed groups. This study demonstrates that oral supplementation with bucillamine, carvedilol, metformin, or phenformin does not affect UVR-induced carcinogenesis in hairless mice.


Asunto(s)
Carcinoma de Células Escamosas , Cisteína/análogos & derivados , Neoplasias Cutáneas , Ratones , Animales , Rayos Ultravioleta , Carvedilol/farmacología , Ratones Pelados , Fenformina/farmacología , Carcinoma de Células Escamosas/prevención & control , Carcinoma de Células Escamosas/etiología , Carcinogénesis/efectos de la radiación , Niacinamida/farmacología , Neoplasias Cutáneas/etiología , Neoplasias Cutáneas/prevención & control , Neoplasias Cutáneas/patología , Piel/efectos de la radiación
5.
J Photochem Photobiol B ; 246: 112760, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37535996

RESUMEN

Ultraviolet radiation is the primary risk factor for keratinocyte carcinoma. Because of increasing incidence rates, new methods of photoprotection must be explored. Oral supplementation with photoprotective compounds presents a promising alternative. Phytochemical compounds like hesperidin methyl chalcone, phloroglucinol, and syringic acid are particularly of interest because of their antioxidant properties. Our primary outcome was to evaluate the effects of oral phytochemicals on photocarcinogenesis with time until tumour onset as the primary endpoint. A total of 125 hairless C3.Cg-Hrhr/TifBom Tac mice were randomised to receive tap water supplemented with either 100 mg/kg hesperidin methyl chalcone, phloroglucinol, or syringic acid, 600 mg/kg nicotinamide as a positive control, or no supplementation. The mice were irradiated with 3.5 standard erythema doses thrice weekly to induce photocarcinogenesis. Supplementation with the phytochemicals phloroglucinol and syringic acid and nicotinamide delayed tumour onset from a median of 140 days to 151 (p = 0.036), 157 days (p = 0.02), and 178 (p = 2.7·10-5), respectively. Phloroglucinol and nicotinamide supplementation reduced tumour number. Nicotinamide increased UV-induced pigmentation and reduced oedema formation, while phloroglucinol supplementation reduced epidermal thickness. These results indicate that oral supplementation with phloroglucinol and syringic acid protects against photocarcinogenesis in hairless mice, but not to the same extent as nicotinamide.


Asunto(s)
Chalconas , Hesperidina , Neoplasias Inducidas por Radiación , Neoplasias Cutáneas , Animales , Ratones , Neoplasias Cutáneas/patología , Rayos Ultravioleta , Ratones Pelados , Floroglucinol/farmacología , Hesperidina/farmacología , Hesperidina/uso terapéutico , Piel/efectos de la radiación
6.
Exp Dermatol ; 32(10): 1624-1632, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37350109

RESUMEN

The gut microbiome is increasingly recognized to alter cancer risk, progression and response to treatments such as immunotherapy, especially in cutaneous melanoma. However, whether the microbiome influences immune checkpoint inhibitor (ICI) immunotherapy response to non-melanoma skin cancer has not yet been defined. As squamous cell carcinomas (SCC) are in closest proximity to the skin microbiome, we hypothesized that the skin microbiome, which regulates cutaneous immunity, might affect SCC-associated anti-PD1 immunotherapy treatment response. We used ultraviolet radiation to induce SCC in SKH1 hairless mice. We then treated the mice with broad-band antibiotics to deplete the microbiome, followed by colonisation by candidate skin and gut bacteria or persistent antibiotic treatment, all in parallel with ICI treatment. We longitudinally monitored skin and gut microbiome dynamics by 16S rRNA gene sequencing and tumour burden by periodic tumour measurements and histologic assessment. Our study revealed that antibiotics-induced abrogation of the microbiome reduced the tumour burden, suggesting a functional role of the microbiome in non-melanoma skin cancer therapy response.


Asunto(s)
Carcinoma de Células Escamosas , Microbioma Gastrointestinal , Inmunoterapia , Melanoma , Neoplasias Cutáneas , Animales , Ratones , Antibacterianos/uso terapéutico , Carcinoma de Células Escamosas/inmunología , Carcinoma de Células Escamosas/terapia , Inmunoterapia/métodos , Melanoma/terapia , Microbiota , ARN Ribosómico 16S/genética , Neoplasias Cutáneas/inmunología , Neoplasias Cutáneas/terapia , Rayos Ultravioleta , Microbioma Gastrointestinal/inmunología
7.
J Photochem Photobiol B ; 243: 112713, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37086566

RESUMEN

Ultraviolet C (UVC) light has long been used as a sterilizing agent, primarily through devices that emit at 254 nm. Depending on the dose and duration of exposure, UV 254 nm can cause erythema and photokeratitis and potentially cause skin cancer since it directly modifies nitrogenated nucleic acid bases. Filtered KrCl excimer lamps (emitting mainly at 222 nm) have emerged as safer germicidal tools and have even been proposed as devices to sterilize surgical wounds. All the studies that showed the safety of 222 nm analyzed cell number and viability, erythema generation, epidermal thickening, the formation of genetic lesions such as cyclobutane pyrimidine dimers (CPDs) and pyrimidine-(6-4)-pyrimidone photoproducts (6-4PPs) and cancer-inducing potential. Although nucleic acids can absorb and be modified by both UV 254 nm and UV 222 nm equally, compared to UV 254 nm, UV 222 nm is more intensely absorbed by proteins (especially aromatic side chains), causing photooxidation and cross-linking. Here, in addition to analyzing DNA lesion formation, for the first time, we evaluated changes in the proteome and cellular pathways, reactive oxygen species formation, and metalloproteinase (MMP) levels and activity in full-thickness in vitro reconstructed human skin (RHS) exposed to UV 222 nm. We also performed the longest (40 days) in vivo study of UV 222 nm exposure in the HRS/J mouse model at the occupational threshold limit value (TLV) for indirect exposure (25 mJ/cm2) and evaluated overall skin morphology, cellular pathological alterations, CPD and 6-4PP formation and MMP-9 activity. Our study showed that processes related to reactive oxygen species and inflammatory responses were more altered by UV 254 nm than by UV 222 nm. Our chronic in vivo exposure assay using the TLV confirmed that UV 222 nm causes minor damage to the skin. However, alterations in pathways related to skin regeneration raise concerns about direct exposure to UV 222 nm.


Asunto(s)
Daño del ADN , Ácidos Nucleicos , Ratones , Animales , Humanos , Especies Reactivas de Oxígeno/metabolismo , Dímeros de Pirimidina/metabolismo , Piel/efectos de la radiación , Rayos Ultravioleta , Ácidos Nucleicos/metabolismo , Eritema
8.
Epigenetics ; 18(1): 2144574, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36373380

RESUMEN

Until recently, studying the murine methylome was restricted to sequencing-based methods. In this study we compared the global DNA methylation levels of hairless mouse epidermis using the recently released Infinium Mouse Methylation BeadChip from Illumina and whole genome bisulphite sequencing (WGBS). We also studied the effect of sample storage conditions by using fresh and fresh-frozen epidermis. The DNA methylation levels of 123,851 CpG sites covered by both the BeadChip and WGBS were compared. DNA methylation levels obtained with WGBS and the BeadChip were strongly correlated (Pearson correlation r = 0.984). We applied a threshold of 15 reads for the WGBS methylation analysis. Even at a threshold of 10 reads, we observed no substantial difference in DNA methylation levels compared with that obtained with the BeadChip. The DNA methylation levels from the fresh and the fresh-frozen samples were strongly correlated when analysed with both the BeadChip (r = 0.999) and WGBS (r = 0.994). We conclude that the two methods of analysis generally work equally well for studies of DNA methylation of mouse epidermis and find that fresh and fresh-frozen epidermis can generally be used equally well. The choice of method will depend on the specific study's aims and the available resources in the laboratory.


Asunto(s)
Metilación de ADN , Genoma Humano , Humanos , Ratones , Animales , Islas de CpG , Secuenciación Completa del Genoma/métodos , Sulfitos , Análisis de Secuencia de ADN/métodos
9.
Exp Dermatol ; 32(4): 341-347, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36333872

RESUMEN

Hydrochlorothiazide (HCTZ) is a frequently prescribed diuretic that exhibits photosensitizing properties. It is used to treat hypertension and edema. Dermato-epidemiological studies in various populations have linked HCTZ treatment with increased risk of particular types of skin cancer, including malignant melanoma (lentigo subtype), and both basal cell carcinoma and squamous cell carcinoma (SCC). This study investigated whether either of two different doses of HCTZ increased the risk of SCC development in mice exposed to ultraviolet radiation (UVR). A total of three groups of hairless mice were used in this study (total, N = 71). One group received a low dose (0.26 mg/mouse/day) and another group received a high dose (0.52 mg/mouse/day) of HCTZ in their drinking water; a third UVR control group received only tap water. All three groups were irradiated with UVR until the mice developed three tumours that were 4 mm in size. The times to SCC tumour development were recorded. In the low-dose group, the median time to develop an SCC tumour was 170 days; in both the high-dose group and the control group, the median time to develop anexd SCC tumour was 163 days (p ≥ 0.331). In our hairless mouse model, we found that mice treated with UVR plus HCTZ did not develop SCCs more rapidly than mice treated with UVR but not HCTZ.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias Inducidas por Radiación , Neoplasias Cutáneas , Animales , Ratones , Rayos Ultravioleta/efectos adversos , Ratones Pelados , Hidroclorotiazida/efectos adversos , Neoplasias Cutáneas/patología , Piel/patología , Carcinoma de Células Escamosas/etiología , Carcinoma de Células Escamosas/patología , Neoplasias Inducidas por Radiación/etiología , Neoplasias Inducidas por Radiación/patología
10.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-1030720

RESUMEN

Objective To analyze the modeling elements and subjects of the animal model of skin photoaging, and to provide a reference for the preparation and improvement of the model and a basis for the scientific evaluation of the subject.Methods By searching and collecting relevant literature on the preparation of animal models of skin photoaging from 2010 to 2022 in the China National Knowledge Infrastructure, Wanfang Database, and PubMed database, the model animal species, gender, modeling method, modeling cycle, radiation source and its distance from the modeling site, cumulative radiation volume, detection indicators, and subjects (drugs or treatments) recorded in the literature were collated and summarized, and a database was established for statistical analysis.Results 257 articles that met the inclusion criteria were selected. Among them, the most common animal model was SKH-1 hairless mice, followed by SD rats and KM mice; the gender of animals was mainly female, medium-wave ultraviolet B (UVB) was often used as the radiation source, the distance between the radiation source and the modelling site was mostly 30 cm, and the modelling period was usually 40-60 days. The cumulative dose of long-wave ultraviolet A (UVA) was between 100-150 J/cm2, and the cumulative dose of UVB was between 5-10 J/cm2. The tests used after model establishment were skin histopathological examination, skin tissue homogenization, fibre staining, immunoblotting, etc. Subjects included Chinese herbal medicines, Chinese herbal extracts, Chinese patent medicines, Chinese herbal compound medicines, chemical drugs, biological agents and other treatments, while the animal model of skin photoaging was also used for clinical efficacy studies of external Chinese medicine, physiotherapy and positive control drugs.Conclusion In skin photoaging animal experiments, female SKH-1 hairless mice are often used, and UVB is used as the radiation source. The modeling period is usually 40-60 days, and the minimum erythema dose (MED) is incremented week by week. The cumulative UVB irradiation dose ranges from 0 to 10 J/cm2, which has the advantages of high success rate, good reproducibility and high similarity with clinical disease.

11.
Anticancer Res ; 42(10): 5083-5090, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36192014

RESUMEN

BACKGROUND/AIM: The effect of vitamin D on skin carcinogenesis is unclear. Vitamin D derivatives may protect against ultraviolet radiation (UVR)-induced DNA damage, immune suppression, and skin carcinogenesis. However, some epidemiological studies have reported an increased incidence of skin cancer associated with high serum vitamin D levels. We investigated the effect of vitamin D supplementation on serum, skin, and tumor vitamin D levels and on skin cancer development in hairless immunocompetent mice. MATERIALS AND METHODS: Female C3.Cg-Hrhr/TifBomTac immunocompetent mice (n=125) were randomly separated into five groups. Two groups received a high vitamin D3 diet (4.5 µg/day/mouse). One group received a medium vitamin D3 diet (2.3 µg/day/mouse). Two groups received a standard diet (0.045 µg/day/mouse). Three standard erythema doses of UVR were given three times per week to three groups. RESULTS: Animals on a high vitamin D3 diet had ~150-fold higher serum vitamin D3 levels (p=0.00016) and 3-fold higher serum 25-hydroxyvitamin D3 [25(OH)D3] levels (p=0.00016) than those on a standard diet. For mice on the medium vitamin D3 diet, serum vitamin D3 and 25(OH)D3 levels were 18-fold and 2.3-fold higher than for the standard diet, respectively (p=0.00016). All UVR-exposed mice developed tumors. Vitamin D3 levels were lower in the tumor than the skin (p<0.0001). High and medium supplementation with vitamin D3 did not affect tumor development (p>0.05). CONCLUSION: In mice, vitamin D levels in the serum, skin, and tumors were augmented by supplementation, but this did not affect the development of UVR-induced skin tumors.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias Inducidas por Radiación , Neoplasias Cutáneas , Animales , Carcinogénesis , Carcinoma de Células Escamosas/complicaciones , Carcinoma de Células Escamosas/prevención & control , Colecalciferol/farmacología , Femenino , Ratones , Neoplasias Inducidas por Radiación/etiología , Neoplasias Cutáneas/complicaciones , Neoplasias Cutáneas/prevención & control , Rayos Ultravioleta/efectos adversos , Vitamina D/farmacología , Vitaminas/farmacología
12.
J Med Food ; 25(1): 48-60, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35029512

RESUMEN

We investigated the effects of bonito fish (Katsuwonus pelamis) elastin HC (KE) on skin dryness, wrinkles, and pigmentation in vitro and in vivo. In vitro, we evaluated the expression of mRNA genes and proteins related to skin dryness, wrinkles, and pigmentation. HaCaT and HS27 cells were exposed to ultraviolet B radiation (UVB) (50 mJ/cm2), and B16F10 cells were stimulated with 3-isobutyl-1-methylxanthine (IBMX, 250 µg/mL) for 72 h to induce melanin synthesis. All cells were treated with KE (50-400 µg/mL) for 24 h. We found that KE increased the expression of long-chain base 1, dihydroceramide desaturase 1, elastin, hyaluronan synthase 2, and ceramide synthase 4 mRNA or protein as well as hyaluronic acid and sphingomyelin levels in UVB-irradiated HaCaT cells. Moreover, KE regulated factors related to collagen production, wrinkles, and melanin production in UVB-irradiated HS27 cells and IBMX-stimulated B16F10 cells. In vivo, we evaluated skin hydration and the expression of mRNA genes and proteins in the skin, and conducted morphological observations in SKH-I hairless mice (5-week-old male). The mice were exposed stepwise to UVB and given KE (10, 20, and 30 mg/kg b.w.) for 8 weeks. We found that skin hydration and protein or mRNA expression related to skin moisturization were increased in the KE group. Moreover, KE intake increased factors related to collagen production, wrinkles, and melanin production in UVB-irradiated SKH-I hairless mice. These results suggest that KE may have efficacy for the development of treatments for improving skin health.


Asunto(s)
Elastina , Envejecimiento de la Piel , Animales , Masculino , Ratones , Ratones Pelados , Pigmentación , Piel , Rayos Ultravioleta
13.
J Sci Food Agric ; 102(5): 1987-1994, 2022 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-34516661

RESUMEN

BACKGROUND: Chronic exposure to ultraviolet (UV) radiation promotes skin photoaging, which is clinically characterized by dryness, laxity, and wrinkling. Sea cucumber (Stichopus japonicus) (SC) is a marine organism with culinary and medicinal applications, especially in Asian countries. It is also a potential nutraceutical as it exhibits bioactive effects, such as antioxidant, antitumor, and anticancer activity. This study examined the effects of SC and its hydrolysate (SCH) on ultraviolet A (UVA) induced skin barrier function and wrinkle formation using hairless mice. RESULTS: Ultraviolet A significantly induced transepidermal water loss and wrinkle formation, which were significantly mitigated upon oral administration of SC and SCH. Sea cucumber also mitigated the UVA-induced downregulation of epidermal natural moisturizing factors and the upregulation of Aqp3, Mmp13, Tnfa, and Il6 mRNA levels in the mouse skin. CONCLUSION: Taken together, these results suggest that dietary SC and SCH exert anti-photoaging effects by modulating filaggrin synthesis and desquamation in the epidermis and regulating the NF-κB pathway in the skin. Our research indicates that SC and SCH have potential applications in nutricosmetics for photoaging. © 2021 Society of Chemical Industry.


Asunto(s)
Pepinos de Mar , Envejecimiento de la Piel , Animales , Suplementos Dietéticos , Ratones , Ratones Pelados , Piel , Rayos Ultravioleta/efectos adversos
14.
J Med Food ; 24(12): 1313-1322, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34861129

RESUMEN

We investigated the effects of GT collagen (Geltech low-molecular-weight fish collagen, FC) on skin moisturization in ultraviolet B (UVB)-irradiated HaCaT cells and SKH-I hairless mice. In vitro, we measured the expression of mRNA genes and proteins related to the skin moisturizing mechanism, hyaluronic acid concentrations, and sphingomyelin concentrations. As a result, FC increased the expression of LCB1, DEGS1, elastin, UGTrel7, and GlcNAc mRNA in UVB-irradiated HaCaT cells. Also, hyaluronic acid level, sphingomyelin level, and protein expressions of hyaluronan synthase (HAS)2 and CerS4 were increased compared to those in the UVB-irradiated control group. In vivo, we measured skin hydration through the expression of mRNA genes and proteins related to the skin moisturizing mechanism and found that the protein expression of HAS2 and CerS4 was increased in the groups taking FC. Moreover, FC intake increased the expression of LCB1, DEGS1, fibrilin-1, UGTrel8, and GlcNAc mRNA in UVB-irradiated SKH-I hairless mice. These results suggest that FC can be utilized to develop products aimed at improving skin moisturization.


Asunto(s)
Colágeno/farmacología , Fenómenos Fisiológicos de la Piel , Piel/efectos de los fármacos , Animales , Células HaCaT , Humanos , Hialuronano Sintasas , Ratones , Ratones Pelados , Piel/efectos de la radiación , Esfingosina N-Aciltransferasa , Rayos Ultravioleta
15.
Mar Drugs ; 19(10)2021 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-34677449

RESUMEN

Echinochrome A (Ech A, 7-ethyl-2,3,5,6,8-pentahydroxy-1,4-naphthoquinone) has been known to exhibit anti-oxidative and anti-inflammatory effects. However, no study has been carried out on the efficacy of Ech A against skin photoaging; this process is largely mediated by oxidative stress. Six-week-old male SKH-1 hairless mice (n = 36) were divided into five groups. Except for a group that were not treated (n = 4), all mice underwent ultraviolet-B (UVB) exposure for 8 weeks while applying phosphate-buffered saline or Ech A through intraperitoneal injection. UVB impaired skin barrier function, showing increased transepidermal water loss and decreased stratum corneum hydration. UVB induced dermal collagen degeneration and mast cell infiltration. Ech A injection was found to significantly lower transepidermal water loss while attenuating tissue inflammatory changes and collagen degeneration compared to the control. Furthermore, Ech A was found to decrease the relative expression of matrix metalloproteinase, tryptase, and chymase. Taken together, these results suggest that Ech A protects against UVB-induced photoaging in both functional and histologic aspects, causing a lowering of collagen degradation and inflammatory cell infiltration.


Asunto(s)
Colágeno/metabolismo , Naftoquinonas/farmacología , Sustancias Protectoras/farmacología , Envejecimiento de la Piel/efectos de los fármacos , Animales , Organismos Acuáticos , Modelos Animales de Enfermedad , Masculino , Mastocitos/efectos de los fármacos , Ratones , Ratones Pelados , Naftoquinonas/administración & dosificación , Sustancias Protectoras/administración & dosificación , Rayos Ultravioleta , Pérdida Insensible de Agua/efectos de los fármacos
16.
Photochem Photobiol Sci ; 20(10): 1299-1307, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34559384

RESUMEN

PUVA is a treatment that combines oral methoxypsoralen (8-MOP) with ultraviolet radiation A (UVA). It is used for severe psoriasis and the early stages of T-cell lymphoma. X-rays are an effective treatment for skin cancers. Both treatments are in higher doses used to treat skin malignancies and simultaneously increase the risk of keratinocyte cancer. The main objective of this study was to test whether a few PUVA or X-ray treatments could delay the development of ultraviolet radiation (UVR)-induced skin tumors in a well-established hairless mouse model. Three groups of immunocompetent mice (total, N = 75) were included in the study. All groups were UVR-exposed during the study period. In addition, one group was treated with PUVA and another group was treated with X-rays at days 45, 52, 90 and 97. A control group was treated with UVR only. We recorded when the first, second and third skin tumors were induced in each mouse. Skin tumors developed significantly earlier in both the PUVA and X-ray groups (median, 188 days) than in the control mice (median, 215 days; p < 0.001). Therefore, a few X-ray and PUVA treatments both significantly accelerated the development of skin tumors in hairless mice, compared to UVR controls. Neither treatment showed a delay of UVR-induced skin tumors and caution should be exercised before applying these treatments to sun-damaged skin.


Asunto(s)
Metoxaleno/efectos adversos , Neoplasias Cutáneas/etiología , Rayos Ultravioleta , Animales , Huésped Inmunocomprometido , Estimación de Kaplan-Meier , Metoxaleno/química , Metoxaleno/farmacología , Ratones , Ratones Pelados , Neoplasias Inducidas por Radiación/etiología , Piel/patología , Neoplasias Cutáneas/mortalidad , Neoplasias Cutáneas/patología , Pigmentación de la Piel/efectos de los fármacos , Pigmentación de la Piel/efectos de la radiación , Rayos X
17.
Free Radic Biol Med ; 173: 97-103, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34242794

RESUMEN

The skin is an important barrier against external attacks from bacteria, radicals, or radiations. UV-A radiations cause significant impairment of this barrier, inducing inflammation, oxidative stress, and wrinkle formation, thereby promoting photoaging. Previous studies reported that carnosine, a potent antioxidant, and carbonyl scavenger agent, may prevent photoaging features in the skin of hairless mice exposed to UV-A radiations. In the present study, we used a quantitative proteomic approach to analyze the changes evoked by carnosine in the skin proteome of hairless mice exposed to UV-A. This approach allowed to quantify more than 2480 proteins, among them consistent differences were observed for 89 proteins in UV-A exposed vs control unexposed skins, and 252 proteins in UV-A-exposed skin preventively treated by carnosine (UVAC) vs UV-A. Several functional pathways were altered in the skins of UV-A exposed hairless mice, including the integrin-linked kinase, calcium signaling, fibrogenesis, cell migration and filament formation. An impairment of mitochondrial function and metabolism was observed, with an up-regulation of cytochrome C oxidase 6B1 and NADH: ubiquinone oxidoreductase S8. Skins pre-treated by carnosine were prevented from UV-A induced proteome alterations. In conclusion, our study emphasizes the potency of a proteomic approach to identify the consequences of UV radiations in the skins, and points out the capacity of carnosine to prevent the alterations of skin proteome evoked by UV-A.


Asunto(s)
Carnosina , Envejecimiento de la Piel , Animales , Carnosina/farmacología , Ratones , Ratones Desnudos , Proteómica , Rayos Ultravioleta/efectos adversos
18.
Pharmaceuticals (Basel) ; 14(5)2021 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-34063120

RESUMEN

The high incidence of sunlight-induced human skin cancers reveals a need for more effective photosensitizing agents. In this study, we compared the efficacy of prophylactic photodynamic therapy (PDT) when methylene blue (MB), riboflavin (RF), or methyl aminolevulinate (MAL) were used as photosensitizers. All mice in four groups of female C3.Cg/TifBomTac hairless immunocompetent mice (N = 100) were irradiated with three standard erythema doses of solar-simulated ultraviolet radiation (UVR) thrice weekly. Three groups received 2 × 2 prophylactic PDT treatments (days 45 + 52 and 90 + 97). The PDT treatments consisted of topical administration of 16% MAL, 20% MB, or 20% RF, and subsequent illumination that matched the photosensitizers' absorption spectra. Control mice received no PDT. We recorded when the first, second, and third skin tumors developed. The pattern of tumor development after MB-PDT or RF-PDT was similar to that observed in irradiated control mice (p > 0.05). However, the median times until the first, second, and third skin tumors developed in mice given MAL-PDT were significantly delayed, compared with control mice (256, 265, and 272 vs. 215, 222, and 230 days, respectively; p < 0.001). Only MAL-PDT was an effective prophylactic treatment against UVR-induced skin tumors in hairless mice.

19.
Lasers Med Sci ; 36(4): 863-870, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32827076

RESUMEN

Ultraviolet radiation (UVR) is the major etiologic agent of cutaneous photoaging, and different strategies are used to prevent and treat this condition. The polysaccharide fraction (LBPF) isolated from Lycium Barbarum fruits (goji berry) contains several active ingredients with antioxidant, immune system modulation, and antitumor effects. In addition, the photobiomodulation (PBM) is widely applied in photoaging treatment. This study investigated the effects of LBPF and PBM against the UVR-induced photodamage in the skin of hairless mice. The mice were photoaged for 6 weeks in a chronic and cumulative exposure regimen using a 300-W incandescent lamp that simulates the UVR effects. From the third to the sixth week of photoaging induction, the animals received topical applications of LBPF and PBM, singly or combined, in different orders (first LBPF and then PBM and inversely), three times per week after each session of photoaging. After completion of experiments, the dorsal region skin was collected for the analysis of thickness, collagen content, and metalloproteinases (MMP) levels. A photoprotective potential against the increase of the epithelium thickness and the fragmentation of the collagen fibers was achieved in the skin of mice treated with LBPF or PBM singly, as well as their combination. All treatments maintained the skin collagen composition, except when PBM was applied after the LBPF. However, no treatment protected against the UVR-induced MMP increase. Taken together, we have shown that the LBPF and PBM promote a photoprotective effect in hairless mice skin against epidermal thickening and low collagen density. Both strategies, singly and combined, can be used to reduce the UVR-induced cutaneous photoaging.


Asunto(s)
Colágeno/metabolismo , Medicamentos Herbarios Chinos/farmacología , Epitelio/efectos de los fármacos , Epitelio/efectos de la radiación , Terapia por Luz de Baja Intensidad , Piel/patología , Piel/efectos de la radiación , Animales , Epitelio/patología , Ratones , Ratones Pelados , Piel/efectos de los fármacos , Piel/metabolismo , Envejecimiento de la Piel/efectos de los fármacos , Envejecimiento de la Piel/patología , Envejecimiento de la Piel/efectos de la radiación , Rayos Ultravioleta/efectos adversos
20.
Methods Mol Biol ; 2223: 79-86, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33226588

RESUMEN

Atopic dermatitis (AD) is a common skin disease characterized by chronic inflammation and itchiness. Although skin barrier dysfunction and immune abnormalities are thought to contribute to the development of AD, the precise pathogenic mechanism remains to be elucidated. We have developed a unique, diet-induced AD mouse model based on the findings that deficiencies of certain polyunsaturated fatty acids and starches cause AD-like symptoms in hairless mice. Here, we present a protocol and tips for establishing an AD mouse model using a custom diet modified from a widely used standard diet (AIN-76A Rodent Diet). We also describe methods for evaluating skin barrier dysfunction and analyzing itch-related scratching behavior. This model can be used not only to investigate the complex pathogenic mechanism of human AD but also to study the puzzling relationship between nutrition and AD development.


Asunto(s)
Dermatitis Atópica/inmunología , Modelos Animales de Enfermedad , Ácidos Grasos Insaturados/química , Alimentos Formulados , Prurito/inmunología , Almidón/química , Animales , Conducta Animal , Aceite de Maíz/química , Dermatitis Atópica/etiología , Dermatitis Atópica/fisiopatología , Etanol/química , Ácidos Grasos Insaturados/deficiencia , Ácidos Grasos Insaturados/inmunología , Femenino , Humanos , Ratones , Ratones Pelados , Permeabilidad , Prurito/etiología , Prurito/fisiopatología , Piel/efectos de los fármacos , Piel/inmunología , Piel/patología , Almidón/deficiencia , Almidón/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA