Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Toxicol Mech Methods ; 34(7): 821-832, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38725267

RESUMEN

A vast variety of chemical compounds have been fabricated and commercialized, they not only result in industrial exposure during manufacturing and usage, but also have environmental impacts throughout their whole life cycle. Consequently, attempts to assess the risk of chemicals in terms of toxicology have never ceased. In-silico toxicology, also known as predictive toxicology, has advanced significantly over the last decade as a result of the drawbacks of experimental investigations. In this study, ProTox-III was applied to predict the toxicity of the ligands used for metal-organic framework (MOF) design and synthesis. Initially, 35 ligands, that have been frequently utilized for MOF synthesis and fabrication, were selected. Subsequently, canonical simplified molecular-input line-entry system (SMILES) of ligands were extracted from the PUBCHEM database and inserted into the ProTox-III online server. Ultimately, webserver outputs including LD50 and the probability of toxicological endpoints (cytotoxicity, carcinogenicity, mutagenicity, immunotoxicity, and ecotoxicity) were obtained and organized. According to retrieved LD50 data, the safest ligand was 5-hydroxyisophthalic. In contrast, the most hazardous ligand was 5-chlorobenzimidazole, with an LD50 of 8 mg/kg. Among evaluated endpoints, ecotoxicity was the most active and was detected in several imidazolate ligands. This data can open new horizons in design and development of green MOFs.


Asunto(s)
Simulación por Computador , Estructuras Metalorgánicas , Estructuras Metalorgánicas/química , Estructuras Metalorgánicas/toxicidad , Ligandos , Animales , Humanos , Dosificación Letal Mediana , Medición de Riesgo , Diseño de Fármacos , Pruebas de Toxicidad , Tecnología Química Verde
2.
Sci Total Environ ; 806(Pt 2): 150560, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34607099

RESUMEN

Better performances of cellulose-based polymers can be achieved by adjust their architecture including the density of cationic modifications. In this study, the influence of cationic substitution on the ecotoxicity of four quaternized hydroxyethyl cellulose polymers (SK-H, SK-L, SK-M, SK-MH) was studied, using an aquatic biota acute ecotoxicity classification, and rheological and physicochemical characterization. The ecotoxicity characterization was achieved by performing standard ecotoxicity assays with seven key trophic level species: Vibrio fischeri, Raphidocelis subcapitata, Chlorella vulgaris, Daphnia magna, Brachionus calyciflorus, Heterocypris incongruens, and Danio rerio. Median effective concentrations were used to compute hazard concentrations, through the species sensitive distribution curves method. The microalga C. vulgaris and rotifer B. calyciflorus were the most sensitive species to the studied polymers. The SK-H variant was highly toxic to the rotifer. Overall, variants with intermediate levels of cationic charge (SK-M, SK-MH) presented the lowest toxicity. The SK-M variant showed the lowest value of maximum acceptable concentration (0.00354 mg/L), thus being indicated as the least toxic variant. Therefore, the obtained results suggest that industry could direct the development of this type of polymers by tailoring its cationic substitution to moderate levels, in such a way that both functionality and environmental toxicity could be maximized.


Asunto(s)
Chlorella vulgaris , Contaminantes Químicos del Agua , Aliivibrio fischeri , Animales , Organismos Acuáticos , Biota , Celulosa/toxicidad , Daphnia , Polímeros/toxicidad , Contaminantes Químicos del Agua/toxicidad
3.
J Hazard Mater ; 416: 125889, 2021 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-34492827

RESUMEN

Green toxicology is a novel approach increasingly applied for the development of materials and chemicals that are more benign to the environment and human health than their conventional counterparts. It includes predictive eco-toxicological assessments of chemicals during the early developmental process to exclude adverse effects. In the present study, two guanidine zinc catalysts for the ring-opening polymerization of lactide were investigated using eco-toxicological tools. Namely, the fish embryo toxicity assay for teratogenic effects, the ER (α) CALUX assay for endocrine activity and the Ames fluctuation assay for mutagenic potential were applied. Both complexes showed no endocrine activity, mutagenicity or acute aquatic toxicity, however a delayed hatch could be observed, therefore suggesting potential effects on a molecular level. This proof-of-concept study aims to assess the toxicity of guanidine zinc catalysts and is a first step towards the incorporation of toxicological assessments into chemical developmental processes to achieve a sustainable and safe production of catalysts.


Asunto(s)
Bioensayo , Zinc , Animales , Catálisis , Humanos , Pruebas de Mutagenicidad , Polimerizacion , Zinc/toxicidad
4.
Sci Total Environ ; 764: 142902, 2021 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-33757253

RESUMEN

To avoid potential risks of biofuels on the environment and human, ecotoxicity investigation should be integrated into the early design stage for promising biofuel candidates. In the present study, a green toxicology testing strategy combining experimental bioassays with in silico tools was established to investigate the potential ecotoxicity of biofuel candidates. Experimental results obtained from the acute immobilisation test, the fish embryo acute toxicity test and the in vitro micronucleus assay (Chinese hamster lung fibroblast cell line V79) were compared with model prediction results by ECOSAR and OECD QSAR Toolbox. Both our experimental and model prediction results showed that 1-Octanol (1-Oct) and Di-n-butyl ether (DNBE) were the most toxic to Daphnia magna and zebrafish among all the biofuel candidates we investigated, while Methyl ethyl ketone (MEK), Dimethoxymethane (DMM) and Diethoxymethane (DEM) were the least toxic. Moreover, both in vitro micronucleus assay and OECD QSAR Toolbox evaluation suggested that the metabolites present higher genotoxicity than biofuel candidates themselves. Overall, our results proved that this green toxicology testing strategy is a useful tool for assessing ecotoxicity of biofuel candidates.


Asunto(s)
Biocombustibles , Contaminantes Químicos del Agua , Animales , Biocombustibles/toxicidad , Línea Celular , Cricetinae , Daphnia , Humanos , Pruebas de Toxicidad Aguda , Pez Cebra
5.
ACS Sustain Chem Eng ; 9(23): 7749-7758, 2021 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-36051558

RESUMEN

Green chemistry seeks to design less hazardous chemicals, but many of the efforts to replace chemicals have resulted in so-called "Regrettable Substitutions", when a chemical with an unknown or unforeseen hazard is used to replace a chemical identified as problematic. Here, we discuss the literature on regrettable substitution and focus on an oft-mentioned case, Bisphenol A, which was replaced with Bisphenol S-and the lessons that can be learned from this history. In particular, we focus on how Green Toxicology can offer a way to make better substitutions.

6.
Ecotoxicol Environ Saf ; 164: 125-130, 2018 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-30099173

RESUMEN

The increasing need for carbon-neutral, low-emission transportation sector has led to the development of advanced biofuels with tailor-made production and combustion processes. Even though the large-scale deployment of these advanced biofuels also increases the risk for their release into the environment, their toxic potency remains largely unknown. To identify hazardous biofuel candidates as early as possible, the fuel development process can be expanded by "Green Toxicology". To demonstrate such early Green Toxicology testing, this study investigates the aquatic toxicity for the two biofuel candidates 2-methyltetrahydrofuran (2-MTHF) and 2-methylfuran (2-MF) on Daphnia magna. We performed the prolonged acute immobilisation assay (96 h) and the D. magna reproduction test. 2-MF induced acute effects on D. magna that were two orders of magnitude stronger than those of 2-MTHF. Furthermore, both substances affected the growth and reproductive output of D. magna in a 21 d reproduction test, with 2-MF already inducing effects with concentrations one to two orders of magnitude lower than those of 2-MTHF. Thus, our assessment of the aquatic toxicity suggests that further biofuel development should focus on 2-MTHF. Furthermore, the acute immobilisation test with D. magna was identified as a promising tool for a rapid and sensitive "Green Toxicology" screening of further biofuel candidates.


Asunto(s)
Biocombustibles/toxicidad , Daphnia/efectos de los fármacos , Animales , Bioensayo , Furanos/toxicidad , Reproducción/efectos de los fármacos , Pruebas de Toxicidad Aguda , Contaminantes Químicos del Agua/toxicidad
7.
Environ Sci Eur ; 29(1): 16, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28435767

RESUMEN

Green Toxicology refers to the application of predictive toxicology in the sustainable development and production of new less harmful materials and chemicals, subsequently reducing waste and exposure. Built upon the foundation of "Green Chemistry" and "Green Engineering", "Green Toxicology" aims to shape future manufacturing processes and safe synthesis of chemicals in terms of environmental and human health impacts. Being an integral part of Green Chemistry, the principles of Green Toxicology amplify the role of health-related aspects for the benefit of consumers and the environment, in addition to being economical for manufacturing companies. Due to the costly development and preparation of new materials and chemicals for market entry, it is no longer practical to ignore the safety and environmental status of new products during product development stages. However, this is only possible if toxicologists and chemists work together early on in the development of materials and chemicals to utilize safe design strategies and innovative in vitro and in silico tools. This paper discusses some of the most relevant aspects, advances and limitations of the emergence of Green Toxicology from the perspective of different industry and research groups. The integration of new testing methods and strategies in product development, testing and regulation stages are presented with examples of the application of in silico, omics and in vitro methods. Other tools for Green Toxicology, including the reduction of animal testing, alternative test methods, and read-across approaches are also discussed.

8.
Sci Total Environ ; 566-567: 786-795, 2016 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-27243931

RESUMEN

The demand for biofuels increases due to concerns regarding greenhouse gas emissions and depletion of fossil oil reserves. Many substances identified as potential biofuels are solvents or already used as flavors or fragrances. Although humans and the environment may be readily exposed little is known regarding their (eco)toxicological effects. In this study, the three potential biofuels ethyl levulinate (EL), 2-methyltetrahydrofuran (2-MTHF) and 2-methylfuran (2-MF) were investigated for their acute embryo toxicity and teratogenicity using the fish embryo toxicity (FET) test to identify unknown hazard potentials and to allow focusing further research on substances with low toxic potentials. In addition, two fossil fuels (diesel and gasoline) and an established biofuel (rapeseed oil methyl ester) were investigated as references. The FET test is widely accepted and used in (eco)toxicology. It was performed using the zebrafish Danio rerio, a model organism useful for the prediction of human teratogenicity. Testing revealed a higher acute toxicity for EL (LC50: 83mg/L) compared to 2-MTHF (LC50: 2980mg/L), 2-MF (LC50: 405mg/L) and water accommodated fractions of the reference fuels including gasoline (LC50: 244mg DOC/L). In addition, EL caused a statistically significant effect on head development resulting in elevated head lengths in zebrafish embryos. Results for EL reduce its likelihood of use as a biofuel since other substances with a lower toxic potential are available. The FET test applied at an early stage of development might be a useful tool to avoid further time and money requiring steps regarding research on unfavorable biofuels.


Asunto(s)
Biocombustibles/toxicidad , Furanos/toxicidad , Ácidos Levulínicos/toxicidad , Pez Cebra/metabolismo , Animales , Embrión no Mamífero/efectos de los fármacos , Teratógenos/toxicidad , Pruebas de Toxicidad Aguda , Pez Cebra/embriología , Pez Cebra/crecimiento & desarrollo
9.
Sci Total Environ ; 548-549: 155-163, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-26802344

RESUMEN

Biosurfactants like rhamnolipids are promising alternatives to chemical surfactants in a range of applications. A wider use requires an analysis of their environmental fate and their ecotoxicological potential. In the present study mono-rhamnolipids produced by a recombinant Pseudomonas putida strain were analyzed using the Green Toxicology concept for acute and mechanism-specific toxicity in an ecotoxicological test battery. Acute toxicity tests with the invertebrate Daphnia magna and with zebrafish embryos (Danio rerio) were performed. In addition, microbial and fungicidal effectiveness was investigated. Mutagenicity of the sample was tested by means of the Ames fluctuation assay. A selected mono-rhamnolipid was used for model simulations regarding mutagenicity and estrogenic activity. Our results indicate that mono-rhamnolipids cause acute toxicity to daphnids and zebrafish embryos comparable to or even lower than chemical surfactants. Rhamnolipids showed very low toxicity to the germination of Aspergillus niger spores and the growth of Candida albicans. No frameshift mutation or base substitutions were observed using the Ames fluctuation assay with the two tester strains TA98 and TA100. This result was confirmed by model simulations. Likewise it was computed that rhamnolipids have no estrogenic potential. In conclusion, mono-rhamnolipids are an environmental friendly alternative to chemical surfactants as the ecotoxicological potential is low.


Asunto(s)
Daphnia/efectos de los fármacos , Glucolípidos/toxicidad , Tensoactivos/toxicidad , Animales , Decanoatos/toxicidad , Ecotoxicología , Pseudomonas putida , Ramnosa/análogos & derivados , Ramnosa/toxicidad , Contaminantes Químicos del Agua/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA