Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(38): e2409436121, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39264742

RESUMEN

In rivers, the addition of finer sediment to a coarser riverbed is known to increase the mobility of the coarser fraction. Two mechanisms have been suggested for this: a geometric mechanism whereby smaller sizes smooth the bed, increasing near-bed velocity and thus mobility of the larger sizes, and a viscous mechanism whereby a transitionally smooth turbulent boundary layer forms, rendering the coarser grains more mobile. Here, we report on experiments using two sediment mixtures to better understand these proposed mechanisms. In Mixture 1, we used 0.5 and 5 mm grains, and in Mixture 2, we used 2 and 20 mm grains. If the entrainment of coarse gravel by finer sediment is a purely geometric effect, then the addition of finer material should produce the same effect on the mobility of the coarser material for both mixtures because they have the same size ratio. We show that addition of finer material has a different effect on the two mixtures. We observed an increase in the mobility of the coarse fraction for both mixtures, but the increase in coarse fraction mobility for Mixture 1 was almost twice that for Mixture 2. Our experiments show that in addition to the geometric effect, enhancement of coarse gravel transport by finer sediment is also driven by a viscous effect.

2.
Sci Rep ; 14(1): 16400, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39013923

RESUMEN

In order to further promote the application of cementitious sand gravel (CSG), the mechanical properties and variation rules of CSG material under triaxial test were studied. Considering the influence of fly ash content, water-binder ratio, sand rate and lateral confining pressure, 81 cylinder specimens were designed and made for conventional triaxial test, and the influence laws of stress-strain curve, failure pattern, elastic modulus, energy dissipation and damage evolution of specimens were analyzed. The results showed that the peak of stress-strain curve increased with the increase of confining pressure, and the peak stress, peak strain and energy dissipation all increased significantly, but the damage variable D decreased with the increase of confining pressure. Under triaxial compression, the specimen was basically sheared failure from the bonding surface, and the aggregate generally did not break. Sand rate had a significant effect on the peak stress of CSG, and decreased with the increase of sand rate. Under the conditions of the same cement content, fly ash content and confining pressure, the optimal water-binder ratio 1.2 existed when the sand rate was 0.2 and 0.3. After analyzing and processing the stress-strain curve of triaxial test, a Cuckoo Search-eXtreme Gradient Boosting (CS-XGBoost) curve prediction model was established, and the model was evaluated by evaluation indexes R2, RMSE and MAE. The average R2 of the XGBoost model based on initial parameters under 18 different output features was 0.8573, and the average R2 of the CS-XGBoost model was 0.9516, an increase of 10.10%. Moreover, the prediction curve was highly consistent with the test curve, indicating that the CS algorithm had significant advantages. The CS-XGBoost model could accurately predict the triaxial stress-strain curve of CSG.

3.
Sci Rep ; 14(1): 16426, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39013931

RESUMEN

The investigation into the impact of gravel on water infiltration process and hydraulic parameters in stony soil could offer a theoretical basis to enhance water availability in rocky mountain area. A one-dimensional vertical infiltration experiment was used in this study. Six groups of gravel content of 0% (CK), 10% (W1), 20% (W2), 30% (W3), 40% (W4) and 50% (W5) were established to explore the changes in the wetting front, cumulative infiltration volume and infiltration rate. Then the accuracy of four infiltration models in simulating soil water infiltration processes was evaluated. Finally, Hydrus-1D was used to perform numerical inversion of the soil water content after infiltration. The findings revealed that: (1) When the infiltration time reached 300 min, the wetting front of the W1, W2, W3, W4 and W5 treatments was 11.00%, 17.00%, 32.25%, 38.75% and 54.50% lower than CK, the cumulative infiltration volume was 29.80%, 38.97%, 45.62%, 54.74% and 73.17% lower than CK, and the stable infiltration rate was 50.98%, 52.94%, 66.67%, 68.63% and 86.27% lower than CK. (2) The soil-water infiltration processes were accurately described by the Horton model, the coefficient of determination (R2) > 0.935. (3) The simulation results of Hydrus-1D showed that with the increase of gravel content, the values of the retention water content (θr), saturated water content (θs), shape coefficient (n) and saturated hydraulic conductivity (Ks) were decreased, the values of the reciprocal of air-entry (α) were increased. The value of R2 was more than 0.894, the root mean square error (RMSE) and mean absolute error (MAE) were less than 2%, which demonstrated that the Hydrus-1D model exhibited superior capability in simulating the changes of water content in stony soil in rocky mountain area. The findings of this study demonstrated that gravel could decrease the water infiltration process and affect the water availability. It could provide data support for the water movement process of stony soil and rational utilization of limited water resources in mountainous area.

4.
Environ Sci Pollut Res Int ; 31(36): 48986-48998, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39042190

RESUMEN

The current study was conducted to understand the sole role of graphite as a substrate material in a dual-chambered baffled electroactive wetland (EW) in the treatment of Methyl red dye-containing wastewater. The results obtained were compared with conventional gravel-based unplanted dual-chambered constructed wetlands (CW) at a lab scale. The highest dye decolorisation and COD removal efficiency achieved was 92.88 ± 1.6% and 95.78 ± 4.1%, respectively, in the electro-active wetland. Dissolved oxygen (DO) and pH conditions were appropriately maintained in both the microcosms because of separated aerobic and anaerobic chambers. UV-vis and gas chromatography-mass spectroscopy analysis revealed the production of by-products like 4-amino benzoic and N- N dimethyl phenyl-diamine of MR in microcosms and revealed further mineralisation of by-products in the aerobic zone of electroactive-wetland. Higher root growth of Cicer aerietinum and Vigna radiata was observed in the presence of effluents of baffled electroactive wetlands compared to constructed wetland, indicating a decrease in phytotoxicity. Metagenomic analysis revealed the abundance of potential microbes for MR and organic matter removal from phylum Proteobacteria, Firmicutes, Bacteroidetes, and Euryarchaeota. A batch adsorption study revealed a higher adsorption capability of graphite material in comparison to gravel. Hence, this study demonstrated that graphite is an appropriate substrate in electroactive wetland in facilitating microbial attachments and enhancing dye degradation, in addition to exhibiting superior adsorption quality.


Asunto(s)
Compuestos Azo , Colorantes , Grafito , Eliminación de Residuos Líquidos , Aguas Residuales , Humedales , Aguas Residuales/química , Grafito/química , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua
5.
Sci Total Environ ; 934: 173350, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38772481

RESUMEN

Gravel-sand mulch (GSM) and plastic film mulch (PFM) are important ways of farming in cold and arid regions without irrigation. Nevertheless, there has been a lack of studies of the system response to live weather conditions. To quantify the effects of GSM and PFM on soil moisture and temperature retention, in-situ monitoring experiments were carried out in the arid belt of central Ningxia, China, using continuous monitoring of the field soil water and meteorological conditions at a 30-mimute time-step under three treatments: a bare soil (CK), soil covered by a layer of GSM, and soil covered by GSM and a layer of plastic film (i.e., GSM + PFM). Results show that: (1) With a limited precipitation of 221 mm during the growing season, the average volumetric soil water content (SWC) in the top 30-cm soil layer was lowest for CK, medium high for GSM, and highest for GSM + PFM. Compared to CK, the soil water storage increased by 54 % under GSM and 75.2 % under GSM + PFM; (2) The most frequently occurring low-intensity rainfalls are more efficiently stored in soil under GSM + PFM; (3) Similarly, the soil temperature was significantly increased under GSM and GSM + PFM conditions. Compared to CK, the average soil temperature in the top 5-cm layer increased by 2.5 °C under GSM and 4.8 °C under GSM + PFM during the germination period, which had effectively extended the growing season for about 30 and 50 days, respectively; (4) Although dewfall is only 4 % of rainfall, the total number of dew day was more than twice that of rain day. Thus, dewfall is a more frequent and dependable source of water for native plants and animals. Our results demonstrate that the benefits of GSM and PFM can be applied globally where either insufficient rainfall or low temperatures are limiting factors.

6.
Ying Yong Sheng Tai Xue Bao ; 35(3): 749-758, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38646763

RESUMEN

With the economic development, a large number of engineering accumulation bodies with Lou soil as the main soil type were produced in Guanzhong area, Northwest China. We examined the characteristics of runoff and sediment yield of Lou soil accumulation bodies with earth (gravel content 0%) and earth-rock (gravel content 30%) under different rainfall intensities (1.0, 1.5, 2.0, 2.5 mm·min-1) and different slope lengths (3, 5, 6.5, 12 m) by the simulating rainfall method. The results showed that runoff rate was relatively stable when rainfall intensity was 1.0-1.5 mm·min-1, while runoff rate fluctuated obviously when rainfall intensity was 2.0-2.5 mm·min-1. The average runoff rate varied significantly across different rainfall intensities on the same slopes, and the difference of average runoff rate of the two slopes was significantly increased with rainfall intensity. Under the same rainfall intensity, the difference in runoff rate between the slope lengths of the earth-rock slope was more obvious than that of the earth slope. When the slope length was 3-6.5 m, flow velocity increased rapidly at first and then increased slowly or tended to be stable. When the slope length was 12 m, flow velocity increased significantly. In general, with the increases of rainfall intensity, inhibition effect of gravel on the average flow velocity was enhanced. When rainfall intensity was 2.5 mm·min-1, the maximum reduction in the average flow velocity of earth-rock slope was 61.5% lower than that of earth slope. When rainfall intensity was less than 2.0 mm·min-1, sediment yield rate showed a trend of gradual decline or stable change, while that under the other rainfall intensities showed a trend of rapid decline and then fluctuated sharply. The greater the rainfall intensity, the more obvious the fluctuation. There was a significant positive correlation between the average sediment yield rate and runoff parameters, with the runoff rate showing the best fitting effect. Among the factors, slope length had the highest contribution to runoff velocity and rainfall erosion, which was 51.8% and 35.5%, respectively. This study can provide scientific basis for soil and water erosion control of engineering accumulation in Lou soil areas.


Asunto(s)
Sedimentos Geológicos , Lluvia , Suelo , Movimientos del Agua , China , Suelo/química , Ecosistema , Monitoreo del Ambiente/métodos , Gravitación , Ingeniería
7.
Sci Total Environ ; 919: 170717, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38331283

RESUMEN

Flow regulation in gravel-bed rivers impacts the hydrology, sediments and morphology, riparian vegetation, and vertical connectivity with the hyporheic zone. In this context, previous works have suggested that flood events may have riverine morphological and ecological benefits. In a Mediterranean-climate river system, we analyzed the impact of a 18-year return period flood on river morphology, riparian vegetation, fish aquatic habitat quality, and hyporheic exchange in a dam-regulated gravel-bed river, Serpis River (Spain). We collected pre- and post-flood riparian vegetation distributions and bathymetries, which were used to develop two-dimensional surface and three-dimensional subsurface numerical models to map surface and hyporheic hydraulics. Results show that the large flood removed the invasive giant reed from large areas, reshaped the in-channel morphology by forming new bars and pools, and enhanced the complexity of the flow field and the hydro-morphological diversity. The habitat availability for the endemic Eastern Iberian chub (Squalius valentinus) and invasive bleak (Alburnus alburnus) increased. Hyporheic exchange showed limited change under losing conditions, but noticeable under neutral ambient groundwater condition. This study corroborates the beneficial effects that flood events or high flow releases may have on regulated streams and the potential use of high flow pulse as a restoration tool.


Asunto(s)
Agua Subterránea , Ríos , Animales , Inundaciones , Ecosistema , España
8.
Environ Sci Pollut Res Int ; 31(8): 11716-11726, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38224434

RESUMEN

The formation of interflow is of great significance for the stability of mountain slopes and soil erosion. Hillsides are often covered with a certain amount of gravel, and research on interflow of slope land with different gravel ratios needs to be carried out. This article is based on indoor experiments and numerical models to study the formation law of interflow in hillside soil under different gravel coverage ratios. It was found that the interflow in the soil rapidly increased in the early stage and began to decrease after briefly reaching equilibrium. The formation of interflow is a complex process that is related to slope, soil characteristics, and rainfall intensity, but the correlation is not high when viewed separately. The lattice Boltzmann model can effectively simulate such problems and achieve high simulation accuracy. The [Formula: see text] of the simulated data and measured data ranged from 0.5217 to 0.7403, and [Formula: see text] of the simulated data and measured data ranged from 0.4051 to 0.5711.


Asunto(s)
Sedimentos Geológicos , Lluvia , Movimientos del Agua , Suelo , China
9.
Front Microbiol ; 14: 1225503, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38130947

RESUMEN

Gravel-mulched land in China suffers from poor natural resources and fragile ecological environment, posing a challenge to effective restoration of ecological function. Lonicera japonica, a traditional Chinese herb used for treating human diseases, is a highly adaptable and resilient plant species, can effectively improve the soil properties, and may have important implications for the ecology and economy of gravel-mulched land. A study was conducted in a gravel-mulched field to measure the impact of planting the L. japonica (including control (CK), 1-year, 2-year, and 4-year cultivation of plants) on (i) dynamic changes in soil nutrient and enzyme activity properties, and (ii) soil rhizosphere microbial community structure characteristics. We found that the concentration of soil organic carbon, available nitrogen, available phosphorus and available potassium in L. japonica soil after cultivation for 1-4 years increased by 11-409%. The urease, phosphatase and catalase activities were increased by 11-560%, with the highest nutrient concentration and enzyme activity in 4-year plants. The pH value gradually decreased after cultivation. The improved soil environments increased soil bacterial community diversity. Planting L. japonica significantly increased the bacterial ACE, Chao1 index, Simpson index, and Shannon-Wiener index. The Firmicutes, Proteobacteria and Bacteroidetes were observed in dominant phyla. The relative abundance of eight genera, including Streptococcus, Veillonella and Rothia, was significantly reduced by more than 1%. Taken together, these soil indicators suggest that planting L. japonica in the short term would be a cost-effective strategy to combat soil degradation in a gravel-mulched ecosystem.

10.
Ying Yong Sheng Tai Xue Bao ; 34(8): 2073-2081, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37681371

RESUMEN

Gravel (>2 mm) is one of the main parameters for estimating soil carbon pool. To assess the effects of gravel on soil bulk density (BD) and organic carbon density (SOCD) in Pinus massoniana plantations, we estimated the BD and SOCD at the 0-10, 10-20 and 20-40 cm soil depths of 131 plots under two different conditions, with and without removing gravel. The BD of each soil layer after removing gravel was 0.58-1.57, 0.60-1.67, and 0.59-1.75 g·cm-3, respectively, which was significantly lower than that before removing gravel. Gravel increased the BD by 6.5%-6.8%. The SOCD of each soil layer before removing gravel was 8.93-65.97, 7.63-59.08, and 8.79-94.53 t·hm-2, respectively, which was higher than that after removing gravel. Overall, by neglecting the effect of gravel, SOCD was overestimated by 4.9%-11.8%. As gravel content increased, the relative deviation in the estimated BD and SOCD among different methods increased. When the gravel content was higher than 20%, the estimated SOCD at soil layer of 0-40 cm showed a significant difference between neglecting gravel and removing gravel, with the former being 29.7%-47.4% higher than the latter. In conclusion, gravel markedly affected the estimations of BD and SOCD. It was recommended that SOCD should be estimated by the method that not only uses the BD after removing gravel but also considers gravel as a correction factor (especially when gravel content is above 20.0%) to avoid overestimation of soil carbon pool.


Asunto(s)
Carbono , Pinus , Suelo
11.
Front Microbiol ; 14: 1224195, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37547677

RESUMEN

Gravel mulch is an agricultural water conservation practice that has been widely used in the semi-arid region of northwest China, but its effectiveness is now lessening due to soil degradation caused by long-term gravel mulching. In this study, we report on a 6-year-long gravel mulch experiment conducted in the northwestern Loess Plateau to evaluate the impact of gravel mulch on soil physicochemical properties and microbial communities, with the objective of clarifying the causes of long-term gravel mulching-induced land degradation. After 6 years mulching, we found that gravel mulched soil contained significantly higher concentrations of total carbon and total organic carbon than non-mulched soil (control). Long-term gravel mulching significantly changed the soil microbial diversity and abundance distribution of bacterial and fungal communities. Notably, the relative abundance of Acidobacteria was significantly higher under gravel mulching than the control (no mulching), being significantly greater in the AG treatment (small-sized gravel, 2-5 mm) than all other treatments. Conversely, the relative abundance of Actinobacteria was significantly lower under gravel mulching than the control, being the lowest in the BG treatment (large-sized gravel, 40-60 mm). At the same time, the relative abundance of Bacteroidetes was significantly lower in AG yet higher in BG vis-à-vis the other treatments. Of the various factors examined, on a 6-year scale, the capture of dust by gravel mulch and altered carbon and nitrogen components in soil play major contributing roles in the compositional change of soil microorganisms. These results suggest that modified soil material input from gravel mulching may be the key factor leading to soil degradation. More long-term experimental studies at different sites are now needed to elucidate the mechanisms responsible for soil degradation under gravel mulching.

12.
J Environ Manage ; 345: 118544, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37442039

RESUMEN

In the Tibetan Plateau (TP) soil water and heat transfer process, soil organic carbon (SOC) and gravel content are considered as the most influential soil texture factors. However, the issues of underestimating SOC and neglecting gravel effect affected the simulation performance of CLM5.0 on soil moisture (SM) and soil temperature (ST). This paper proposed a new parameterization scheme, the organic carbon-gravel (OC-G) scheme, to simulate ST and SM from 1990 to 2018. The results showed that correlation between the simulated and observed ST or SM was higher, and the error was smaller, after the modification of the parameterization scheme. This improvement justifies the applicability of the scheme for soil hydrothermal simulations on the TP. The experiment described that ST and SM were more sensitive to changes in SOC content. And changes in gravel or SOC content had the "Same-Frequency" effect in the northeast and southeast TP. When the SOC and gravel content changed at the same time, the effects on ST and SM were a "cumulative" effect. The change directly affected the memory time of ST and SM in summer. Specifically, when the SOC content was increased, the memory time of SM increased in the northwest and decreased in the southeast. When gravel content was increased, the memory time of SM decreased in the northwest but increased in the southeast, but the memory time of ST remained largely unchanged. Changes to the abnormal duration may alter summer weather and climate in Eastern China.


Asunto(s)
Carbono , Suelo , Tibet , Carbono/análisis , Calor , Agua , China
13.
Sci Total Environ ; 893: 164834, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37327887

RESUMEN

Climate change threatens freshwater fish species due to predicted changes in thermal, sedimentary and hydrological properties of stream ecosystems. Gravel-spawning fish are particularly sensitive to such alterations as warming, higher inputs of fine sediment and low-flow all have potentially negative effects on the functionality of their reproductive habitat, the hyporheic zone. Multiple stressors can interact in synergistic and antagonistic manners, causing surprise-effects that cannot be predicted from the additive consideration of individual stressors. For obtaining reliable, yet realistic data on the climate change stressor effects warming (+3-4 °C), fine sediment (increase in <0.85 mm by 22 %) and low-flow (eightfold discharge-reduction), we constructed a unique large-scale outdoor-mesocosm facility consisting of 24 flumes to study individual and combined stressor responses in a fully-crossed, 3-way-replicated design. To acquire representative results reflecting individual susceptibilities of gravel-spawning fish species due to taxonomic affiliation or spawning seasonality, we studied hatching success and embryonic development in the three fish species brown trout (Salmo trutta L.), common nase (Chondrostoma nasus L.) and Danube salmon (Hucho hucho L.). Fine sediment had the most significant single negative effect on both hatching rates and embryonic development (-80 % in brown trout, -50 % in nase, -60 % in Danube salmon). When fine sediment was combined with one or both of the other stressors, we observed strongly synergistic stressor responses, being distinctly stronger in the two salmonid species than in the cyprinid nase. Danube salmon was most susceptible to synergistic effects due to warmer spring water temperatures exacerbating the fine sediment-induced hypoxia, hence leading to complete mortality of fish eggs. This study highlights that individual and multiple-stressor effects depend strongly on life-history traits of respective species and that climate change stressors have to be assessed in combination to obtain representative results due to the high level of synergisms and antagonisms detected in this study.


Asunto(s)
Ecosistema , Salmonidae , Animales , Cambio Climático , Agua Dulce , Trucha/fisiología , Ríos , Salmón , Desarrollo Embrionario
14.
Sci Total Environ ; 888: 164058, 2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37178849

RESUMEN

Plastic waste poses numerous risks to mountain river ecosystems due to their high biodiversity and specific physical characteristics. Here, we provide a baseline assessment for future evaluation of such risks in the Carpathians, one of the most biodiverse mountain ranges in East-Central Europe. We used high-resolution river network and mismanaged plastic waste (MPW) databases to map MPW along the 175,675 km of watercourses draining this ecoregion. We explored MPW levels as a function of altitude, stream order, river basin, country, and type of nature conservation in a given area. The Carpathian watercourses below 750 m a.s.l. (142,282 km, 81 % of the stream lengths) are identified as significantly affected by MPW. Most MPW hotspots (>409.7 t/yr/km2) occur along rivers in Romania (6568 km; 56.6 % of all hotspot lengths), Hungary (2679 km; 23.1 %), and Ukraine (1914 km; 16.5 %). The majority of the river sections flowing through the areas with negligible MPW (< 1 t/yr/km2) occur in Romania (31,855 km; 47.8 %), Slovakia (14,577 km; 21.9 %), and Ukraine (7492; 11.2 %). The Carpathian watercourses flowing through the areas protected at national level (3988 km; 2.3 % of all watercourses studied) have significantly higher MPW values (median = 7.7 t/yr/km2) than those protected at regional (51,800 km; 29.5 %) (median MPW = 1.25 t/yrkm2) and international levels (66 km; 0.04 %) (median MPW = 0 t/yr/km2). Rivers within the Black Sea basin (88.3 % of all studied watercourses) have significantly higher MPW (median = 5.1 t/yr/km2, 90th percentile = 381.1 t/yr/km2) than those within the Baltic Sea basin (median = 6.5 t/yr/km2, 90th percentile = 84.8 t/yr/km2) (11.1 % of all studied watercourses). Our study indicates the locations and extent of riverine MPW hotspots in the Carpathian Ecoregion, which can support future collaborations between scientists, engineers, governments, and citizens to better manage plastic pollution in this region.

15.
Microbiol Spectr ; 11(3): e0315022, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37139552

RESUMEN

Mulching is an important agricultural management tool for increasing watermelon productivity and land-use efficiency because it helps improve water use efficiency and reduce soil erosion. However, there is relatively little available information regarding the effects of long-term continuous monoculture farming on soil fungal communities and related fungal pathogens in arid and semiarid regions. In this study, we characterized the fungal communities of four treatment groups, including gravel-sand-mulched farmland, gravel-sand-mulched grassland, fallow gravel-sand-mulched grassland, and native grassland, using amplicon sequencing. Our results revealed that the soil fungal communities differed significantly between mulched farmland and mulched grassland as well as the fallow mulched grassland. Gravel-sand mulch significantly impaired the diversity and composition of soil fungal communities. Soil fungal communities were more sensitive to gravel-sand mulch in grassland than in other habitats. Long-term continuous monoculture (more than 10 years) led to decreased abundance of Fusarium species, which contains include agronomically important plant pathogens. In the gravel-mulched cropland, some Penicillium and Mortierella fungi were significantly enriched with increasing mulch duration, suggesting potential beneficial properties of those fungi that could be applied to disease control. We also found that long-term gravel mulching in continuous monoculture farming could potentially form disease-suppressive soils and alter soil microbial biodiversity and fertility. Our study provides insights into the exploration of novel agricultural management strategies along with continuous monoculture practice to control watermelon wilt disease by maintaining a more sustainable and healthier soil environment. IMPORTANCE Gravel-sand mulching is a traditional agricultural practice in arid and semiarid regions, providing a surface barrier for soil and water conservation. However, application of such practice in monocropping systems may lead to outbreaks of several devastating plant diseases, such as watermelon Fusarium wilt. Our results with amplicon sequencing suggest that soil fungal communities differ significantly between mulched farmland and mulched grassland and are more sensitive to gravel-sand mulch in grassland. Under continuous monoculture regimens, long-term gravel mulch is not necessarily detrimental and may result in decreased Fusarium abundance. However, some known beneficial soil fungi may be enriched in the gravel-mulch cropland as mulch duration increases. A possible explanation for the reduction in Fusarium abundance may be the formation of disease-suppressive soils. This study provides insight into the need to explore alternative strategies using beneficial microbes for sustainable watermelon wilt control in continuous monocropping system.


Asunto(s)
Citrullus , Fusarium , Suelo , Arena , Agricultura/métodos , Biodiversidad , Fusarium/genética , China , Microbiología del Suelo
16.
Ambio ; 52(7): 1184-1197, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37148419

RESUMEN

Infrastructure development cannot take place without gravel, which is scarce in the North American Arctic. Conditioning where development can occur, the commodity has become the target of Indigenous actors seeking to secure land and resource bases and their material futures, too. In Alaska, decades of litigation pitting Indigenous surface versus subsurface corporate landholders has contested gravel's legal location. In Canada, contrastingly, Inuvialuit land claims negotiators successfully secured access to granular resources. In both locales, legal processes have resulted in certain Indigenous actors' accumulation of geologic power. Rooted in the subterranean, this power enables them to transform the surface of the Earth. Contributing to research on geologic power and political geology and drawing on fieldwork and a review of court cases, policy documents and reports, this article critiques how gravel has become an Arctic resource lucrative to local communities rather than global markets and a key source of Indigenous political and economic agency. Going forward, struggles over Indigenous rights may concern securing ownership over not only the land base, but the land column.


Asunto(s)
Geología , Políticas , Regiones Árticas , Alaska , Canadá
17.
Oecologia ; 202(2): 251-259, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37258693

RESUMEN

The community stability is the main ability to resist and be resilient to climate changes. In a world of climate warming and melting glaciers, alpine gravel encroachment was occurring universally and threatening hillside grassland ecosystem. Gravel encroachment caused by climate warming and glacial melting may alter community structure and community stability in alpine meadow. Yet, the effects of climate warming-induced gravel encroachment on grassland communities are unknown. Here, a 1-year short-term field experiment was conducted to explore the early stage drive process of gravel encroachment on community structure and stability at four different gravel encroachment levels 0%, 30%, 60%, and 90% gravel coverage at an alpine meadow on the Qinghai Tibetan Plateau, by analyzing the changes of dominant species stability and species asynchrony to the simulated gravel encroachment processes. Gravel encroachment rapidly changed the species composition and species ranking of alpine meadow plant community in a short period of time. Specifically, community stability of alpine meadow decreased by 61.78-79.48%, which may be due to the reduced dominant species stability and species asynchrony. Species asynchrony and dominant species stability were reduced by 2.65-17.39% and 46.51-67.97%, respectively. The results of this study demonstrate that gravel encroachment presents a severe negative impact on community structure and stability of alpine meadow in the short term, the longer term and comprehensive study should be conducted to accurate prediction of global warming-induced indirect effects on alpine grassland ecosystems.


Asunto(s)
Ecosistema , Pradera , Suelo/química , Plantas , Cambio Climático , Tibet
18.
Sci Total Environ ; 883: 163603, 2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37105486

RESUMEN

Sedimentation in impoundments of run-of-river hydropower plants is an ongoing and progressing management issue for hydropower operators because of its consequences for e.g., the maintenance of flood protection and waterway parameters. Current practices in sediment management are often unsustainable, associated with high costs, and can pose risks for downstream biota (e.g. during flushing). The present study elaborated a conceptual model of a novel sediment management strategy for impounded river sections consisting of a current-state and deficit analysis, and the application of a novel sediment management practice, which was practically implemented at the study site at the Austrian Danube River. This novel practice consists of (i) local dredging of gravel at locations in the impoundment, which are problematic in terms of flood protection and waterway maintenance, and (ii) the re-deposition of dredged sediments by artificial placement of gravel structures. The present study included morphological analyses of the impounded section at the study site by applying the channel profile budget technique. The knowledge of the long-term morphological development served as a basis for the evaluation of the sediment management measures and for the elaboration of the conceptual model. The combination of the morphodynamic characteristics in the impoundment with the implementation of the novel sediment management practice helped to derive generalized statements for the potential implementation of the presented conceptual model in large rivers with similar impoundment characteristics. We further defined several aspects, which are related to sediment dynamics in impounded river sections, flood protection, waterway demands, and ecological criteria that require consideration for an efficient realization of the proposed conceptual model.

19.
Environ Sci Pollut Res Int ; 30(21): 60268-60281, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37017841

RESUMEN

It is of great significance to study the spatial differentiation of surface gravel in northern Tibet Plateau for regional ecological environment restoration. In this paper, the particle size and spatial position of the surface gravel are studied. On the basis of the impact factors of topography, vegetation, land use, meteorology, soil, social economy, etc., the quantitative attribution of the gravel particle size is studied in the geomorphological type areas of the northern Tibetan Plateau by using geographic detector and regression analysis. The experimental conclusions are as follows: Firstly, the explanatory power of each impact factor to gravel particle size and the coupling degree between factors are different in different geomorphological types. Among the impact factors, NDVI and land use types are the dominant factors that determine the spatial heterogeneity of gravel particle size. However, in extremely high mountain areas, the explanatory power of altitude factor gradually increases with the increase of topographic relief. Secondly, two-factor interaction is helpful to enhance the explanatory power of spatial heterogeneity of gravel particle size. Except for the interaction of altitude factor in the high relief but extremely high-altitude mountains, the interaction of NDVI and other important factors is mostly found in other regions. Among them, the interaction between NDVI and land use type is the most significant. Thirdly, the areas with high gravel particle size identified by the risk detector are mainly areas with high vegetation coverage and weak external erosion, such as shrubbery, wooded land, and high-coverage grassland. Therefore, the specific conditions of different regions should be fully considered in the study of the spatial heterogeneity of gravel size in the northern Tibetan Plateau.


Asunto(s)
Ambiente , Suelo , Tibet , Tamaño de la Partícula , Altitud , Ecosistema , China
20.
Urolithiasis ; 51(1): 52, 2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36929459

RESUMEN

To propose the suitable diameter of calculus debris produced during flexible ureteroscopy lithotripsy (fURL). A glass tube was used to simulate the stone excretion process during Furl. Different stone diameters (0.50-1.00 mm, 0.25-0.50 mm, and 0.10-0.25 mm) with three sizes of flexible ureteroscopy (fURS) (7.5Fr, 8.7Fr, and 9.9Fr) and ureteral access sheath (UAS) (12/14Fr) with or without negative pressure suction were employed in the experiment. The intraoperative calculi excretion (ICE) was recorded according to the stones discharged from the gap between fURS and UAS. The ICE raised significantly in thinner fURS and UAS due to the smaller Ratio of Endoscope-Sheath Diameter (RESD). The gravel size ≤ 0.25 mm was conducive to drainage with traditional UAS, while using fURS with negative-pressure UAS could significantly improve ICE. The gravel size ≤ 0.5 mm was conducive to expulsion. We clarify that ICE during ureteroscopy relates to RESD and negative pressure suction. The proper size of the stone fragment is critical in ensuring the expulsion during fURL, ≤ 0.25 mm in traditional UAS and ≤ 0.50 mm in negative-pressure UAS, respectively.


Asunto(s)
Cálculos Renales , Litotricia , Uréter , Cálculos Ureterales , Humanos , Ureteroscopía , Ureteroscopios , Litotricia/efectos adversos , Cálculos Ureterales/cirugía , Cálculos Renales/cirugía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA