RESUMEN
The present trial evaluated the effect of crossbred composition and Temperature and Humidity Index (THI) on vaginal temperature (VT) of Girolando dairy cows maintained under tropical pasture during warm seasons. The VT was monitored along 41 to 96 h in 615 Girolando cows with different Holstein (H) × Gir genetic composition (1/2 H = 284, 3/4 H = 248, and 7/8 H = 83) from six Brazilian farms in the summer of 2016 and 2017. VT of each cow at each hour of the day and the respective THI were averaged per hour across all monitoring days to generate an averaged value for VT and THI during 24 h. A linear mixed model with repeated measures using restricted maximum likelihood (REML) method for (co)variance components estimation procedure was employed. The final model adjusted the VT for the effects of cow, time, THI, farm, year, pregnancy status, body condition score (BCS), milk yield, genetic composition, and genetic composition*time interaction. Fixed effects were evaluated by ANOVA and tested with Tukey test in R software version 3.6.1 (R Core Team, 2019). Overall mean of VT, air temperature (AT), and THI were 39.06 ± 0.52 °C, 25.63 ± 0.40 °C, and 75.06 ± 3.96, respectively. VT had moderate positive correlation with THI (r² = 0.45, P < 0.001) and AT (r² = 0.46, P < 0.001). The VT had estimated linear increase of 0.05 °C for each THI unit increase (P < 0.001). Least square mean of VT varied among the farms (P < 0.001), pregnancy status (P < 0.001), and BCS (P < 0.05) but not for Milk yield (P > 0.05). The daily average VT was affected by genetic composition (P < 0.001) with highest temperature for 3/4 H (39.08 ± 0.06 °C a) and 7/8 H (39.09 ± 0.06 °C a) and lowest temperature for 1/2 H (38.95 ± 0.06 °C b). The difference of VT among the three crossbred groups varied in function of the time of the day, from 12:00 to 20:00 h (P < 0.001), with 3/4 Holstein and 7/8 Holstein cows reaching similar VT, above to the upper limit 39.1 °C and higher than 1/2 Holstein cows during all this period. In conclusion, Girolando cows are sensitive to heat stress in tropical condition during warm seasons. Moreover, Girolando cows with genetic composition higher than 3/4 Holstein display reduced thermoregulatory efficiency. Therefore, Girolando cows in tropical dairy farms require strategies to mitigate heat stress according to their genetic composition.
RESUMEN
Milk fatty acid (FA) profiles were determined in Holstein cows (n = 27) fed total mixed rations (TMR) ad libitum (G0) or diet composed by TMR (50% dry matter [DM] offered) plus grazing of pasture with 6 hr of access time to paddock in one session (G1) or 9 hr in two sessions (G2) at 45 days in milk (DIM). Moreover, milk FA was determined at 65 DIM when G0 cows turned out to G1 diet without adaptation period (Post-G0), G1 remained as controls. Milk FA was quantified using gas chromatography and mass spectrometry. Preformed FA at 45 DIM was greater (+27%) for G2 than G0 cows (p < .05). Stearic acid (C18:0) was 30% greater for G2 cows (p < .05). De novo FA was lowest for G2 cows (p < .05). Conjugated linoleic acid (CLA) did not differ (p < .12), while vaccenic acid (C18:1trans) was twofold greater for grazing treatments (p < .01). Linolenic acid [C18:3(n-3)] was greatest for G2 and lowest for G0 cows (p < .01). Omega 6 FA was greater for G0 than grazing cows, mainly due to linoleic acid [18:2cis(n-6); p < .05]. These results determined that n-6/n-3 ratio was almost threefold greater for G0 than grazing cows (p < .001). When diet of G0 cows changed to include pasture (Post-G0), preformed FA increased (p < .05), explained mainly by the increase (p < .05) of stearic (C18:0) and C18:1trans, while de novo FA tended to decrease (p < .1). Moreover, the amount of CLA and C18:3(n-3) tended to increase (p < .1) in Post-G0 cows. Offering 50% of dietary DM from pasture modified milk FA profile in early lactation potentially beneficial for human health. When TMR-fed cows were turned out to 50% pasture, milk FA profile reflected dietary change without need of an adaptation period.