Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Sci Rep ; 14(1): 6773, 2024 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-38514747

RESUMEN

Haemorrhagic septicaemia (HS) is an economically important disease affecting cattle and buffaloes and the livelihoods of small-holder farmers that depend upon them. The disease is caused by Gram-negative bacterium, Pasteurella multocida, and is considered to be endemic in many states of India with more than 25,000 outbreaks in the past three decades. Currently, there is no national policy for control of HS in India. In this study, we analysed thirty year (1987-2016) monthly data on HS outbreaks using different statistical and mathematical methods to identify spatial variability and temporal patterns (seasonality, periodicity). There was zonal variation in the trend and seasonality of HS outbreaks. Overall, South zone reported maximum proportion of the outbreaks (70.2%), followed by East zone (7.2%), Central zone (6.4%), North zone (5.6%), West zone (5.5%) and North-East zone (4.9%). Annual state level analysis indicated that the reporting of HS outbreaks started at different years independently and there was no apparent transmission between the states. The results of the current study are useful for the policy makers to design national control programme on HS in India and implement state specific strategies. Further, our study and strategies could aid in implementation of similar approaches in HS endemic tropical countries around the world.


Asunto(s)
Enfermedades de los Bovinos , Septicemia Hemorrágica , Pasteurella multocida , Animales , Bovinos , Septicemia Hemorrágica/epidemiología , Septicemia Hemorrágica/veterinaria , Septicemia Hemorrágica/microbiología , Búfalos/microbiología , Brotes de Enfermedades , India/epidemiología , Enfermedades de los Bovinos/microbiología
2.
Fish Shellfish Immunol ; 144: 109234, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37984615

RESUMEN

Viral haemorrhagic septicaemia virus (VHSV) is one of the highly pathogenic virus, which causes viral haemorrhagic septicaemia disease in both marine and freshwater fish. Micro RNA-155 (miRNA-155) is a multifunctional small non-coding RNA and it involves regulation of immune responses during viral infection. In this study, dre-miR-155 mimics were encapsulated into chitosan nanoparticles (CNPs). Resulted encapsulated product (miR-155-CNPs) was investigated for its immunomodulation role in zebrafish during experimentally challenged VHSV infection. Successful encapsulation of dre-miR-155 mimics into CNPs was confirmed through average nanoparticle (NPs) size (341.45 ± 10.00 nm), increased encapsulation efficiency percentage (98.80%), bound dre-miR-155 with chitosan, sustained release in vitro (up to 40%), and the integrity of RNA. Overexpressed miR-155 was observed in gills, muscle, and kidney tissues (5.42, 19.62, and 140.72-folds, respectively) after intraperitoneal delivery of miR-155-CNPs into zebrafish upon VHSV infection (miR-155-CNPs + VHSV). The miR-155-CNPs + VHSV infected fish had the highest cumulative survival (85%), which was associated with low viral copy numbers. The miR-155-overexpressing fish showed significantly decreased expression of ifnγ, irf2bpl, irf9, socs1a, il10, and caspase3, compared to that of the miR-155 inhibitor + VHSV infected fish group. In contrast, il1ß, tnfα, il6, cd8a, and p53 expressions were upregulated in miR-155-overexpressed zebrafish compared to that of the control. The overall findings indicate the successful delivery of dre-miR-155 through miR-155-CNPs that enabled restriction of VHSV infection in zebrafish presumably by modulating immune gene expression.


Asunto(s)
Quitosano , Enfermedades de los Peces , Septicemia Hemorrágica Viral , MicroARNs , Nanopartículas , Novirhabdovirus , Animales , Pez Cebra , Inmunidad , Novirhabdovirus/fisiología , MicroARNs/genética
3.
BMC Genomics ; 24(1): 546, 2023 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-37710174

RESUMEN

BACKGROUND: Haemorrhagic septicaemia (HS) is a highly fatal and predominant disease in livestock, particularly cattle and buffalo in the tropical regions of the world. Pasteurella multocida (P. multocida), serotypes B:2 and E:2, are reported to be the main causes of HS wherein serotype B:2 is more common in Asian countries including Pakistan and costs heavy financial losses every year. As yet, very little molecular and genomic information related to the HS-associated serotypes of P. multocida isolated from Pakistan is available. Therefore, this study aimed to explore the characteristics of novel bovine isolates of P. multocida serotype B:2 at the genomic level and perform comparative genomic analysis of various P. multocida strains from Pakistan to better understand the genetic basis of pathogenesis and virulence. RESULTS: To understand the genomic variability and pathogenomics, we characterized three HS-associated P. multocida serotype B:2 strains isolated from the Faisalabad (PM1), Peshawar (PM2) and Okara (PM3) districts of Punjab, Pakistan. Together with the other nine publicly available Pakistani-origin P. multocida strains and a reference strain Pm70, a comparative genomic analysis was performed. The sequenced strains were characterized as serotype B and belong to ST-122. The strains contain no plasmids; however, each strain contains at least two complete prophages. The pan-genome analysis revealed a higher number of core genes indicating a close resemblance to the studied genomes and very few genes (1%) of the core genome serve as a part of virulence, disease, and defense mechanisms. We further identified that studied P. multocida B:2 strains harbor common antibiotic resistance genes, specifically PBP3 and EF-Tu. Remarkably, the distribution of virulence factors revealed that OmpH and plpE were not present in any P. multocida B:2 strains while the presence of these antigens was reported uniformly in all serotypes of P. multocida. CONCLUSION: This study's findings indicate the absence of OmpH and PlpE in the analyzed P. multocida B:2 strains, which are known surface antigens and provide protective immunity against P. multocida infection. The availability of additional genomic data on P. multocida B:2 strains from Pakistan will facilitate the development of localized therapeutic agents and rapid diagnostic tools specifically targeting HS-associated P. multocida B:2 strains.


Asunto(s)
Septicemia Hemorrágica , Pasteurella multocida , Animales , Bovinos , Pakistán , Pasteurella multocida/genética , Serogrupo , Septicemia Hemorrágica/veterinaria , Genómica , Búfalos
4.
Epidemics ; 44: 100711, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37562182

RESUMEN

Infectious disease causes significant mortality in wild and farmed systems, threatening biodiversity, conservation and animal welfare, as well as food security. To mitigate impacts and inform policy, tools such as mathematical models and computer simulations are valuable for predicting the potential spread and impact of disease. This paper describes the development of the Aquaculture Disease Network Model, AquaNet-Mod, and demonstrates its application to evaluating disease epidemics and the efficacy of control, using a Viral Haemorrhagic Septicaemia (VHS) case study. AquaNet-Mod is a data-driven, stochastic, state-transition model. Disease spread can occur via four different mechanisms, i) live fish movement, ii) river based, iii) short distance mechanical and iv) distance independent mechanical. Sites transit between three disease states: susceptible, clinically infected and subclinically infected. Disease spread can be interrupted by the application of disease mitigation measures and controls such as contact tracing, culling, fallowing and surveillance. Results from a VHS case study highlight the potential for VHS to spread to 96% of sites over a 10 year time horizon if no disease controls are applied. Epidemiological impact is significantly reduced when live fish movement restrictions are placed on the most connected sites and further still, when disease controls, representative of current disease control policy in England and Wales, are applied. The importance of specific disease control measures, particularly contact tracing and disease detection rate, are also highlighted. The merit of this model for evaluation of disease spread and the efficacy of controls, in the context of policy, along with potential for further application and development of the model, for example to include economic parameters, is discussed.


Asunto(s)
Enfermedades de los Animales , Enfermedades de los Peces , Septicemia Hemorrágica Viral , Salmonidae , Animales , Gales/epidemiología , Enfermedades de los Peces/epidemiología , Acuicultura/métodos , Septicemia Hemorrágica Viral/epidemiología , Inglaterra/epidemiología , Simulación por Computador
5.
J Fish Dis ; 46(11): 1269-1283, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37592444

RESUMEN

Replacing fishmeal, a finite resource with high market demand, in the diet of carnivorous rainbow trout with proteins from alternative sources may be a challenge for these fish. Therefore, this study investigated whether replacing fishmeal with protein derived from Hermetia illucens or Arthrospira platensis could promote disease susceptibility in local trout populations with different growth performance. This was assessed in vitro by measuring susceptibility to infection with the viral haemorrhagic septicaemia virus (VHSV) or the bacterium Yersinia ruckeri. Analysis of fin tissue explants and primary cell cultures from scales from the three trout populations infected in vitro with VHSV and gill explants infected with Y. ruckeri showed no significant differences in virus replication or bacterial counts. Evaluation of the virucidal or bactericidal effect of skin mucus showed a significant reduction in viral load and bacterial count for all samples with mucus addition, but no significant difference was observed between the experimental groups. This study documents no apparent impairment of innate immune mechanisms in the skin and gills of trout after feeding a diet replacing fishmeal with Arthrospira or Hermetia proteins. This underlines the potential of these alternative protein sources for the further development of sustainable trout aquaculture.

6.
J Fish Dis ; 46(4): 433-443, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36633210

RESUMEN

Mucosal surfaces constitute the main route of entry of pathogens into the host. In fish, these mucosal tissues include, among others, the gastrointestinal tract, the gills and the skin. However, knowledge about the mechanisms of regulation of immunity in these tissues is still scarce, being essential to generate a solid base that allows the development of prevention strategies against these infectious agents. In this work, we have used the RTgutGC and RTgill-W1 epithelial-like cell lines, derived from the gastrointestinal tract and the gill of rainbow trout (Oncorhynchus mykiss), respectively, to investigate the transcriptional response of mucosal epithelial cells to a viral mimic, the dsRNA poly I:C, as well as to two important viral rainbow trout pathogens, namely viral haemorrhagic septicaemia virus (VHSV) and infectious pancreatic necrosis virus (IPNV). Additionally, we have established how the exposure to poly I:C affected the susceptibility of RTgutGC and RTgill-W1 cells to both viruses. Our results reveal important differences in the way these two cell lines respond to viral stimuli, providing interesting information on these cell lines that have emerged in the past years as useful tools to study mucosal responses in fish.


Asunto(s)
Enfermedades de los Peces , Oncorhynchus mykiss , Animales , Células Epiteliales , Poli I-C/farmacología , Línea Celular
7.
J Microbiol Methods ; 204: 106652, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36503053

RESUMEN

Haemorrhagic septicaemia (HS) is an acute infection of cattle and buffaloes caused by the B:2 serotype of Pasteurella multocida. This disease is highly endemic in South Asia. In some peracute cases, there is 100% mortality in infected animals within a few hours of infection. Therefore, timely diagnosis of infection may contribute to its treatment and control to minimize economic losses. The current work reported the development of ELISA-based assays for the detection of anti-P. multocida antibodies and pathogen i.e. P. multocida. Owing to high immunogenicity, membrane proteins (MPs) extracted from local isolates of P. multocida serotype B:2 (PM1, PM2, and PM3) were employed as a potential diagnostic antigen for the development of indirect ELISA (i-ELISA) to detect HS antibodies in animals. MPs extracted from PM1, PM2 and PM3 isolates showed very low heterogeneity; hence MPs from the PM3 isolate were selected for the development of i-ELISA. The concentration of MPs (as coating antigen) of 3.13 µg/well and test sera dilution 1:100 was found to be optimal to perform i-ELISA. The developed method was validated through the detection of anti-P. multocida antibodies in sera of mice, immunized with MPs and formalin killed cells from the three local isolates (PM1, PM2 and PM3) of P. multocida. The significantly higher antibody titer in immunized mice was determined compared to unimmunized mice with the cut off value of 0.139. To detect P. multocida directly from the blood of infected animals, whole cell-based ELISA (cb-ELISA) assay was developed. A better detection signal was observed in the assay where bacterial cells were directly adsorbed on plate wells as compared to poly L-lysine (PLL) assisted attachment at a cell concentration of 106 CFU and 107 CFU respectively. The developed assays can be scaled up and potentially be used for the rapid detection of HS antibodies to gauge the immune status of the animal as well as vaccination efficacy and pathogen detection.


Asunto(s)
Septicemia Hemorrágica , Infecciones por Pasteurella , Pasteurella multocida , Ratones , Animales , Bovinos , Septicemia Hemorrágica/diagnóstico , Septicemia Hemorrágica/veterinaria , Suero , Ensayo de Inmunoadsorción Enzimática/veterinaria , Búfalos , Infecciones por Pasteurella/diagnóstico , Infecciones por Pasteurella/veterinaria , Infecciones por Pasteurella/microbiología
8.
Fish Shellfish Immunol ; 126: 336-346, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35643353

RESUMEN

Production losses of olive flounder (Paralichthys olivaceus) have increased owing to viral haemorrhagic septicaemia virus (VHSV) infection. In this study, we determined safe concentrations of orally administered saponin and chitosan by analysing serum enzyme (AST/ALT) levels as biochemical markers of hepatic injury. Furthermore, we demonstrated the efficacy, duration of protection, and safety of saponin and chitosan-based vaccines with inactivated VHSV (IV). Oral administration of saponin, chitosan, and their combination did not induce fish mortality at all tested concentrations (0.29, 1.45, and 2.9 mg/g of fish body weight/day) 10 days after administration. However, AST level was high at a dose >0.29 mg/g of fish body weight/day. Both saponin and chitosan were found to be safe and acceptable for vaccination studies at a dose of 0.29 mg/g of fish body weight/day. Administration of IV alone did not induce protection at 2 and 4 weeks post vaccination (wpv). Olive flounders administered saponin + IV and chitosan + IV vaccines had higher immunity against VHSV with relative percentage survival (RPS) of 12.5-7.5% and 0-20.1%, respectively; however, additional immunisation with combination of saponin + chitosan + IV clearly enhanced the protection with RPS values of 10-15%, 26.7%, 42.9%, and 37.5% at 4, 8, 12, and 20 wpv, respectively. Although the RPS value of oral immunisation was not comparable to that of injectable vaccines, the manufacturing process is simple and oral administration causes less stress to juvenile fish. To investigate the development of a protective immune response, olive flounder were re-challenged with VHSV (107.8 TCID50/fish) at 70 days postinfection; 100% of the previously unexposed fish died, whereas 80-100% of the previously immunised fish survived. Our results showed the possibility of developing preventive measures against VHSV using saponin and chitosan-based oral vaccines with inactivated virus.


Asunto(s)
Quitosano , Enfermedades de los Peces , Lenguado , Septicemia Hemorrágica Viral , Novirhabdovirus , Saponinas , Vacunas Virales , Animales , Peso Corporal , Novirhabdovirus/fisiología
9.
Fish Shellfish Immunol ; 126: 251-262, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35577319

RESUMEN

Septin is an evolutionarily conserved family of GTP-binding proteins. Septins are known to be involved in a variety of cellular processes, including cell division, chromosome separation, cell polarity, motility, membrane dynamics, exocytosis, apoptosis, phagocytosis, DNA damage responses, and other immune responses. In this study, the sequences of the septin gene family of starry flounder were obtained using NGS sequencing, and the integrity of the sequences was verified through cloning and sequencing. At first, the amino acid sequence was annotated using the cDNA sequence, and then, the gene sequence was verified through multiple sequence alignment and phylogenetic analyses using the related conserved sequences. The septin gene family was classified into three subgroups based on the phylogenetic analysis. High conservation within the domain and homology between the genes reported in different species were confirmed. The expression level of septin gene family mRNA in each tissue of healthy starry flounder was evaluated to confirm the tissue- and gene-specific expression levels. Additionally, as a result of the analysis of mRNA expression after simulated pathogen infection, significant expression changes and characteristics were confirmed upon infection with bacteria (Streptococcus parauberis PH0710) and virus (VHSV). Based on the current results and that of previous studies, to confirm the immunological function, Septin 2, 3, and 8 were produced as recombinant proteins based on the amino acid sequences, and their role in phagocytosis was further investigated. The results of this study indicate that septin gene family plays a complex and crucial role in the host immune response to pathogens of starry flounder.


Asunto(s)
Lenguado , Animales , Lenguado/genética , Filogenia , ARN Mensajero , Septinas/genética , Alineación de Secuencia
10.
Fish Shellfish Immunol ; 118: 155-159, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34461259

RESUMEN

Eosinophils are granular leukocytes that are evolutionarily preserved in the innate immune system of some invertebrates and vertebrates, and these cells can directly remove invading microorganisms and secrete various cytokines, and are also involved in homeostasis. These eosinophils are made up of specific granular proteins that can be differentiated from other cells, and eosinophil peroxidase (EPX) is a peroxidase released only from eosinophils that plays an important role in maintaining the main function and homeostasis of eosinophils. We obtained the sequence information of EPX for the first time from the starry flounder (Platichthys stellatus), and predicted it by amino acid sequencing to confirm sequence alignment and phylogenetic characteristics with other species. Based on analysis of the expression characteristics of PsEPX mRNA in healthy P. stellatus, it was expressed at the highest level in peripheral blood lymphocytes (PBLs) and was also expressed at a relatively high level in the head kidney and intestine, which are immune-related tissues. After artificial infection with Streptococcus parauberis and viral haemorrhagic septicaemia virus, which are the causes of major pathogenic diseases, the expression level of PsEPX was significantly regulated, which showed specific characteristics of pathogens or tissues. These results suggest that PsEPX is an important component of the immune system of P. stellatus and is considered a basic research case for the study of the immunological function of eosinophils in fish.


Asunto(s)
Lenguado , Novirhabdovirus , Animales , Peroxidasa del Eosinófilo , Lenguado/inmunología , Perfilación de la Expresión Génica/veterinaria , Filogenia
11.
Vaccines (Basel) ; 9(5)2021 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-34068522

RESUMEN

Viral hemorrhagic septicemia (VHS), caused by viral hemorrhagic septicemia virus (VHSV), is a viral disease affecting teleosts, and is the major cause of virus-related deaths in olive flounder (Paralichthys olivaceus). Research has focused on ways to control VHS, and recently, the use of polyinosinic-polycytidylic acid poly (I:C)-potentiated vaccination has been investigated, whereby fish are injected with poly (I:C) and then with live pathogenic virus, resulting in a significant decrease in VHSV-related mortality. T cell responses were investigated in the present study after vaccinating olive flounder with poly (I:C)-potentiated vaccination to understand the ability of poly (I:C) to induce T cell immunity. Stimulation of T cell responses with the poly (I:C)-potentiated vaccination was confirmed by examining levels of CD3+ T cells, CD4-1+ T cells and CD4-2+ T cells. Higher levels of CD4-2+ T cells were found in vaccinated fish than CD4-1+ T cells, believed to result from a synergistic effect between poly (I:C) administration and pathogenic VHSV immunization. More importantly, the role of CD4-2+ T cells in the antiviral response was clearly evident. The results of this study suggest that the outstanding protection obtained with the poly (I:C)-potentiated vaccination is due to the robust immune response initiated by the CD4-2+ T cells.

12.
J Fish Dis ; 44(10): 1553-1562, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34160839

RESUMEN

T-helper cells express CD4 as a co-receptor that binds to major histocompatibility complex class II to synchronize the immune response against upcoming threats via mediating several cytokines. We have previously reported the presence of CD4 homologues in brown trout. The study of cellular immune responses in brown trout is limited by the availability of specific antibodies. We here describe the generation of a polyclonal antibody against CD4-1 that allows for the investigation of CD4+ cells. We used this novel tool to study CD4+ cells in different tissues during viral haemorrhagic septicaemia infection (VHSV) using flow cytometric technique. Flow cytometric analyses revealed an enhanced level of surface CD4-1 expression in the infected group in major lymphoid organs and in the intestine. These results suggest an important role for the T-helper cells within the immune response against viruses, comparable to the immune response in higher vertebrates.


Asunto(s)
Linfocitos T CD4-Positivos/fisiología , Enfermedades de los Peces/inmunología , Septicemia Hemorrágica Viral/inmunología , Novirhabdovirus/fisiología , Trucha , Animales , Fenómenos Biomecánicos , Linfocitos T CD4-Positivos/virología , Enfermedades de los Peces/virología , Septicemia Hemorrágica Viral/virología , Cinética
13.
J Fish Dis ; 44(9): 1369-1383, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34002876

RESUMEN

Viral haemorrhagic septicaemia virus (VHSV) is the cause of an important listed disease in European rainbow trout (Oncorhynchus mykiss) aquaculture and can be present in a wide range of fish species, including marine fish, which can act as viral reservoir. Recent studies revealed putative genetic virulence markers of VHSV to rainbow trout highlighting the roles of the nucleoprotein, phosphoprotein and non-virion protein. Using reverse genetics, we produced recombinant viruses by introducing parts of or the entire nucleoprotein from a high-virulent isolate VHSV into a low-virulent backbone. Furthermore, we also made recombinant viruses by introducing residue modifications in the nucleoprotein that seem to play a role in virulence. Rainbow trout challenged with these recombinant viruses (rVHSVs) by intraperitoneal injection (IP) developed clinical signs and showed lower survival when compared to the parental rVHSV whereas fish challenged by immersion did not show clinical signs except for the high-virulent control. The mutations did not influence the viral growth in cell culture. The recombinant viruses and parental recombinant were unable to replicate and show cytopathic effect in EPC cells whereas the high-virulent control was well adapted in all the fish cell lines tested. We showed evidence that corroborates with the hypothesis that the nucleoprotein has virulence motifs associated with VHSV virulence in rainbow trout.


Asunto(s)
Septicemia Hemorrágica Viral/virología , Novirhabdovirus/genética , Virulencia/genética , Animales , Línea Celular , Enfermedades de los Peces/virología , Peces , Inyecciones Intraperitoneales , Novirhabdovirus/patogenicidad , Nucleoproteínas/genética , Nucleoproteínas/metabolismo , Oncorhynchus mykiss/virología
14.
J Fish Dis ; 44(8): 1255-1263, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33913522

RESUMEN

Haemorrhagic septicaemia caused by Aeromonas hydrophila in striped catfish (Pangasianodon hypophthalmus) is one of the most important aquatic diseases in the Mekong Delta, Vietnam. However, antibiotic-resistant A. hydrophila strains have become popular and resulted in inadequate control of the disease in striped catfish farms. This study investigates the protective efficacy of bacteriophage PVN02 against haemorrhagic septicaemia in striped catfish via oral administration. The phage-containing pellets were prepared by spraying the phage solution on food pellets at 20 ml/kg. The rate of phage desorption from the food pellets into the water was very low; the phage titres in the water were approximately log 1.0 PFU/ml or undetectable. The in vivo experiment evaluating the protective efficacy of PVN02 against haemorrhagic septicaemia in striped catfish was conducted using 21 groups of 1,260 fish in 50-L plastic tanks in triplicate. The catfish were fed twice daily with phage-sprayed pellets. Different densities of bacterial suspensions were added into the tanks for 24 hr. Without the existence of the phage, the highest mortality rate was 68.3 ± 2.9% at the highest density of bacterial suspension. In contrast, the mortality rate at the highest density of bacterial suspension was significantly reduced to 8.33 ± 2.9% or 16.67 ± 2.9% at the phage dose of log 6.2 ± 0.09 or log 4.2 ± 0.09 PFU/g. This study provides a very practical manner of applying phage therapy to prevent disease in large-scale striped catfish farms.


Asunto(s)
Aeromonas hydrophila/fisiología , Antiinfecciosos/administración & dosificación , Bacteriófagos/química , Bagres , Enfermedades de los Peces/prevención & control , Septicemia Hemorrágica/veterinaria , Administración Oral , Aeromonas hydrophila/efectos de los fármacos , Animales , Antiinfecciosos/química , Farmacorresistencia Microbiana , Enfermedades de los Peces/microbiología , Septicemia Hemorrágica/microbiología , Septicemia Hemorrágica/prevención & control , Vietnam
15.
Animals (Basel) ; 11(3)2021 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-33809757

RESUMEN

The viral hemorrhagic septicemia virus (VHSV) is the causative agent of an important disease in freshwater and marine fishes. Its diagnosis officially relies on the isolation of the virus in cell culture and its identification by serological or polymerase chain reaction (PCR) methodologies. Nowadays, reverse transcription real-time quantitative PCR (RT-qPCR) is the most widely employed technique for the detection of this virus and some studies have reported the validation of RT-qPCR procedures for the detection, typing, and quantification of VHSV isolates. However, although the efficacy of this technique is not in doubt, it can be cumbersome and even impractical when it comes to processing large numbers of samples, a situation in which cross-contamination problems cannot be ruled out. In the present study, we have designed and validated a macroarray for the simultaneous detection, typing, and quantification of VHSV strains. Its analytical sensitivity (5-50 TCID50/mL), analytical specificity (intra and intergroup), efficiency (E = 100.0-101.1) and reliability (repeatability and reproducibility with CV < 5%, and standard curves with R2 < 0.95) with strains from any VHSV genotype have been widely demonstrated. The procedure is based on the 'binary multiplex RT-qPCR system (bmRT-qPCR)' previously reported by the same team, applied to arrays of 96-well PCR strip tubes plates, which can be stored at -25 °C for three months and up to one year before their use, without significant loss of efficiency.

16.
J Fish Dis ; 44(5): 563-571, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33170959

RESUMEN

Viral haemorrhagic septicaemia virus (VHSV) is a negative-sense single-stranded RNA virus that infects more than 140 different fish species. In this study, zebrafish larvae were employed as in vivo model organisms to investigate progression of disease, the correlation between propagation of the infection and irreversibility of disease, cell tropism and in situ neutrophil activity towards the VHSV-infected cells. A recombinant VHSV strain, encoding "tomato" fluorescence (rVHSV-Tomato), was used in zebrafish to be able to follow the progress of the infection in the live host in real-time. Two-day-old zebrafish larvae were injected into the yolk sac with the recombinant virus. The virus titre peaked 96 hr post-infection in zebrafish larvae kept at 18°C, and correlated with 33% mortality and high morbidity among the larvae. By utilizing the transgenic zebrafish line Tg(fli1:GFP)y1 with fluorescently tagged endothelial cells, we were able to demonstrate that the virus initially infected endothelial cells lining the blood vessels. By observing the rVHSV-Tomato infection in the neutrophil reporter zebrafish line Tg(MPX:eGFP)i114 , we inferred that only a subpopulation of the neutrophils responded to the virus infection. We conclude that the zebrafish larvae are suitable for real-time studies of VHS virus infections, allowing in vivo dissection of host-virus interactions at the whole organism level.


Asunto(s)
Septicemia Hemorrágica Viral/virología , Neutrófilos/metabolismo , Novirhabdovirus/fisiología , Tropismo/fisiología , Pez Cebra , Animales , Modelos Animales de Enfermedad
17.
Fish Shellfish Immunol ; 107(Pt B): 511-518, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33217563

RESUMEN

The membrane attack complex/perforin (MACPF) superfamily consists of multifunctional proteins that form pores on the membrane surface of microorganisms to induce their death and have various immune-related functions. PFN2 is a perforin-like protein with an MACPF domain, and humans with deficient PFN2 levels have increased susceptibility to bacterial infection, which can lead to fatal consequences for some patients. Therefore, in this study, we confirmed the antimicrobial function of PFN2 in starry flounder (Platichthys stellatus). The molecular properties were confirmed based on the verified amino acid sequence of PsPFN2. In addition, the expression characteristics of tissue-specific and pathogen-specific PsPFN2 mRNA were also confirmed. The recombinant protein was produced using Escherichia coli, and the antimicrobial activity was then confirmed. The coding sequence of PFN2 (PsPFN2) in P. stellatus consists of 710 residues. The MACPF domain was conserved throughout evolution, as shown by multiple sequence alignment and phylogenetic analysis. PsPFN2 mRNA is abundantly distributed in immune-related organs such as the spleen and gills of healthy starry flounder, and significant expression changes were confirmed after artificial infection by bacteria or viruses. We cloned the MACPF domain region of PFN2 to produce a recombinant protein (rPFN2) and confirmed its antibacterial effect against a wide range of bacterial species and the parasite (Miamiensis avidus).


Asunto(s)
Enfermedades de los Peces/inmunología , Regulación de la Expresión Génica/inmunología , Inmunidad Innata/genética , Perciformes/genética , Perciformes/inmunología , Proteínas Citotóxicas Formadoras de Poros/genética , Proteínas Citotóxicas Formadoras de Poros/inmunología , Secuencia de Aminoácidos , Animales , Proteínas de Peces/química , Proteínas de Peces/genética , Proteínas de Peces/inmunología , Lenguado , Perfilación de la Expresión Génica/veterinaria , Filogenia , Proteínas Citotóxicas Formadoras de Poros/química , Alineación de Secuencia/veterinaria
18.
J Fish Dis ; 43(10): 1237-1247, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32794227

RESUMEN

Autophagy modulation influences the success of intracellular pathogens, and an understanding of the mechanisms involved might offer practical options to reduce the impact of infectious disease. Viral haemorrhagic septicaemia virus (VHSV) can cause high mortality and economic loss in some commercial fish species. VHSV IVb was used to infect a rainbow trout gill cell line, RTgill-W1, followed by the treatment of the cells with different autophagy-modulating reagents. LC3II protein using Western blot was significantly (p < .05) decreased for two days following VHSV infection, and immunofluorescence confirmed that LC3II-positive intracytoplasmic puncta were also decreased. Infection with VHSV resulted in significantly decreased expression of the autophagy-related (Atg) genes atg4, at12, atg13 and becn1 after one day using quantitative PCR. Both viral gene copy number and VHSV N protein were significantly decreased by treating the cells with autophagy-blocking (chloroquine) and autophagy-inhibiting reagents (deoxynivalenol and 3-methyladenine) after three days, while autophagy induction (restricted nutrition and rapamycin) had limited effect. Only treatment of RTgill-W1 with deoxynivalenol resulted in a significant increase in expression of type I interferon. Therefore, the suppression of autophagy initially occurs after VHSV IVb infection, but the modulation of autophagy can also inhibit VHSV IVb infection in RTgill-W1 after three days.


Asunto(s)
Autofagia , Células Epiteliales/virología , Septicemia Hemorrágica Viral/patología , Novirhabdovirus/patogenicidad , Oncorhynchus mykiss/virología , Animales , Línea Celular , Células Epiteliales/efectos de los fármacos , Dosificación de Gen , Branquias/citología , Novirhabdovirus/genética , Proteínas de la Nucleocápside/genética
19.
Microb Pathog ; 147: 104375, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32679244

RESUMEN

To enhance the qualitative bacterial biomass per unit of media and to overcome the limitations of the existing haemorrhagic septicaemia (HS) vaccines, a comprehensive study was undertaken encompassing the role of iron on the bacterial biomass of Pasteurella multocida B: 2 to vaccine development. Trypsin digested hydrochloric acid-treated sheep blood (THSB) as a novel iron rich supplement had been devised for the first time for augmenting the qualitative bacterial biomass per unit of media which was evident with growth kinetic study. The higher recovery of iron from THSB became evident via atomic absorbance spectrophotometry. The critical level of iron in the media as well as mode of iron supplementation showed a major impact on the outer membrane protein profile of P. multocida B:2 and variation in droplet size and particle-size distribution of formulated vaccine. Immune response study against iron-regulated bacterin adjuvanted with aluminum hydroxide gel in mouse model showed that 3% THSB supplementation of casein sucrose yeast (CSY) not only augmented the growth of P. multocida B:2 significantly but conferred highest pre-challenged ELISA IgG titer and protection against pasteurellosis. Thus, THSB supplementation of CSY can resolve existing up-scaling and immunogenic potential problems of HS vaccine production.


Asunto(s)
Infecciones por Pasteurella , Pasteurella multocida , Animales , Anticuerpos Antibacterianos , Vacunas Bacterianas , Hierro , Ratones , Tamaño de la Partícula , Infecciones por Pasteurella/prevención & control , Infecciones por Pasteurella/veterinaria , Ovinos
20.
Acta Vet Hung ; 68(1): 8-11, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32384069

RESUMEN

This paper describes the first documented outbreak of haemorrhagic septicaemia (HS) caused by Pasteurella multocida type B in cattle in Spain. This acute, highly fatal septicaemia causes major economic losses in cattle and buffaloes in many areas of Asia and Africa. In other species and in European countries it is an infrequently reported disease. Acute septicaemic pasteurellosis occurred in a free-range farm of 150 cattle and 70 beef calves in Southern Spain. Twenty-one calves and one cow were affected, of which three calves and the adult cow died. Postmortem examination revealed characteristic oedema in the ventral area of the neck and the brisket region, and widespread haemorrhages in all organs. Pure cultures of P. multocida were obtained from all tissues and organs studied. The aetiological agent was further confirmed by molecular and biochemical analysis as P. multocida capsular type B, biovar 3. Although the source of infection could not be determined, wildlife may play an important role. The use of tulathromycin in the initial stage of the disease might be related to the low morbidity and mortality of this outbreak. After using an autogenous vaccine no more cases of HS were observed.


Asunto(s)
Enfermedades de los Bovinos/epidemiología , Brotes de Enfermedades/veterinaria , Septicemia Hemorrágica/veterinaria , Infecciones por Pasteurella/veterinaria , Pasteurella multocida/aislamiento & purificación , Enfermedad Aguda/epidemiología , Animales , Bovinos , Femenino , Septicemia Hemorrágica/epidemiología , Septicemia Hemorrágica/microbiología , Infecciones por Pasteurella/epidemiología , Infecciones por Pasteurella/microbiología , Pasteurella multocida/clasificación , España/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA