Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
eNeuro ; 8(5)2021.
Artículo en Inglés | MEDLINE | ID: mdl-34551958

RESUMEN

Gustometers have made it possible to deliver liquids in functional magnetic resonance imaging (fMRI) settings for decades, and mouthpieces are a critical part of these taste delivery systems. Here, we propose an innovative 3D-printed fMRI mouthpiece inspired by children's pacifiers, allowing human participants to swallow while lying down in an MRI scanner. We used a large sample to validate the effectiveness of our method. The results suggest that the mouthpiece can be used to deliver taste stimuli by showing significant clusters of activation in the insular and piriform cortex, which are regions that have been consistently identified in taste processing. This mouthpiece fulfills several criteria guaranteeing a gustatory stimulus of quality, making the delivery precise and reliable. Moreover, this new pacifier-shaped design is simple and cheap to manufacture, hygienic, comfortable to keep in the mouth, and flexible to use in diverse cases. We hope that this new method will promote and facilitate the study of taste and flavor perception in the context of reward processing in affective neuroscience, and thus, help provide an integrative approach to the study of the emotional nature of rewards.


Asunto(s)
Imagen por Resonancia Magnética , Chupetes , Mapeo Encefálico , Niño , Humanos , Boca , Impresión Tridimensional , Gusto , Percepción del Gusto
2.
Handb Clin Neurol ; 164: 247-262, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31604551

RESUMEN

This chapter reviews approaches for assessing human and gustatory function using electrophysiologic methods. Its focus is on changes in electrical signals, including summated generator potentials that occur after nasal or oral stimulation. In the first part of the review, we describe tools available to the clinician for assessing olfactory and nasotrigeminal function, including modern electroencephalography (EEG) analysis of brain responses both in the time domain and in the time-frequency (TF) domain. Particular attention is paid to chemosensory event-related potentials (CSERPs) and their potential use in medical-legal cases. Additionally, we focus on the changes of summated generator potentials from the olfactory and respiratory nasal epithelium that could provide new diagnostic insights. In the second part, we describe gustatory event-related potentials (gCSERPs) obtained using a relatively new computer controlled gustometer. A device for presenting different pulses of electrical current to the tongue is also described, with weaker pulses likely reflecting gCSERPs and stronger ones trigeminal CSERPs. Finally, summated generator potentials from the surface of the tongue during gustatory stimulation are described that may prove useful for examining peripheral taste function.


Asunto(s)
Encéfalo/fisiología , Potenciales Evocados/fisiología , Olfato/fisiología , Gusto/fisiología , Electroencefalografía/métodos , Humanos , Tiempo de Reacción/fisiología
3.
Handb Clin Neurol ; 164: 263-282, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31604552

RESUMEN

The senses of taste and smell developed early in evolution and are of high ecological and clinical relevance in humans. Chemosensory systems function, in large part, as hazard avoidance systems, thereby ensuring survival. Moreover, they play a critical role in nutrition and in determining the flavor of foods and beverages. Their dysfunction has been shown to be a key element of early stages of a number of diseases, including Alzheimer's and Parkinson's diseases. Advanced neuroimaging methods provide a unique means for understanding, in vivo, neural and psychological processing of smell, taste, and flavor, and how diseases can impact such processing. This chapter provides, from a neuroimaging perspective, a comprehensive overview of the anatomy and physiology involved in the odor and taste processing in the central nervous system. Some methodological challenges associated with chemosensory neuroimaging research are discussed. Multisensory integration, the mechanisms that enable holistic sensory experiences, is emphasized.


Asunto(s)
Encéfalo/fisiología , Neuroimagen , Olfato/fisiología , Gusto/fisiología , Atención/fisiología , Humanos , Odorantes
4.
Behav Res Methods ; 51(6): 2733-2747, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-30511156

RESUMEN

Taste research has been hampered by technical difficulties, mostly because liquid taste stimuli are difficult to control in terms of timing and application area. Exact stimulus control requires a gustometer, but the existing devices are either not well-documented or rather inflexible. We designed a gustometer based on a computer-controlled, modular pump system, which can be extended via additional hardware modules-for example, for heating of the stimuli or sending and receiving triggers. All components are available for purchase "off the shelf." The pumps deliver liquids through plastic tubing and can be connected to commercially available or custom-made mouthpieces. We determined the temporal precision of the device. Onset delays showed minuscule variation within pumps (SD < 3 ms) and small differences between pumps (< 4.5 ms). The rise time was less than 2 ms (SD < 2 ms), and the dosage volume bias was only 2%. To test whether hemitongues could be stimulated independently, we conducted a behavioral experiment. A total of 18 participants received tasteless stimuli to the left, right, or both sides of the tongue. The side of stimulation was correctly identified on 91% of trials, indicating that the setup is suitable for lateralized stimulation. Electroencephalographic responses to water and salty stimuli were recorded from two participants; the stimulation successfully evoked event-related responses, demonstrating the suitability of the device for use in electrophysiological investigations. We provide a Python-based open-source software package and a Web interface to easily operate the system. We thereby hope to facilitate access to state-of-the-art taste research methods and to increase reproducibility across laboratories.


Asunto(s)
Psicofisiología/instrumentación , Gusto , Percepción del Tacto/fisiología , Tacto , Adulto , Electroencefalografía , Femenino , Humanos , Reproducibilidad de los Resultados
5.
J Neurosci Methods ; 311: 1-12, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30308211

RESUMEN

BACKGROUND: Tasting is a complex process involving chemosensory perception and cognitive evaluation. Different experimental designs and solution delivery approaches may in part explain the variability reported in literature. These technical aspects certainly limit the development of taste-related brain computer interface devices. NEW METHOD: We propose a novel modular, scalable and low-cost device for rapid injection of small volumes of taste solutions during fMRI experiments that gathers the possibility to flexibly increase the number of channels, allowing complex multi-dimensional taste experiments. We provide the full description of the hardware and software architecture and illustrate the application of the working prototype in single-subject event-related fMRI experiments by showing the BOLD responses to basic taste qualities and to five intensities of tastes during the course of perception. RESULTS: The device is shown to be effective in activating multiple clusters within the gustatory pathway and a precise time-resolved event-related analysis is shown to be possible by the impulsive nature of the induced perception. COMPARISON WITH EXISTING METHOD(S): This gustometer represents the first implementation of a low-cost, easily replicable and portable device that is suitable for all kinds of fMRI taste experiments. Its scalability will boost the experimental design of more complex multi-dimensional fMRI studies of the human taste pathway. CONCLUSIONS: The gustometer represents a valid open-architecture alternative to other available devices and its spread and development may contribute to an increased standardization of experimental designs in human fMRI studies of taste perception and pave the way to the development of novel taste-related BCIs.


Asunto(s)
Mapeo Encefálico , Interfaces Cerebro-Computador , Encéfalo/fisiología , Imagen por Resonancia Magnética , Neurofisiología/instrumentación , Percepción del Gusto/fisiología , Adulto , Diseño de Equipo , Humanos , Masculino , Programas Informáticos
6.
Chem Senses ; 42(5): 425-433, 2017 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-28383662

RESUMEN

Rodents consume solutions of phosphates and pyrophosphates in preference to water. Recently, we found that the preference for trisodium pyrophosphate (Na3HP2O7) was greater in T1R3 knockout (KO) mice than wild-type (WT) controls, suggesting that T1R3 is a pyrophosphate detector. We now show that this heightened Na3HP2O7 preference of T1R3 KO mice extends to disodium phosphate (Na2HPO4), disodium and tetrasodium pyrophosphate (Na2H2PO4 and Na4H2PO4), a tripolyphosphate (Na5P3O10), a non-sodium phosphate [(NH4)2HPO4], and a non-sodium pyrophosphate (K4P2O7) but not to non-P salts with large anions (sodium gluconate, acetate, or propionate). Licking rates for Na3HP2O7 are higher in T1R2 KO mice than WT controls; Na3HP2O7 preference scores are increased even more in T1R2 KO mice and T1R2+T1R3 double KO mice than in T1R3 KO mice; preference scores for Na3HP2O7 are normal in T1R1 KO mice. These results implicate each subunit of the T1R2+T1R3 dimer in the behavioral response to P-containing taste compounds.


Asunto(s)
Difosfatos/farmacología , Receptores Acoplados a Proteínas G/metabolismo , Gusto/efectos de los fármacos , Gusto/fisiología , Animales , Difosfatos/administración & dosificación , Preferencias Alimentarias , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
7.
Front Neurosci ; 10: 562, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28018161

RESUMEN

In this article, we numerically resolve the flow profiles of tastant concentration in the pipe of a gustometer used to deliver alternative pulses in concentration, which is a typical case of Taylor dispersion. Using this model, we can define the cases where the experimenter will deliver to the assessors a concentration profile which is significantly different from that intended. This can be simply assessed a priori using a scaling argument which involves calculating a dimensionless frequency. This is a function of the pulses frequency, the dimensions of the pipe and the flow rate used. We show that unless this parameter is taken into account, modifying the pulse frequency will modify the pulse amplitude. This design criterion is absent from the literature but we suggest this is important for designing such experiments.

8.
Chem Senses ; 41(1): 45-52, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26464499

RESUMEN

Rodents are strongly attracted to the taste(s) of maltodextrins. A first step toward discovery of the underlying genes involves identifying phenotypic differences among inbred strains of mice. To do this, we used 5-s brief-access tests and 48-h 2-bottle choice tests to survey the avidity for the maltodextrin, Maltrin M040, of mice from 8 inbred strains (129S1/SvImJ, A/J, CAST/EiJ, C57BL/6J, NOD/ShiLTJ, NZO/HlLtJ, PWK/PhJ, and WSB/EiJ). In brief-access tests, the CAST and PWK strains licked significantly less maltodextrin than equivalent concentrations of sucrose, whereas the other strains generally licked the 2 carbohydrates equally. Similarly, in 2-bottle choice tests, the CAST and PWK strains drank less 4% maltodextrin than 4% sucrose, whereas the other strains had similar intakes of these 2 solutions; the CAST and PWK strains did not differ from the C57, NOD, or NZO strains in 4% sucrose intake. In sum, we have identified strain variation in maltodextrin perception that is distinct from variation in sucrose perception. The phenotypic variation characterized here will aid in identifying genes responsible for maltodextrin acceptance. Our results identify C57 × PWK mice or NZO × CAST mice as informative crosses to produce segregating hybrids that will expose quantitative trait loci underlying maltodextrin acceptance and preference.


Asunto(s)
Preferencias Alimentarias/psicología , Polisacáridos/administración & dosificación , Edulcorantes/administración & dosificación , Gusto/genética , Gusto/fisiología , Animales , Ratones , Ratones Endogámicos , Sitios de Carácter Cuantitativo
9.
Chem Senses ; 40(7): 453-9, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25987548

RESUMEN

Taste compounds detected by G protein-coupled receptors on the apical surface of Type 2 taste cells initiate an intracellular molecular cascade culminating in the release of ATP. It has been suggested that this ATP release is accomplished by pannexin 1 (PANX1). However, we report here that PANX1 knockout mice do not differ from wild-type controls in response to representative taste solutions, measured using 5-s brief-access tests or 48-h two-bottle choice tests. This implies that PANX1 is unnecessary for taste detection and consequently that ATP release from Type 2 taste cells does not require PANX1.


Asunto(s)
Conexinas/deficiencia , Conexinas/metabolismo , Proteínas del Tejido Nervioso/deficiencia , Proteínas del Tejido Nervioso/metabolismo , Gusto/fisiología , Adenosina Trifosfato/metabolismo , Animales , Conexinas/análisis , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas del Tejido Nervioso/análisis , Percepción del Gusto/fisiología
10.
Physiol Behav ; 152(Pt B): 516-26, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-25892670

RESUMEN

In 1975, at the start of my junior year in college, I took a course on experimental methods in psychology from Dr. James C. Smith, when he was a Visiting Professor at Penn State University. That experience set me on the professional path of studying the neural bases of taste function and ingestion on which I remain to this day. Along the way, I did my graduate work at Florida State University under the tutelage of Jim, I did my postdoctoral training at the University of Pennsylvania under the supervision of Harvey Grill, and I also worked closely with Ralph Norgren, who was at the Penn State Medical College. This article briefly summarizes some of the lessons I learned from my mentors and highlights a few key research findings arising from my privilege of working with gifted students and postdocs. After close to 40 years of being a student of the gustatory system and ingestive behavior, it is still with the greatest conviction that I believe rigorous analysis of behavior is indispensable to any effort seeking to understand brain function.


Asunto(s)
Conducta Alimentaria , Percepción del Gusto , Animales , Encéfalo/fisiología , Ingestión de Alimentos/fisiología , Historia del Siglo XX , Historia del Siglo XXI , Roedores , Percepción del Gusto/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA