Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Gut Microbes ; 16(1): 2387875, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39133869

RESUMEN

The intestinal microbiome during infancy and childhood has distinct metabolic functions and microbial composition compared to adults. We recently published a gnotobiotic mouse model of the pre-weaning microbiome (PedsCom), which retains a pre-weaning configuration during the transition from a milk-based diet to solid foods, leads to a stunted immune system, and increases susceptibility to enteric infection. Here, we compared the phylogenetic and metabolic relationships of the PedsCom consortium to two adult-derived gnotobiotic communities, Altered Schaedler Flora and Oligo-Mouse Microbiota 12 (Oligo-MM12). We find that PedsCom contains several unique functions relative to these adult-derived mouse consortia, including differences in carbohydrate and lipid metabolism genes. Notably, amino acid degradation metabolic modules are more prevalent among PedsCom isolates, which is in line with the ready availability of these nutrients in milk. Indeed, metabolomic analysis revealed significantly lower levels of total free amino acids and lower levels of specific amino acids abundant in milk (e.g. glutamine and glutamic acid) in the intestinal contents of adult PedsCom colonized mice compared to Oligo-MM12 controls. Metabolomic analysis of pre-weaning intestinal contents also showed lower levels of amino acids that are replete in milk compared to germ-free controls. Thus, enhanced amino acid metabolism is a prominent feature of the pre-weaning microbiome that may facilitate design of early-life microbiome interventions.


Asunto(s)
Aminoácidos , Bacterias , Microbioma Gastrointestinal , Vida Libre de Gérmenes , Leche , Destete , Animales , Aminoácidos/metabolismo , Microbioma Gastrointestinal/fisiología , Ratones , Leche/microbiología , Leche/metabolismo , Bacterias/clasificación , Bacterias/metabolismo , Bacterias/genética , Bacterias/aislamiento & purificación , Filogenia , Femenino , Ratones Endogámicos C57BL
2.
Semin Immunol ; 66: 101735, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36857892

RESUMEN

Functional characterization of the microbiome's influence on host physiology has been dominated by a few characteristic example strains that have been studied in detail. However, the extensive development of methods for high-throughput bacterial isolation and culture over the past decade is enabling functional characterization of the broader microbiota that may impact human health. Characterizing the understudied majority of human microbes and expanding our functional understanding of the diversity of the gut microbiota could enable new insights into diseases with unknown etiology, provide disease-predictive microbiome signatures, and advance microbial therapeutics. We summarize high-throughput culture-dependent platforms for characterizing bacterial strain function and host-interactions. We elaborate on the importance of these technologies in facilitating mechanistic studies of previously unexplored microbes, highlight new opportunities for large-scale in vitro screens of host-relevant microbial functions, and discuss the potential translational applications for microbiome science.


Asunto(s)
Enfermedad , Salud , Inmunidad , Microbiota , Estado Nutricional , Microbiota/genética , Humanos , Animales , Inflamación/microbiología , Carcinogénesis , Metabolismo
3.
Gut Microbes ; 13(1): 1987780, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34781821

RESUMEN

The colorectal cancer (CRC)-associated microbiota creates a pro-tumorigenic intestinal milieu and shapes immune responses within the tumor microenvironment. However, how oncomicrobes - like Fusobacterium nucleatum, found in the oral cavity and associated with CRC tissues- affect these distinct aspects of tumorigenesis is difficult to parse. Herein, we found that neonatal inoculation of ApcMin/+ mice with F. nucleatum strain Fn7-1 circumvents technical barriers preventing its intestinal colonization, drives colonic Il17a expression prior to tumor formation, and potentiates intestinal tumorigenesis. Using gnotobiotic mice colonized with a minimal complexity microbiota (the altered Schaedler's flora), we observed that intestinal Fn7-1 colonization increases colonic Th17 cell frequency and their IL-17A and IL-17F expression, along with a concurrent increase in colonic lamina propria Il23p19 expression. As Fn7-1 stably colonizes the intestinal tract in our models, we posited that microbial metabolites, specifically short-chain fatty acids (SCFA) that F. nucleatum abundantly produces in culture and, as we demonstrate, in the intestinal tract, might mediate part of its immunomodulatory effects in vivo. Supporting this hypothesis, we found that Fn7-1 did not alter RORγt+ CD4+T cell frequency in the absence of the SCFA receptor FFAR2. Taken together, our work suggests that F. nucleatum influences intestinal immunity by shaping Th17 responses in an FFAR2-dependent manner, although further studies are necessary to clarify the precise and multifaceted roles of FFAR2. The potential to increase intestinal Th17 responses is shared by another oncomicrobe, enterotoxigenic Bacteroides fragilis, highlighting a conserved pathway that could potentially be targeted to slow oncomicrobe-mediated CRC.


Asunto(s)
Neoplasias Colorrectales/inmunología , Neoplasias Colorrectales/microbiología , Fusobacterium nucleatum/fisiología , Interleucina-17/inmunología , Mucosa Intestinal/inmunología , Células Th17/inmunología , Animales , Colon/inmunología , Colon/microbiología , Neoplasias Colorrectales/genética , Femenino , Fusobacterium nucleatum/crecimiento & desarrollo , Microbioma Gastrointestinal , Humanos , Interleucina-17/genética , Mucosa Intestinal/microbiología , Masculino , Ratones , Ratones Endogámicos C57BL , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/inmunología
4.
mSystems ; 6(4): e0075521, 2021 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-34427498

RESUMEN

Accumulating evidence links the gut microbiome to neuronal functions in the brain. Given the increasing prevalence of brain disorders, there is a critical need to understand how gut microbes impact neuronal functions so that targeted therapeutic interventions can be developed. In this commentary, we discuss what makes the nematode Caenorhabditis elegans a valuable model for dissecting the molecular basis of gut microbiome-brain interactions. With a fully mapped neuronal circuitry, C. elegans is an effective model for studying signaling of the nervous system in a context that bears translational relevance to human disease. We highlight C. elegans as a potent but underexploited tool to interrogate the influence of the bacterial variable on the complex equation of the nervous system. We envision that routine use of gnotobiotic C. elegans to examine the gut-brain axis will be an enabling technology for the development of novel therapeutic interventions for brain diseases.

5.
Front Physiol ; 12: 680275, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34248668

RESUMEN

The microbiota plays a critical role in regulating organismal health and response to environmental stresses. Intermittent hypoxia and hypercapnia, a condition that represents the main hallmark of obstructive sleep apnea in humans, is known to induce significant alterations in the gut microbiome and metabolism, and promotes the progression of atherosclerosis in mouse models. To further understand the role of the microbiome in the cardiovascular response to intermittent hypoxia and hypercapnia, we developed a new rodent cage system that allows exposure of mice to controlled levels of O2 and CO2 under gnotobiotic conditions. Using this experimental setup, we determined the impact of the microbiome on the transcriptional response to intermittent hypoxia and hypercapnia in the left ventricle of the mouse heart. We identified significant changes in gene expression in both conventionally reared and germ-free mice. Following intermittent hypoxia and hypercapnia exposure, we detected 192 significant changes in conventionally reared mice (96 upregulated and 96 downregulated) and 161 significant changes (70 upregulated and 91 downregulated) in germ-free mice. Only 19 of these differentially expressed transcripts (∼10%) were common to conventionally reared and germ-free mice. Such distinct transcriptional responses imply that the host microbiota plays an important role in regulating the host transcriptional response to intermittent hypoxia and hypercapnia in the mouse heart.

6.
Front Immunol ; 10: 2100, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31555292

RESUMEN

Microbial communities populate the mucosal surfaces of all animals. Metazoans have co-evolved with these microorganisms, forming symbioses that affect the molecular and cellular underpinnings of animal physiology. These microorganisms, collectively referred to as the microbiota, are found on many distinct body sites (including the skin, nasal cavity, and urogenital tract), however the most densely colonized host tissue is the intestinal tract. Although spatially confined within the intestinal lumen, the microbiota and associated products shape the development and function of the host immune system. Studies comparing gnotobiotic animals devoid of any microbes (germ free) with counterparts colonized with selected microbial communities have demonstrated that commensal microorganisms are required for the proper development and function of the immune system at homeostasis and following infectious challenge or injury. Animal model systems have been essential for defining microbiota-dependent shifts in innate immune cell function and intestinal physiology during infection and disease. In particular, the zebrafish has emerged as a powerful vertebrate model organism with unparalleled capacity for in vivo imaging, a full complement of genetic approaches, and facile methods to experimentally manipulate microbial communities. Here we review key insights afforded by the zebrafish into the impact of microbiota on innate immunity, including evidence that the perception of and response to the microbiota is evolutionarily conserved. We also highlight opportunities to strengthen the zebrafish model system, and to gain new insights into microbiota-innate immune interactions that would be difficult to achieve in mammalian models.


Asunto(s)
Mucosa Intestinal/inmunología , Microbiota/inmunología , Pez Cebra/inmunología , Animales , Evolución Biológica , Vida Libre de Gérmenes , Interacciones Microbiota-Huesped , Humanos , Inmunidad Innata , Mucosa Intestinal/microbiología , Modelos Animales , Simbiosis , Pez Cebra/microbiología
7.
Int J Syst Evol Microbiol ; 69(11): 3616-3622, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31502946

RESUMEN

The use of gnotobiotics has attracted wide interest in recent years due to technological advances that have revealed the importance of host-associated microbiomes for host physiology and health. One of the oldest and most important gnotobiotic mouse model, the altered Schaedler flora (ASF) has been used for several decades. ASF comprises eight different bacterial strains, which have been characterized to different extent, but only a few are available through public strain collections. Here, the isolation of a close relative of one of the less-studied ASF strains, Clostridium species ASF 502, from faeces of C57BL/6J mice is reported. Isolate TLL-A1T shares 99.5 % 16S rRNA gene sequence identity with Clostridium species ASF 502 and phylogenetic analyses indicate that both strains belong to the uncultured so-called 'Lachnospiraceae UCG 006' clade. The rare sugar d-arabinose was used as a sole carbon source in the anaerobic isolation medium. Results of growth experiments with TLL-A1T on different carbon sources and analysis of its ~6.5 Gb indicate that TLL-A1T harbours a large gene repertoire that enables it to utilize a variety of carbohydrates for growth. Comparative genome analyses of TLL-A1T and Clostridium species ASF 502 reveal differences in genome content between the two strains, in particular with regards to carbohydrate-activating enzymes. Based on genomic, molecular and phenotypic differences, we propose to classify strain TLL-A1T (DSM 106076T=KCTC 15657T) as a representative of a new genus and a new species, for which we propose the name Schaedlerella arabinosiphila gen. nov., sp. nov.


Asunto(s)
Arabinosa/metabolismo , Clostridiales/clasificación , Heces/microbiología , Ratones Endogámicos C57BL/microbiología , Filogenia , Animales , Técnicas de Tipificación Bacteriana , Composición de Base , Clostridiales/aislamiento & purificación , ADN Bacteriano/genética , Ratones , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
8.
mSystems ; 4(3)2019 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-31164406

RESUMEN

Over the last decade, our understanding of the composition and functions of the gut microbiota has greatly increased. To a large extent, this has been due to the development of high-throughput genomic analyses of microbial communities, which have identified the critical contributions of the microbiome to human health. Consequently, the intestinal microbiota has emerged as an attractive therapeutic target. The large majority of microbiota-targeted therapies aim at engineering the intestinal ecosystem by means of probiotics or prebiotics. Recently, a novel therapeutic approach has emerged which focuses on molecules that are secreted, modulated, or degraded by the microbiome and act directly on the host. Here, we discuss the advantages and challenges associated with the metabolite-based "postbiotic" approach, highlighting recent progress and the areas that need intensive attention and investigation over the next 5 years. The time is ripe for postbiotic therapies to be developed in the near future.

9.
Lab Anim ; 53(3): 232-243, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31096878

RESUMEN

Gnotobiotics or gnotobiology is a research field exploring organisms with a known microbiological state. In animal research, the development of gnotobiotics started in the late 19th century with the rederivation of germ-free guinea pigs. Cutting-edge achievements were accomplished by scientists in the Laboratories of Bacteriology at the University of Notre Dame (LOBUND). The primary goals of gnotobiotics were not only the development of the equipment required for long-term husbandry but also phenotypic characterization of germ-free animals. The first isolators were designed by Reynolds and Gustafsson as rigid-wall stainless steel autoclave-like chambers, which were subsequently replaced by Trexler's flexible-film polyvinyl plastic isolators. Flexible-film or semi-rigid isolators are commonly used today. The long-term maintenance of gnotobiotic rodents is performed in positive-pressure isolators. However, to facilitate gnotobiotic experimental procedures, short-term husbandry systems have been developed. Gnotobiotic animal husbandry is laborious and requires experienced staff. Germ-free animals can be rederived from existing rodent colonies by hysterectomy or embryo transfer. The physiology and anatomy of germ-free rodents are different from those of specified pathogen-free (SPF) rodents. Furthermore, to guarantee gnotobiotic status, the colonies need to be regularly microbiologically monitored. Today, gnotobiotics provides a powerful tool to analyse functional effects of host-microbe interactions, especially in complex disease models. Gnotobiotic models combined with 'omics' approaches will be indispensable for future advances in microbiome research. Furthermore, these approaches will contribute to the development of novel therapeutic targets. In addition, regional or national gnotobiotic core facilities should be established in the future to support further applications of gnotobiotic models.


Asunto(s)
Crianza de Animales Domésticos/métodos , Vida Libre de Gérmenes , Ciencia de los Animales de Laboratorio/métodos , Microbiota , Modelos Animales , Animales
10.
Gut Microbes ; 5(2): 233-8, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24637603

RESUMEN

The human gut microbiota plays a key role in pharmacology, yet the mechanisms responsible remain unclear, impeding efforts toward personalized medicine. We recently identified a cytochrome-encoding operon in the common gut Actinobacterium Eggerthella lenta that is transcriptionally activated by the cardiac drug digoxin. These genes represent a predictive microbial biomarker for the inactivation of digoxin. Gnotobiotic mouse experiments revealed that increased protein intake can limit microbial drug inactivation. Here, we present a biochemical rationale for how the proteins encoded by this operon might inactivate digoxin through substrate promiscuity. We discuss digoxin signaling in eukaryotic systems, and consider the possibility that endogenous digoxin-like molecules may have selected for microbial digoxin inactivation. Finally, we highlight the diverse contributions of gut microbes to drug metabolism, present a generalized approach to studying microbe-drug interactions, and argue that mechanistic studies will pave the way for the clinical application of this work.


Asunto(s)
Actinobacteria/metabolismo , Digoxina/metabolismo , Tracto Gastrointestinal/microbiología , Animales , Digoxina/farmacocinética , Tracto Gastrointestinal/metabolismo , Vida Libre de Gérmenes/fisiología , Humanos , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA