Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 836
Filtrar
1.
Zhongguo Zhong Yao Za Zhi ; 49(16): 4338-4346, 2024 Aug.
Artículo en Chino | MEDLINE | ID: mdl-39307771

RESUMEN

This study aims to investigate the mechanism of ferroptosis mediated by the nuclear factor-E2-related factor 2(Nrf2)/solute carrier family 7 member 11(SLC7A11, also known as xCT)/glutathione peroxidase 4(GPX4) signaling pathway in radiationinduced pulmonary fibrosis and the intervention effect of Angelicae Sinensis Radix(ASR) and Astragali Radix(AR) ultrafiltration extract. Fifty Wistar rats were randomly divided into five groups, with 10 rats in each group. Except for the blank group without radiation, the rats in each group were anesthetized and subjected to a single local chest irradiation of 40 Gy X-rays once to establish a rat model of radiation-induced pulmonary fibrosis. After radiation, the rats in the intervention groups were orally administered with ASR-AR ultrafiltration extract at doses of 0. 12, 0. 24, and 0. 48 g·kg~(-1), respectively, once a day for 30 days. After 30 days of continuous administration, the levels of oxidative stress indicators superoxide dismutase(SOD) activity, reduced glutathione(GSH),malondialdehyde(MDA), and ferrous ion(Fe~(2+)) in lung tissues of each group were detected by colorimetry. Immunofluorescence was used to detect reactive oxygen species(ROS) fluorescence expression in lung tissues. Hematoxylin-eosin(HE) and Masson staining were performed to observe pathological changes in lung tissues. Immunohistochemistry and Western blot were used to detect the expression levels of Nrf2/xCT/GPX4 signaling pathway and fibrotic proteins in lung tissues. The results showed that compared with the results in the blank group, the levels of Fe~(2+) and MDA in the model group increased, while SOD activity and GSH levels decreased,and ROS levels increased. HE and Masson staining results showed that the structure of lung tissue was seriously damaged, the pulmonary interstitium was significantly proliferated, the alveoli collapsed and consolidated severely, and there were more inflammatory cell aggregates and collagen fiber deposits. Transmission electron microscopy showed that the degree of lung tissue damage in the model group was relatively high, with increased, smaller, and disorganized damaged mitochondria, irregular morphology, shallow matrix,most mitochondria ruptured and shortened, mildly expanded, some mitochondria with increased electron density of the matrix, partial mitochondrial outer membrane rupture, and characteristic changes of ferroptosis-specific mitochondria. Immunohistochemistry showed that the expression of transferrin receptor protein 1(TFR1) in lung tissues was significantly increased, while the expression of GPX4,ferritin heavy chain 1(FTH1), Nrf2, and xCT was significantly decreased. Western blot showed that the expression of α-smooth muscle actin(α-SMA) and collagen Ⅰ protein increased. Compared with the model group, the intervention group with ASR-AR ultrafiltration extract significantly improved lipid peroxidation and antioxidant-related indicators, decreased Fe~(2+) levels, alleviated fibrosis, and decreased the expression of TFR1, α-SMA, and collagen Ⅰ proteins in lung tissues, while increased the expression of GPX4, FTH1, Nrf2, and xCT proteins. In summary, ASR-AR ultrafiltration extract has an ameliorative effect on radiation-induced pulmonary fibrosis, and its mechanism may involve the inhibition of ferroptosis by regulating the Nrf2/xCT/GPX4 signaling pathway.


Asunto(s)
Angelica sinensis , Medicamentos Herbarios Chinos , Ferroptosis , Factor 2 Relacionado con NF-E2 , Fosfolípido Hidroperóxido Glutatión Peroxidasa , Fibrosis Pulmonar , Ratas Wistar , Transducción de Señal , Animales , Ratas , Ferroptosis/efectos de los fármacos , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/genética , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Fosfolípido Hidroperóxido Glutatión Peroxidasa/genética , Masculino , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/administración & dosificación , Angelica sinensis/química , Astragalus propinquus/química , Planta del Astrágalo/química , Estrés Oxidativo/efectos de los fármacos
2.
Respir Physiol Neurobiol ; 331: 104348, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39260757

RESUMEN

Asthma is a lung condition characterized by impaired respiratory function and an apparent infiltration of inflammatory cells. Chalcones are substances that have attracted considerable interest in the disciplines of pharmaceutical chemistry and drug discovery due to their diverse biochemical processes, such as antioxidant, anti-inflammatory, anticancer, antibacterial, and others, but whether they can be used in asthma treatment has yet to be investigated. This study aimed to investigate the immunomodulatory effect of 4 hydroxychalcone (4-HC) against allergic asthma in mice. In this research, we investigated how 4-HC affected asthmatic behavior, leukocyte infiltration, histopathological alterations, oxidative stress, immunoglobulin E (IgE) production, and airway inflammation. Moreover, ELISA and immunohistochemistry (IHC) were used to measure the expression of Nrf2 and GPx4. 4-HC treatment significantly decreased lung oxidative stress, inflammatory cell infiltration, and IgE levels. According to our findings, we imply that 4-HC may be utilized as an anti-asthmatic agent through the upregulation of Nrf2/GPx4 signaling pathway.

3.
Biomed Eng Online ; 23(1): 93, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39261942

RESUMEN

Radiation-induced brain injury (RBI) presents a significant challenge for patients undergoing radiation therapy for head, neck, and intracranial tumors. This review aims to elucidate the role of ferroptosis in RBI and its therapeutic implications. Specifically, we explore how ferroptosis can enhance the sensitivity of tumor cells to radiation while also examining strategies to mitigate radiation-induced damage to normal brain tissues. By investigating the mechanisms through which radiation increases cellular reactive oxygen species (ROS) and initiates ferroptosis, we aim to develop targeted therapeutic strategies that maximize treatment efficacy and minimize neurotoxicity. The review highlights key regulatory factors in the ferroptosis pathway, including glutathione peroxidase 4 (GPX4), cystine/glutamate antiporter system Xc- (System Xc-), nuclear factor erythroid 2-related factor 2 (NRF2), Acyl-CoA synthetase long-chain family member 4 (ACSL4), and others, and their interactions in the context of RBI. Furthermore, we discuss the clinical implications of modulating ferroptosis in radiation therapy, emphasizing the potential for selective induction of ferroptosis in tumor cells and inhibition in healthy cells. The development of advanced diagnostic tools and therapeutic strategies targeting ferroptosis offers a promising avenue for enhancing the safety and efficacy of radiation therapy, underscoring the need for further research in this burgeoning field.


Asunto(s)
Lesiones Encefálicas , Ferroptosis , Traumatismos por Radiación , Humanos , Lesiones Encefálicas/metabolismo , Traumatismos por Radiación/metabolismo , Animales
4.
Cell Signal ; 124: 111381, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39243918

RESUMEN

Pancreatic cancer (PC) is highly malignancy with poor survival. Ferroptosis offers a novel therapeutic target for cancer treatment and glutathione peroxidase 4 (GPX4) shields tumor cells from ferroptosis damage. Although Sterol regulatory element-binding protein 1 (SREBP1) has been implicated in the development of pancreatic cancer, its underlying mechanisms remain unclear. This research aims to explore the role of SREBP1 in ferroptosis by using its inhibitor Fatostatin. In this study, Fatostatin was found to inhibit the proliferation and clonogenicity of pancreatic cancer cell lines. This was accompanied by a reduction in intracellular lipid synthesis, increased iron accumulation, elevated levels of reactive oxygen species (ROS), and accumulation of malondialdehyde (MDA). The JASPAR database shows that there is a binding site of the SREBP1 on the promoter region of GPX4. What's more, it was verified that SREBP1 can transcriptionally regulate GPX4 by CHIP. In vivo experiments further revealed that Fatostatin could suppress the growth of subcutaneous tumors in nude mice. In conclusion, our study suggests that Fatostatin may inhibit pancreatic cancer cell proliferation by inducing ferroptosis through the SREBP1/GPX4 pathway. These findings shed light on the therapeutic potential of Fatostatin and lay the groundwork for future investigations into its mechanism of action in pancreatic cancer.

5.
FASEB J ; 38(18): e70062, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-39305125

RESUMEN

Polycystic ovary syndrome (PCOS) is associated with impaired adipose tissue physiology. Elevated brown adipose tissue (BAT) mass or activity has shown potential in the treatment of PCOS. In this study, we aimed to investigate whether BAT-derived exosomes (BAT-Exos), as potential biomarkers of BAT activity, exert similar benefits as BAT in the treatment of PCOS. PCOS was induced in female C57BL/6J mice orally administered 1 mg/kg of letrozole for 21 days. Subsequently, the animals underwent transplantation with BAT or administered BAT-Exos (200 µg) isolated from young healthy mice via the tail vein; healthy female mice were used as controls. The results indicate that BAT-Exos treatment significantly reduced body weight and improved insulin resistance in PCOS mice. In addition, BAT-Exos improved ovulation function by reversing the acyclicity of the estrous cycle, decreasing circulating luteinizing hormone and testosterone, recovering ovarian performance, and improving oocyte quality, leading to a higher pregnancy rate and litter size. Furthermore, western blotting revealed reduced expression of signal transducer and activator of transcription 3 (STAT3) and increased expression of glutathione peroxidase 4 (GPX4) in the ovaries of mice in the BAT-Exos group. To further explore the role of the STAT3/GPX4 signaling pathway in PCOS mice, we treated the mice with an intraperitoneal injection of 5 mg/kg stattic, a STAT3 inhibitor. Consistent with BAT-Exos treatment, the administration of stattic rescued letrozole-induced PCOS phenotypes. These findings suggest that BAT-Exos treatment might be a potential therapeutic strategy for PCOS and that the STAT3/GPX4 signaling pathway is a critical therapeutic target for PCOS.


Asunto(s)
Tejido Adiposo Pardo , Exosomas , Ratones Endogámicos C57BL , Fosfolípido Hidroperóxido Glutatión Peroxidasa , Síndrome del Ovario Poliquístico , Factor de Transcripción STAT3 , Transducción de Señal , Animales , Síndrome del Ovario Poliquístico/metabolismo , Síndrome del Ovario Poliquístico/terapia , Femenino , Ratones , Factor de Transcripción STAT3/metabolismo , Exosomas/metabolismo , Tejido Adiposo Pardo/metabolismo , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Letrozol/farmacología , Resistencia a la Insulina , Ovario/metabolismo
6.
Redox Biol ; 76: 103350, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39265497

RESUMEN

BRCA1 is one of the most frequently-mutated tumor suppressor genes in ovarian and breast cancers. Loss of BRCA1 triggers homologous recombination (HR) repair deficiency, consequently leading to genomic instability and PARP inhibitors (PARPi)-associated synthetic lethality. Although, the roles of BRCA1 in DNA repair and replication have been extensively investigated, its tumor suppressive functions beyond genome safeguard remain poorly understood. Here, we report that BRCA1 promotes ferroptosis susceptibility through catalyzing K6-linked polyubiquitination of GPX4 and subsequently accelerating GPX4 degradation. Depletion of BRCA1 induces ferroptosis resistance in ovarian cancer cells due to elevated GPX4 protein, and silence of GPX4 significantly suppresses the growth of BRCA1-deficient ovarian cancer xenografts. Importantly, we found that PARPi triggers ferroptosis in ovarian cancer cells, inhibition of GPX4 markedly increase PARPi-induced ferroptosis in BRCA1-deficient ovarian cancer cells. Combined treatment of GPX4 inhibitor and PARPi produces synergistic anti-tumor efficacy in BRCA1-deficient ovarian cancer cells, patient derived organoid (PDO) and xenografts. Thus, our study uncovers a novel mechanism via which BRCA1 exerts tumor suppressive function through regulating ferroptosis, and demonstrates the potential of GPX4 as a therapeutic target for BRCA1-mutant cancers.

7.
Front Pharmacol ; 15: 1431846, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39221144

RESUMEN

Background: Keloid is a fibroproliferative disease with unsatisfactory therapeutic effects and a high recurrence rate. exosomes produced by adipose-derived mesenchymal stem cells (ADSC-Exos) have attracted significant interest due to their ability to treat fibrosis. However, the molecular mechanisms of ADSC-Exos in keloids remain inconclusive. Objective: Our study revealed the relationship between ferroptosis and fibrosis in keloids. Subsequently, this study aimed to explore further the anti-fibrotic effect of ADSC-Exos on keloids through ferroptosis and the potential underlying mechanisms. Methods: To investigate the impact of ferroptosis on keloid fibrosis, Erastin and ferrostatin-1 (fer-1) were utilized to treat keloid fibroblast. Keloid keloids treated with Erastin and fer-1 were cocultured with ADSC-Exos to validate the impact of ferroptosis on the effect of ADSC-Exos on keloid anti-ferrotic protein, peroxidase 4 (GPX4) and anti-fibrotic effects in vivo and in vitro by Western blot, as well as variations in iron metabolite expression, malondialdehyde (MDA), liposomal peroxidation (LPO) and glutathione (GSH) were analyzed. The effect of solute carrier family 7-member 11 (SLC7A11) silencing on ADSC-Exo-treated keloid fibroblast was investigated. Results: Iron metabolite dysregulation was validated in keloids. Fibrosis progression is enhanced by Erastin-induced ferroptosis. The anti-fibrotic effects of ADSC-Exos and fer-1 are related to their ability to prevent iron metabolism. ADSC-Exos effectively suppressed keloid fibrosis progression and increased GSH and GPX4 gene expression. Additionally, the use of Erastin limits the effect of ADSC-Exos in keloids. Furthermore, the effect of ADSC-Exos on keloids was associated with SLC7A11-GPX4 signaling pathway. Conclusion: We demonstrated a new potential mechanism by which anti-ferroptosis inhibits the progression of keloid fibrosis and identified an ADSC-Exo-based keloid therapeutic strategy. Resisting the occurrence of ferroptosis and the existence of the SLC7A11-GPX4 signaling pathway might serve as a target for ADSC-Exos.

8.
Artículo en Inglés | MEDLINE | ID: mdl-39238394

RESUMEN

BACKGROUND: Colon cancer poses a significant threat to the lives of several patients, impacting their quality of life, thus necessitating its urgent treatment. Lapatinib, a new generation of targeted anti-tumor drugs for clinical application, has yet to be studied for its molecular mechanisms in treating colon cancer. OBJECTIVES: This study aimed to uncover the underlying molecular mechanisms through which lapatinib exerts its therapeutic effects in colon cancer treatment. METHODS: We accessed pertinent data on patients with colon cancer from the Cancer Genome Atlas (TCGA) database and performed bioinformatics analysis to derive valuable insights. The cell counting kit-8 (CCK8) assay was employed to assess whether lapatinib has a potential inhibitory effect on the growth and proliferation of HT- 29 cells. Additionally, we employed western blot and real-time quantitative polymerase chain reaction methods to investigate whether lapatinib regulates the expression of the ferroptosis-associated protein GPX4 in HT-29 cells. Furthermore, we utilized specific assay kits to measure the levels of reactive oxygen species (ROS) and malondialdehyde in HT-29 cells treated with lapatinib, aiming to elucidate the precise pattern of cell damage induced by this compound. RESULTS: GPX4 exhibited high expression levels in tissues from patients with colon cancer and was significantly associated with patient prognosis and diagnosis. Lapatinib inhibited the growth and proliferation of the colon cancer cell line HT-29. Additionally, lapatinib suppressed the expression of GPX4 in HT-29 cells, while the ferroptosis inhibitor ferrostatin-1 (Fer-1) partially restored its expression. Lapatinib induced an increase in intracellular ROS levels and malondialdehyde content in HT-29 cells, with Fer-1 partially restoring these levels. CONCLUSION: Our findings demonstrated that lapatinib could effectively suppress the mRNA and protein expression of GPX4 in colon cancer cells, which elevates intracellular levels of ROS and malondialdehyde, ultimately inducing ferroptosis in these cells. This mechanism underscores the potential of lapatinib as a therapeutic strategy for targeting tumors.

9.
Arch Dermatol Res ; 316(8): 604, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39240413

RESUMEN

BACKGROUND: Abnormal biological behaviour of keratinocytes (KCs) is a critical pathophysiological manifestation of psoriasis. Ferroptosis is programmed cell death induced by the accumulation of lipid reactive oxygen species (ROS) in the presence of increased intracellular iron ions or inhibition of GPX4. OBJECTIVES: The purpose of this study was to investigate the effects of ferroptosis on the biological behaviour of Keratinocytes (KCs) in psoriasis vulgaris and its possible regulatory mechanisms in clinical samples, cells, and mouse models. METHODS: We first examined the differences in the expression of GPX4 and 4-HNE between psoriasis and normal human lesions. And detected KRT6, FLG, and inflammatory cytokines after inducing ferroptosis in animal and cell models by RT-qPCR, Western blot, immunohistochemistry, and flow cytometry. RESULTS: We found that GPX4 was decreased and that the oxidation product 4-hydroxy-2-nonenal (HNE) was increased in the skin lesions of patients with psoriasis vulgaris. The expression level of GPX4 correlates with the severity of skin lesions. Moreover, inducing ferroptosis promoted the expression of FLG and reduced the expression of KRT6 and inflammatory cytokines in vitro, and alleviated the phenotype of skin lesions in vivo. LIMITATIONS: Our study has limitations, notably small sample size. Larger clinical trials are necessary to investigate the association between ferroptosis and disease progression further. More research is necessary to explore how the ferroptosis inducer RSL3 regulates the abnormal biological behaviour of KCs at both cellular and animal levels and establish ferroptosis inhibitors as controls. CONCLUSIONS: This study confirms the existence of ferroptosis in psoriatic lesions, which may be inversely correlated with disease severity. The ferroptosis inducer RSL3 ameliorated psoriatic symptoms by improving the abnormal biological behaviour of KCs.


Asunto(s)
Modelos Animales de Enfermedad , Ferroptosis , Queratinocitos , Fosfolípido Hidroperóxido Glutatión Peroxidasa , Psoriasis , Psoriasis/patología , Psoriasis/metabolismo , Psoriasis/inmunología , Ferroptosis/fisiología , Queratinocitos/metabolismo , Queratinocitos/patología , Humanos , Animales , Ratones , Proyectos Piloto , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Fosfolípido Hidroperóxido Glutatión Peroxidasa/genética , Aldehídos/metabolismo , Femenino , Masculino , Adulto , Queratina-6/metabolismo , Citocinas/metabolismo , Piel/patología , Piel/metabolismo , Piel/inmunología , Persona de Mediana Edad , Resorcinoles/farmacología , Especies Reactivas de Oxígeno/metabolismo , Carbolinas
10.
Small ; : e2403165, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39246173

RESUMEN

The development of small molecule photosensitizers based on iridium complex is limited by the mismatch between therapeutic effect and systemic toxicity, as well as the incomplete understanding of the molecular mechanism underlying cell death induction. Herein, a small molecule iridium complex IrC with high photocytotoxicity is synthesized, with half maximal inhibitory concentration as low as 91 nm, demonstrating excellent anti-tumor, relief of splenomegaly, and negligible side effects. Starting from the factors of effective photosensitizers, the in-depth theoretical analysis on photon absorption efficiency, energy transfer level matching, and properties of the triplet excited state of IrC is conducted. This also elucidates the feasibility of generating the high singlet oxygen quantum yield. In addition, the death mechanism induced by IrC is focused, innovatively utilizing GPX4-overexpression and GPX4-knockout cells via CRISPR/Cas9 technique to comprehensively verify ferroptosis and its further molecular mechanism. The generation of ROS mediated by IrC, along with the direct inhibition of GPX4 and glutathione, synergistically increased cellular oxidative stress and the level of lipid peroxidation. This study provides an effective approach for small molecule complexes to induce GPX4-dependent ferroptosis at low-dose photodynamic therapy.

11.
Brain Res Bull ; : 111065, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39243947

RESUMEN

Ferroptosis is a type of cell death that depends on iron and is driven by lipid peroxidation, playing a crucial role in neuronal death during stroke. A central element in this process is the inactivation of glutathione peroxidase 4 (GPx4), an antioxidant enzyme that helps maintain redox balance by reducing lipid hydroperoxides. This review examines the critical function of GPx4 in controlling neuronal ferroptosis following ischemic and hemorrhagic stroke. We explore the mechanisms through which GPx4 becomes inactivated in various stroke subtypes. In ischemic strokes, excess glutamate depletes glutathione (GSH) and products of hemoglobin breakdown overwhelm GPx4. Studies using genetic models with GPx4 deficiency underscore its vital role in maintaining neuronal survival and function. We also consider new therapeutic approaches to enhance GPx4 activity, including novel small molecule activators, adjustments in GSH metabolism, and selenium supplementation. Additionally, we outline the potential benefits of combining these GPx4-focused strategies with other anti-ferroptotic methods like iron chelation and lipoxygenase inhibition for enhanced neuroprotection. Furthermore, we highlight the significance of understanding the timing of GPx4 inactivation during stroke progression to design effective therapeutic interventions.

12.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(8): 1537-1544, 2024 Aug 20.
Artículo en Chino | MEDLINE | ID: mdl-39276049

RESUMEN

OBJECTIVE: To investigate the effect of sanguinarine (SAN) on proliferation and ferroptosis of colorectal cancer cells. METHODS: SW620 and HCT-116 cells treated with different concentrations of SAN were examined for cell viability changes using CCK8 assay to determine the IC50 of SAN in the two cells. The inhibitory effects of SAN on proliferation, invasion and migration of the cells were evaluated using colony-forming assay and Transwell assays. ROS production in the treated cells was analyzed with flow cytometry, and lipid peroxide production was assessed by detecting malondialdehyde (MDA) level. Glutathione (GSH) levels in the cells were detected, and Western blotting was used to detect the expressions of ferroptosis-related proteins STUB1 and GPX4. RESULTS: SAN significantly inhibited the proliferation, invasion and migration of SW620 and HCT-116 cells. SAN treatment significantly promoted ROS production, increased intracellular MDA level, and lowered GSH level in the two cells (P<0.05). Western blotting showed that SAN significantly upregulated the expression of STUB1 and down-regulated the expression of its downstream protein GPX4 (P<0.05). CONCLUSION: SAN induces ferroptosis in colorectal cancer cells by regulating STUB1/GPX4, which may serve as a new therapeutic target for colorectal cancer.


Asunto(s)
Benzofenantridinas , Proliferación Celular , Neoplasias Colorrectales , Ferroptosis , Isoquinolinas , Fosfolípido Hidroperóxido Glutatión Peroxidasa , Humanos , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/genética , Ferroptosis/efectos de los fármacos , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Proliferación Celular/efectos de los fármacos , Isoquinolinas/farmacología , Línea Celular Tumoral , Benzofenantridinas/farmacología , Especies Reactivas de Oxígeno/metabolismo , Regulación hacia Abajo , Células HCT116 , Regulación hacia Arriba/efectos de los fármacos , Movimiento Celular/efectos de los fármacos
13.
Int Immunopharmacol ; 142(Pt A): 113107, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39276458

RESUMEN

Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide. It poses an enormous socioeconomic burden and is a serious public health threat globally due to its poor prognosis. Ferroptosis is a newly identified non-apoptotic form of cell death characterized by lipid peroxidation, iron accumulation, and reactive oxygen species (ROS) generation. However, tumor cells have evolved diverse mechanisms to evade ferroptosis, conferring resistance to drugs. Sorafenib, a first-line therapy for advanced HCC, triggers ferroptosis by selectively targeting solute carrier family 7 member 11 (SLC7A11) to deplete glutathione and inhibit glutathione peroxidase 4 (GPX4), thereby effectively eliminating tumor cells. However, sorafenib resistance has been widely reported, and the precise mechanisms underlying sorafenib drug resistance remain unclear. The minichromosome maintenance (MCM) protein family contains 10 members with vital roles in DNA replication and cell cycle progression. MCM4, a member of the MCM protein family, might be a potential biomarker in pan-cancer analysis. The present study found that MCM4 was upregulated in liver cancer using bioinformatics analysis and sorafenib-treated HCC cells. Moreover, MCM4 might be regarded as a prognostic biomarker for HCC. Further experiments revealed that MCM4-inhibition enhanced the efficacy of sorafenib through elevation of ferroptosis both in vitro and in vivo. Mechanistically, MCM4 potentiates sorafenib-induced ferroptosis evasion in HCC by promoting nuclear factor erythroid 2-related factor 2 (Nrf2) signaling activation. However, no direct interactions were found between Nrf2 and MCM4. Overall, these findings suggest a potential therapeutic strategy for HCC by targeting MCM4 inhibition.

14.
Artículo en Inglés | MEDLINE | ID: mdl-39285673

RESUMEN

BACKGROUND AND AIM: Selenium, an essential micronutrient for humans, has been shown to be protective against ulcerative colitis (UC), but the exact mechanism remains unclear. The role of selenium, protecting against ferroptosis of intestinal epithelial cells (IECs) in colitis, was investigated in this current study. METHODS: Serum selenium level and ferroptosis-related gene expression in the colonic mucosa were measured in UC patients and healthy controls. The effects of sodium selenite supplementation on experimental colitis were investigated in dextran sulfate sodium (DSS)-treated mice. The influence of sodium selenite on IEC ferroptosis was evaluated through assessing cell death rate, intracellular ferrous iron content, lipid reactive oxygen species level, and mitochondrial membrane damage of DSS-treated Caco-2 cells. Moreover, glutathione peroxidase 4 (GPX4) and acyl-CoA synthetase long-chain family member 4, ferroptosis-related genes, were detected in Caco-2 cells and mouse intestines. RESULTS: Serum selenium was decreased in UC patients in comparison with healthy individuals. Additionally, serum selenium level was negatively correlated with disease activity and was associated with clinical inflammation and nutrition indicators. The expression of GPX4 in the mucosa of UC was positively correlated with serum selenium level. The in vivo experiments showed that selenium treatment ameliorated DSS-induced colitis and inhibited ferroptosis in IECs. The in vitro results suggested that selenium supplementation inhibited DSS-induced ferroptosis in Caco-2 cells. GPX4 was upregulated after selenium supplementation both in vivo and in vitro. CONCLUSIONS: Serum selenium level was associated with IEC ferroptosis in UC patients. Selenium supplementation alleviates DSS-induced colitis and inhibits ferroptosis in IECs by upregulating the expression of GPX4.

15.
ACS Nano ; 18(37): 25795-25812, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39226614

RESUMEN

The activation of cellular ferroptosis is promising in tumor therapy. However, ferroptosis is parallelly inhibited by antiferroptotic substances, including glutathione peroxidase 4 (GPX4), dihydroorotate dehydrogenase (DHODH), and ferroptosis suppressor protein 1 (FSP1). Thus, it is highly desirable, yet challenging, to simultaneously suppress these three antiferroptotic substances for activating ferroptosis. Here, we rationally designed a hollow iron-doped SiO2-based nanozyme (FeSHS) loaded with brequinar (BQR) and lificiguat (YC-1), named FeSHS/BQR/YC-1-PEG, for tumor ferroptosis activation. FeSHS were developed through the continuous etching of SiO2 nanoparticles by iron ions, which exhibit pH/glutathione-responsive biodegradability, along with mimicking the activities of peroxidase, glutathione oxidase, and NAD(P)H oxidase. Specifically, glutathione depletion and NAD(P)H oxidation by FeSHS will suppress the expression of GPX4 and inhibit FSP1 by disrupting the NAD(P)H/FSP1/ubiquinone axis. In addition, the released BQR can suppress the expression of DHODH. Meanwhile, YC-1 is able to increase the cellular polyunsaturated fatty acids (PUFAs) by destroying the HIF-1α/lipid droplet axis. The elevation of levels of iron and PUFAs while simultaneously disrupting the GPX4/DHODH/FSP1 inhibitory pathways by our designed nanoplatform displayed high therapeutic efficacy both in vitro and in vivo. This work elucidates rationally designing smart nanoplatforms for ferroptosis activation and future tumor treatments.


Asunto(s)
Neoplasias de la Mama , Ferroptosis , Hierro , Dióxido de Silicio , Dióxido de Silicio/química , Ferroptosis/efectos de los fármacos , Humanos , Animales , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Ratones , Hierro/química , Hierro/metabolismo , Femenino , Antineoplásicos/farmacología , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Ratones Endogámicos BALB C , Ensayos de Selección de Medicamentos Antitumorales , Nanopartículas/química
16.
J Mol Histol ; 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39261364

RESUMEN

Methyltransferase-like 3 (METTL3) is extensively reported to be involved in organ fibrosis. Ovarian fibrosis is a main characteristic of polycystic ovary syndrome (PCOS). However, the reaction mechanism of METTL3 in PCOS is poorly investigated. This paper was intended to reveal the role and the mechanism of METTL3 in PCOS. Animal and cell models of PCOS were induced by dehydroepiandrosterone (DHEA). H&E staining was performed to detect the pathological alterations in ovary tissues. Masson staining, immunofluorescence, along with western blot measured fibrosis both in vitro and in vivo. To evaluate estrous cycle, vaginal smear was performed. Lipid peroxidation and ferroptosis were evaluated by MDA assay kits, GSH assay kits, immunohistochemistry, Prussian blue staining and western blot. qRT-PCR and western blot were adopted to estimate METTL3 and GPX4 expression. The m6A and hormone secretion levels were respectively assessed by m6A RNA Methylation Quantitative Kit and corresponding kits. The interaction between METTL3 and GPX4 was testified by immunoprecipitation. The fibrosis and ferroptosis were aggravated and m6A and METTL3 expression were increased in ovarian tissues of DHEA-induced PCOS mice. METTL3 silencing alleviated pathological changes, affected hormone secretion level, and repressed fibrosis, lipid peroxidation and ferroptosis in the ovarian tissues of PCOS mice. In vitro, DHEA stimulation increased m6A and METTL3 expression and induced ferroptosis and fibrosis. METTL3 knockdown promoted GPX4 expression in DHEA-induced granulosa cells by m6A modification and restrained DHEA-induced fibrosis, lipid peroxidation and ferroptosis in granulosa cells via elevating GPX4. METTL3 silence inhibited ovarian fibrosis in PCOS, which was mediated through suppressing ferroptosis by upregulating GPX4 in m6A-dependent manner.

17.
Brain Res ; 1845: 149219, 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39222871

RESUMEN

BACKGROUND: Neuronal cell ferroptosis following intracerebral hemorrhage (ICH) is a crucial factor contributing to the poor prognosis of ICH patients. The objective of this investigation was to investigate the molecular mechanism of IL-1ß-induced mesenchymal stem cell-derived exosomes (IL-1ß-Exo) in mitigating ICH injury. METHODS: Exo and IL-1ß-Exo were obtained and identified. Hemin was used to induce an ICH model, and an ICH mouse model was established using Collagenase. Exo and IL-1ß-Exo interventions were conducted to study their impact and molecular mechanisms on neuronal ferroptosis in ICH. RESULTS: Vesicular structure Exo and IL-1ß-Exo, with an average particle size of 141.7 ± 38.8 nm and 138.8 ± 37.5 nm, respectively, showed high expression of CD63, CD9 and CD81 could be taken up by SH-SY5Y cells. These Exos reversed Hemin-induced abnormalities in neuronal cells, including elevated iron, Fe2+, ROS, MDA, 4-HNE, and decreased SOD, GSH-Px, GSH, FTH1 levels, and cell vitality. The RNA content of IL-1ß-Exo was linked to its ability to reduce iron accumulation. There was an interaction between HSPA5 and GPX4. Exo and IL-1ß-Exo reversed Hemin-induced downregulation of HSPA5 and GPX4 expression. Overexpression and knockdown of HSPA5 respectively potentiate or counteract the impacts of Exo and IL-1ß-Exo. IL-1ß-Exo was more effective than Exo. These findings were further validated in ICH mice. Moreover, both Exo and IL-1ß-Exo reduced the modified neurological severity score and brain water content, as well as alleviated pathological damage in ICH mice. CONCLUSION: IL-1ß-Exo inhibited neuronal ferroptosis in ICH through the HSPA5/GPX4 axis.

18.
Carcinogenesis ; 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39234990

RESUMEN

Adenocarcinoma of the esophagogastric junction (AEG) has received widespread attention because of its increasing incidence. However, the molecular mechanism underlying tumor progression remains unclear. Here, we report that the downregulation of Ubiquitin-specific peptidase 49 (USP49) promotes ferroptosis in OE33 and OE19 cells, thereby inhibiting cell proliferation in vitro and in vivo, whereas the overexpression of USP49 had the opposite effect. In addition, USP49 downregulation promoted AEG cell radiotherapy sensitivity. Moreover, overexpression of Glutathione PeroXidase 4 (GPX4) reversed the ferroptosis and proliferation inhibition induced by USP49 knockdown. Mechanistically, USP49 deubiquitinates and stabilizes Shc SH2-domain binding protein 1 (SHCBP1), subsequently facilitating the entry of ß-catenin into the nucleus to enhance GPX4 transcriptional expression. Finally, high USP49 expression was correlated with shorter overall survival in patients with AEG. In summary, our findings identify USP49 as a novel regulator of ferroptosis in AEG cells, indicating that USP49 may be a potential therapeutic target in AEG.

19.
Bioorg Chem ; 152: 107733, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39180865

RESUMEN

A series of organoselenium compounds based on the hybridization of artesunate (ART) scaffolds and Se functionalities (-SeCN and -SeCF3) were synthesized. The redox properties of artesunate-SeCN and artesunate-SeCF3 derivatives were conducted by 2, 2-didiphenyl-1-picrylhydrazyl (DPPH), and the results showed that compounds 2c, 2f and 3e have a good free radical scavenging activity. Their cytotoxicity was evaluated against four types of cancer cell lines, SW480 (human colon adenocarcinoma cells), HCT116 (human colorectal adenocarcinoma cells), HepG2 (human hepatocellular carcinoma cells), MCF-7 (human breast cancer cells). The MTT results showed that compared with ART and 5-FU, compound 2c exhibited potent in vitro antiproliferative activity in SW480, HCT116, and MCF-7 cancer cell lines, and was thus chose for further antitumor mechanism investigation. The antitumor mechanism study revealed that compound 2c induced ferroptosis in HCT116 cells by inhibiting the expression of GPX4 protein, accompanying by the up-regulation of intracellular ROS levels. Mitochondria in HCT116 cells exhibit depolarization of mitochondrial membrane potential (MMP) and ultrastructural changes in morphology, which indicated that 2c resulted in mitochondrial dysfunction and ferroptosis. Moreover, 2c could increase the levels of lipid peroxidation and ferrous ion, which further confirm that compound 2c may exert its antitumor effect through ferroptosis. Overall, these results suggest that the artesunate-Se candidates could provide promising new lead derivatives for further potential anticancer drug development.


Asunto(s)
Antineoplásicos , Artesunato , Proliferación Celular , Diseño de Fármacos , Ensayos de Selección de Medicamentos Antitumorales , Ferroptosis , Fosfolípido Hidroperóxido Glutatión Peroxidasa , Humanos , Artesunato/farmacología , Artesunato/síntesis química , Artesunato/química , Antineoplásicos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Ferroptosis/efectos de los fármacos , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Fosfolípido Hidroperóxido Glutatión Peroxidasa/antagonistas & inhibidores , Proliferación Celular/efectos de los fármacos , Relación Estructura-Actividad , Estructura Molecular , Relación Dosis-Respuesta a Droga , Línea Celular Tumoral , Especies Reactivas de Oxígeno/metabolismo , Compuestos de Organoselenio/farmacología , Compuestos de Organoselenio/química , Compuestos de Organoselenio/síntesis química
20.
Cell Rep Med ; 5(8): 101663, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39094577

RESUMEN

The current targeted therapy for BRAFV600E-mutant lung cancer consists of a dual blockade of RAF/MEK kinases often combining dabrafenib/trametinib (D/T). This regimen extends survival when compared to single-agent treatments, but disease progression is unavoidable. By using whole-genome CRISPR screening and RNA sequencing, we characterize the vulnerabilities of both persister and D/T-resistant cellular models. Oxidative stress together with concomitant induction of antioxidant responses is boosted by D/T treatment. However, the nature of the oxidative damage, the choice of redox detoxification systems, and the resulting therapeutic vulnerabilities display stage-specific differences. Persister cells suffer from lipid peroxidation and are sensitive to ferroptosis upon GPX4 inhibition in vivo. Biomarkers of lipid peroxidation are detected in clinical samples following D/T treatment. Acquired alterations leading to mitogen-activated protein kinase (MAPK) reactivation enhance cystine transport to boost GPX4-independent antioxidant responses. Similarly to BRAFV600E-mutant melanoma, histone deacetylase (HDAC) inhibitors decrease D/T-resistant cell viability and extend therapeutic response in vivo.


Asunto(s)
Adenocarcinoma del Pulmón , Resistencia a Antineoplásicos , Inhibidores de Histona Desacetilasas , Neoplasias Pulmonares , Fosfolípido Hidroperóxido Glutatión Peroxidasa , Proteínas Proto-Oncogénicas B-raf , Humanos , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/metabolismo , Proteínas Proto-Oncogénicas B-raf/antagonistas & inhibidores , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/tratamiento farmacológico , Adenocarcinoma del Pulmón/patología , Adenocarcinoma del Pulmón/metabolismo , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Fosfolípido Hidroperóxido Glutatión Peroxidasa/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Línea Celular Tumoral , Animales , Inhibidores de Histona Desacetilasas/farmacología , Ferroptosis/efectos de los fármacos , Ferroptosis/genética , Ratones , Estrés Oxidativo/efectos de los fármacos , Oximas/farmacología , Imidazoles/farmacología , Piridonas/farmacología , Pirimidinonas/farmacología , Peroxidación de Lípido/efectos de los fármacos , Mutación/genética , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA