Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 14: 1242211, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37670865

RESUMEN

In multicellular organisms, including higher plants, asymmetric cell divisions (ACDs) play a crucial role in generating distinct cell types. The Arabidopsis root ground tissue initially has two layers: endodermis (inside) and cortex (outside). In the mature root, the endodermis undergoes additional ACDs to produce the endodermis itself and the middle cortex (MC), located between the endodermis and the pre-existing cortex. In the Arabidopsis root, gibberellic acid (GA) deficiency and hydrogen peroxide (H2O2) precociously induced more frequent ACDs in the endodermis for MC formation. Thus, these findings suggest that GA and H2O2 play roles in regulating the timing and extent of MC formation. However, details of the molecular interaction between GA signaling and H2O2 homeostasis remain elusive. In this study, we identified the PEROXIDASE 34 (PRX34) gene, which encodes a class III peroxidase, as a molecular link to elucidate the interconnected regulatory network involved in H2O2- and GA-mediated MC formation. Under normal conditions, prx34 showed a reduced frequency of MC formation, whereas the occurrence of MC in prx34 was restored to nearly WT levels in the presence of H2O2. Our results suggest that PRX34 plays a role in H2O2-mediated MC production. Furthermore, we provide evidence that SCARECROW-LIKE 3 (SCL3) regulates H2O2 homeostasis by controlling transcription of PRX34 during root ground tissue maturation. Taken together, our findings provide new insights into how H2O2 homeostasis is achieved by SCL3 to ensure correct radial tissue patterning in the Arabidopsis root.

2.
Front Plant Sci ; 13: 924660, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36035690

RESUMEN

Gene expression in roots has been assessed in different plant species in studies ranging from complete organs to specific cell layers, and more recently at the single cell level. While certain genes or functional categories are expressed in the root of all or most plant species, lineage-specific genes have also been discovered. An increasing amount of transcriptomic data is available for angiosperms, while a limited amount of data is available for ferns, and few studies have focused on fern roots. Here, we present a de novo transcriptome assembly from three different parts of the Ceratopteris richardii young sporophyte. Differential gene expression analysis of the root tip transcriptional program showed an enrichment of functional categories related to histogenesis and cell division, indicating an active apical meristem. Analysis of a diverse set of orthologous genes revealed conserved expression in the root meristem, suggesting a preserved role for different developmental roles in this tissue, including stem cell maintenance. The reconstruction of evolutionary trajectories for ground tissue specification genes suggests a high degree of conservation in vascular plants, but not for genes involved in root cap development, showing that certain genes are absent in Ceratopteris or have intricate evolutionary paths difficult to track. Overall, our results suggest different processes of conservation and divergence of genes involved in root development.

3.
Curr Biol ; 31(2): 420-426.e6, 2021 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-33176130

RESUMEN

In both animals and plants, development involves anatomical modifications. In the root of Arabidopsis thaliana, maturation of the ground tissue (GT)-a tissue comprising all cells between epidermal and vascular ones-is a paradigmatic example of these modifications, as it generates an additional tissue layer, the middle cortex (MC).1-4 In early post-embryonic phases, the Arabidopsis root GT is composed of one layer of endodermis and one of cortex. A second cortex layer, the MC, is generated by asymmetric cell divisions in about 80% of Arabidopsis primary roots, in a time window spanning from 7 to 14 days post-germination (dpg). The cell cycle regulator CYCLIN D6;1 (CYCD6;1) plays a central role in this process, as its accumulation in the endodermis triggers the formation of MC.5 The phytohormone gibberellin (GA) is a key regulator of the timing of MC formation, as alterations in its signaling and homeostasis result in precocious endodermal asymmetric cell divisions.3,6,7 However, little is known on how GAs are regulated during GT maturation. Here, we show that the HOMEODOMAIN LEUCINE ZIPPER III (HD-ZIPIII) transcription factor PHABULOSA (PHB) is a master regulator of MC formation, controlling the accumulation of CYCD6;1 in the endodermis in a cell non-autonomous manner. We show that PHB activates the GA catabolic gene GIBBERELLIN 2 OXIDASE 2 (GA2ox2) in the vascular tissue, thus regulating the stability of the DELLA protein GIBBERELLIN INSENSITIVE (GAI)-a GA signaling repressor-in the root and, hence, CYCD6;1 expression in the endodermis.


Asunto(s)
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Ciclinas/genética , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Proteínas de Homeodominio/metabolismo , Arabidopsis/genética , División Celular Asimétrica/genética , Giberelinas/metabolismo , Proteínas de Homeodominio/genética , MicroARNs/metabolismo , Oxigenasas de Función Mixta/genética , Raíces de Plantas/crecimiento & desarrollo , Plantas Modificadas Genéticamente
4.
Mol Plant ; 12(7): 984-1002, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31059824

RESUMEN

During embryo development, the vascular precursors and ground tissue stem cells divide to renew themselves and produce the vascular tissue, endodermal cells, and cortical cells. However, the molecular mechanisms regulating division of these stem cells have remained largely elusive. In this study, we show that loss of function of SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE (SERK) genes results in aberrant embryo development. Fewer cortical, endodermal, and vascular cells are generated in the embryos of serk1 serk2 bak1 triple mutants. WUSCHEL-RELATED HOMEOBOX 5 (WOX5) is ectopically expressed in vascular cells of serk1 serk2 bak1 embryos. The first transverse division of vascular precursors in mid-globular embryos and second asymmetric division of ground tissue stem cells in early-heart embryos are abnormally altered to a longitudinal division. The embryo defects can be partially rescued by constitutively activated mitogen-activated protein kinase (MAPK) kinase kinase YODA (YDA) and MAPK kinase MKK5. Taken together, our results reveal that SERK-mediated signals regulate division patterns of vascular precursors and ground tissue stem cells, likely via the YDA-MKK4/5 cascade, during embryo development.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Técnicas de Embriogénesis Somática de Plantas , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Arabidopsis/embriología , Proteínas de Arabidopsis/genética , Clonación Molecular , Análisis Mutacional de ADN , Regulación de la Expresión Génica de las Plantas , Proteínas de Homeodominio/metabolismo , MAP Quinasa Quinasa Quinasa 5/genética , MAP Quinasa Quinasa Quinasa 5/metabolismo , Quinasas Quinasa Quinasa PAM/genética , Quinasas Quinasa Quinasa PAM/metabolismo , Sistema de Señalización de MAP Quinasas , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Mutación , Organogénesis de las Plantas , Desarrollo de la Planta , Proteínas Quinasas/genética , Proteínas Serina-Treonina Quinasas/genética , Células Madre/metabolismo
5.
Proc Biol Sci ; 285(1890)2018 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-30404875

RESUMEN

A key question in biology is to understand how interspecies morphological diversities originate. Plant roots present a huge interspecific phenotypical variability, mostly because roots largely contribute to adaptation to different kinds of soils. One example is the interspecific cortex layer number variability, spanning from one to several. Here, we review the latest advances in the understanding of the mechanisms expanding and/or restricting cortical layer number in Arabidopsis thaliana and their involvement in cortex pattern variability among multi-cortical layered species such as Cardamine hirsuta or Oryza sativa.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Cardamine/crecimiento & desarrollo , Oryza/crecimiento & desarrollo , Raíces de Plantas/crecimiento & desarrollo , Arabidopsis/anatomía & histología , Cardamine/anatomía & histología , Oryza/anatomía & histología , Raíces de Plantas/anatomía & histología
6.
Front Plant Sci ; 9: 197, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29563920

RESUMEN

Herbaceous plants rely on a combination of turgor, ground tissues and geometry for mechanical support of leaves and stems. Unlike most angiosperms however, ferns employ a sub-dermal layer of fibers, known as a hypodermal sterome, for support of their leaves. The sterome is nearly ubiquitous in ferns, but nothing is known about its role in leaf biomechanics. The goal of this research was to characterize sterome attributes in ferns that experience a broad range of mechanical stresses, as imposed by their aquatic, xeric, epiphytic, and terrestrial niches. Members of the Pteridaceae meet this criteria well. The anatomical and functional morphometrics along with published values of tissue moduli were used to model petiole flexural rigidity and susceptibility to buckling in 20 species of the Pteridaceae. Strong allometric relationships were observed between sterome thickness and leaf size, with the sterome contributing over 97% to petiole flexural rigidity. Surprisingly, the small-statured cheilanthoid ferns allocated the highest fraction of their petiole to the sterome, while large leaves exploited aspects of geometry (second moment of area) to achieve bending resistance. This pattern also revealed an economy of function in which increasing sterome thickness was associated with decreasing fiber cell reinforcement, and fiber wall fraction. Lastly, strong petioles were associated with durable leaves, as approximated by specific leaf area. This study reveals meaningful patterns in fern leaf biomechanics that align with species leaf size, sterome attributes and life-history strategy.

7.
Development ; 145(1)2018 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-29158439

RESUMEN

A clear example of interspecific variation is the number of root cortical layers in plants. The genetic mechanisms underlying this variability are poorly understood, partly because of the lack of a convenient model. Here, we demonstrate that Cardamine hirsuta, unlike Arabidopsis thaliana, has two cortical layers that are patterned during late embryogenesis. We show that a miR165/6-dependent distribution of the HOMEODOMAIN LEUCINE ZIPPER III (HD-ZIPIII) transcription factor PHABULOSA (PHB) controls this pattern. Our findings reveal that interspecies variation in miRNA distribution can determine differences in anatomy in plants.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Cardamine/metabolismo , Proteínas de Homeodominio/metabolismo , MicroARNs/metabolismo , Raíces de Plantas/metabolismo , Arabidopsis/anatomía & histología , Cardamine/anatomía & histología , Raíces de Plantas/anatomía & histología
8.
Plants (Basel) ; 8(1)2018 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-30602700

RESUMEN

How the body plan is established and maintained in multicellular organisms is a central question in developmental biology. Thanks to its simple and symmetric structure, the root represents a powerful tool to study the molecular mechanisms underlying the establishment and maintenance of developmental axes. Plant roots show two main axes along which cells pass through different developmental stages and acquire different fates: the root proximodistal axis spans longitudinally from the hypocotyl junction (proximal) to the root tip (distal), whereas the radial axis spans transversely from the vasculature tissue (centre) to the epidermis (outer). Both axes are generated by stereotypical divisions occurring during embryogenesis and are maintained post-embryonically. Here, we review the latest scientific advances on how the correct formation of root proximodistal and radial axes is achieved.

9.
Proc Natl Acad Sci U S A ; 114(12): E2533-E2539, 2017 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-28265057

RESUMEN

Plant organs are typically organized into three main tissue layers. The middle ground tissue layer comprises the majority of the plant body and serves a wide range of functions, including photosynthesis, selective nutrient uptake and storage, and gravity sensing. Ground tissue patterning and maintenance in Arabidopsis are controlled by a well-established gene network revolving around the key regulator SHORT-ROOT (SHR). In contrast, it is completely unknown how ground tissue identity is first specified from totipotent precursor cells in the embryo. The plant signaling molecule auxin, acting through AUXIN RESPONSE FACTOR (ARF) transcription factors, is critical for embryo patterning. The auxin effector ARF5/MONOPTEROS (MP) acts both cell-autonomously and noncell-autonomously to control embryonic vascular tissue formation and root initiation, respectively. Here we show that auxin response and ARF activity cell-autonomously control the asymmetric division of the first ground tissue cells. By identifying embryonic target genes, we show that MP transcriptionally initiates the ground tissue lineage and acts upstream of the regulatory network that controls ground tissue patterning and maintenance. Strikingly, whereas the SHR network depends on MP, this MP function is, at least in part, SHR independent. Our study therefore identifies auxin response as a regulator of ground tissue specification in the embryonic root, and reveals that ground tissue initiation and maintenance use different regulators and mechanisms. Moreover, our data provide a framework for the simultaneous formation of multiple cell types by the same transcriptional regulator.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/embriología , Arabidopsis/metabolismo , Proteínas de Unión al ADN/metabolismo , Ácidos Indolacéticos/metabolismo , Factores de Transcripción/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Tipificación del Cuerpo , Proteínas de Unión al ADN/genética , Regulación de la Expresión Génica de las Plantas , Factores de Transcripción/genética
10.
Mol Cells ; 39(7): 524-9, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27306644

RESUMEN

Controlling the production of diverse cell/tissue types is essential for the development of multicellular organisms such as animals and plants. The Arabidopsis thaliana root, which contains distinct cells/tissues along longitudinal and radial axes, has served as an elegant model to investigate how genetic programs and environmental signals interact to produce different cell/tissue types. In the root, a series of asymmetric cell divisions (ACDs) give rise to three ground tissue layers at maturity (endodermis, middle cortex, and cortex). Because the middle cortex is formed by a periclinal (parallel to the axis) ACD of the endodermis around 7 to 14 days post-germination, middle cortex formation is used as a parameter to assess maturation of the root ground tissue. Molecular, genetic, and physiological studies have revealed that the control of the timing and extent of middle cortex formation during root maturation relies on the interaction of plant hormones and transcription factors. In particular, abscisic acid and gibberellin act synergistically to regulate the timing and extent of middle cortex formation, unlike their typical antagonism. The SHORT-ROOT, SCARECROW, SCARECROW-LIKE 3, and DELLA transcription factors, all of which belong to the plant-specific GRAS family, play key roles in the regulation of middle cortex formation. Recently, two additional transcription factors, SEUSS and GA- AND ABA-RESPONSIVE ZINC FINGER, have also been characterized during ground tissue maturation. In this review, we provide a detailed account of the regulatory networks that control the timing and extent of middle cortex formation during post-embryonic root development.


Asunto(s)
División Celular Asimétrica , Reguladores del Crecimiento de las Plantas/farmacología , Raíces de Plantas/fisiología , Factores de Transcripción/metabolismo , Ácido Abscísico/farmacología , Arabidopsis/genética , Arabidopsis/fisiología , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Giberelinas/farmacología , Raíces de Plantas/genética
11.
Mol Plant ; 9(6): 870-84, 2016 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-26970019

RESUMEN

In multicellular organisms, controlling the timing and extent of asymmetric cell divisions (ACDs) is crucial for correct patterning. During post-embryonic root development in Arabidopsis thaliana, ground tissue (GT) maturation involves an additional ACD of the endodermis, which generates two different tissues: the endodermis (inner) and the middle cortex (outer). It has been reported that the abscisic acid (ABA) and gibberellin (GA) pathways are involved in middle cortex (MC) formation. However, the molecular mechanisms underlying the interaction between ABA and GA during GT maturation remain largely unknown. Through transcriptome analyses, we identified a previously uncharacterized C2H2-type zinc finger gene, whose expression is regulated by GA and ABA, thus named GAZ (GA- AND ABA-RESPONSIVE ZINC FINGER). Seedlings ectopically overexpressing GAZ (GAZ-OX) were sensitive to ABA and GA during MC formation, whereas GAZ-SRDX and RNAi seedlings displayed opposite phenotypes. In addition, our results indicated that GAZ was involved in the transcriptional regulation of ABA and GA homeostasis. In agreement with previous studies that ABA and GA coordinate to control the timing of MC formation, we also confirmed the unique interplay between ABA and GA and identified factors and regulatory networks bridging the two hormone pathways during GT maturation of the Arabidopsis root.


Asunto(s)
Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , División Celular Asimétrica/fisiología , Giberelinas/metabolismo , Raíces de Plantas/metabolismo , Arabidopsis/genética , División Celular Asimétrica/genética , Regulación de la Expresión Génica de las Plantas , Raíces de Plantas/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
12.
Plant Biol (Stuttg) ; 16(5): 1014-9, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24397576

RESUMEN

The definition of a quiescent centre (QC) in Arabidopsis has been adequately demonstrated. However, the QC structure of rice has not yet been described in detail. In this research, using histological and marker gene expression analysis, we concluded that the rice QC is very small, and is similar to that of Arabidopsis. Next we investigated the stability of the rice QC during nutrient deficiencies or external hormone treatments, and found that nutrient deficiencies, auxin treatment and cytokinin treatment did not change the cell patterns of the QC. However, ethylene induced irregular transverse cell divisions in the QC and changed formative cell divisions of the ground tissue stem cells (GTSCs) in rice.


Asunto(s)
Oryza/citología , Arabidopsis/citología , Arabidopsis/fisiología , División Celular/efectos de los fármacos , Citocininas/farmacología , Etilenos/farmacología , Perfilación de la Expresión Génica , Marcadores Genéticos , Ácidos Indolacéticos/farmacología , Meristema/citología , Meristema/efectos de los fármacos , Meristema/fisiología , Oryza/efectos de los fármacos , Oryza/fisiología , Reguladores del Crecimiento de las Plantas/farmacología , Estrés Psicológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA