Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
J Infect Chemother ; 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38925426

RESUMEN

BACKGROUND: A change in empirical antibiotics or the addition of glycopeptide antibiotics is often applied in cases of persistent febrile neutropenia (FN) despite the administration of broad-spectrum antibiotics. However, the clinical benefit of these approaches remains unclear. METHODS: We conducted a retrospective study to evaluate the effectiveness of a change in antibiotics or the addition of glycopeptide antibiotics for persistent FN after autologous hematopoietic cell transplantation (auto-HCT). We retrospectively reviewed the records of 208 patients who received auto-HCT at our institution between 2007 and 2019. FN that lasted for 4 days or longer was defined as persistent FN. We compared the time to defervescence between patients whose initial antibiotics were changed and/or who additionally received glycopeptide antibiotics, and those without these antibiotic modifications. RESULTS: Among patients who fulfilled the criteria of persistent FN (n = 125), changes in antibiotics were not significantly associated with the time to defervescence in a multivariate analysis (hazard ratio [HR] 0.72, p = 0.27). On the other hand, the addition of glycopeptide antibiotics was paradoxically associated with a delay in defervescence (HR 0.56, p = 0.033). CONCLUSIONS: Although there may be differences in patient backgrounds, no significant differences were observed in either a univariate or multivariate analysis. Since neither a change in antibiotics nor the addition of glycopeptide antibiotics was associated with earlier defervescence in persistent FN after auto-HCT, routine antibiotic modifications might not be necessary in this setting.

2.
Anal Chim Acta ; 1294: 342309, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38336411

RESUMEN

BACKGROUND: Glycopeptide antibiotics (GPAs) represented by vancomycin (VAN) are clinically used as a first-line treatment for serious infections caused by Gram-positive pathogens. The use and dosing methods of GPAs are rigorously managed for safety considerations, which calls for fast and accurate quantification approaches. RESULT: A new sort of fluorescent probes for GPAs has been proposed, each of which was integrated by a fluorescein-based reporter and a GPAs' recognition peptide D-alanyl-D-alanine (D-Ala-D-Ala). These probes work as dynamic molecular switches, which mainly exist as non-fluorescent spirolactam forms in the absence of GPAs. GPAs binding with the dipeptide regulates the dynamic balance between fluorescence OFF lactam form and fluorescence ON ring-opened form, rendering these probes capable of GPAs detecting. The most promising one P1 exhibits excellent sensitivity and selectivity towards GPAs detection. SIGNIFICANCE: Different to previous developments, P1 consists of a single fluorophore without the need of a fluorescence-quenching group or a secondary dye, which is the smallest fluorescent probe for GPAs up to now. P1 realizes direct VAN quantification from complex biological samples including real serums, dispensing with additional drug extraction. More interestingly, both P1 and P6 can distinguish GPAs with different peptide backbones, which has not been achieved previously.


Asunto(s)
Antibacterianos , Glicopéptidos , Fluorescencia , Antibacterianos/química , Glicopéptidos/química , Vancomicina/química , Alanina
3.
Artículo en Inglés | MEDLINE | ID: mdl-38190227

RESUMEN

In 1973, Eli Lilly and Company described the filamentous actinomycete producing the glycopeptide antibiotic A477 as an Actinoplanes species on the basis of its morphological and physiological features and deposited it as NRRL 3884T. In this paper, we report that the phylogenetic analysis based on the 16S rRNA gene sequence and the whole genome phylogenomic study indicate that NRRL 3884T forms a distinct monophyletic line within the genus Actinoplanes, being most closely related to Actinoplanes octamycinicus NBRC 14524T [99.6 % 16S rRNA gene similarity, 89.4 % average nucleotide identity (ANI), 46.0 % digital DNA-DNA hybridization (dDDH)] and Actinoplanes ianthinogenes NBRC 13996T (98.8 % 16S rRNA gene similarity, 89.0 % ANI, 47.0 % dDDH). NRRL 3884T forms an extensively branched, non-fragmented vegetative mycelium; either sterile aerial hyphae or regular subglobose sporangia are formed depending on cultivation conditions. The cell wall contains meso-2,6-diaminopimelic acid and 2,6-diamino-3-hydroxypimelic acid and the diagnostic sugars are glucose, mannose and ribose with a minor amount of rhamnose. The predominant menaquinone (MK) is MK-9(H4), with minor amounts of MK-9(H2), MK-9(H6) and MK-9(H8). Mycolic acids are absent. The diagnostic phospholipids are diphosphatidylglycerol and phosphatidylethanolamine. The major cellular fatty acids are anteiso-C17 : 0, iso-C16 : 0 and iso-C15 : 0, with moderate amounts of anteiso-C15 : 0 and iso-C17 : 0. The genomic G+C content is 71.5 mol%. Significant differences in the genomic, morphological, chemotaxonomic and biochemical data between NRRL 3884T and the two most closely related Actinoplanes type strains clearly demonstrate that NRRL 3884T represents a novel species of the genus Actinoplanes, for which the name Actinoplanes oblitus sp. nov. is proposed. The type strain is NRRL 3884T (=DSM 116196T).


Asunto(s)
Actinoplanes , Composición de Base , Ácidos Grasos/química , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana , Antibacterianos , Glicopéptidos
4.
Pharmaceuticals (Basel) ; 16(11)2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-38004435

RESUMEN

Glycopeptide antibiotics are still in demand in clinical practice for treating infections caused by resistant gram-positive pathogens; however, their use is limited due to severe adverse reactions. Their predominant types of side effects are immunoglobulin E-mediated or nonmediated hypersensitivity reactions. Therefore, the development of new glycopeptide antibiotics with improved toxicity profiles remains an important objective in advancing modern antimicrobial agents. We investigated a new eremomycin aminoalkylamide flavancin, its anaphylactogenic properties, influence on histamine levels in blood plasma, pseudoallergic inflammatory reaction on concanavalin A and the change in the amount of flavancin in the blood plasma after administration. It has been shown that flavancin does not demonstrate anaphylactogenic properties. The injection of flavancin resulted in a level of histamine in the blood three times lower than that caused by vancomycin. The therapeutic dose of vancomycin led to a statistically significant increase in the concanavalin A response index compared to flavancin (54% versus 3.7%). Thus, flavancin does not cause a pseudo-allergic reaction. The rapid decrease in flavancin concentration in the blood and the low levels of histamine in the plasma lead us to assume that any pseudoallergic reactions resulting from flavancin application, if they do occur in clinical practice, will be significantly less compared to the use of vancomycin.

5.
Methods Mol Biol ; 2670: 187-206, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37184705

RESUMEN

Glycopeptide antibiotics (GPAs) are important and medically relevant peptide natural products. In the context of antimicrobial resistance (AMR), understanding and manipulating GPA biosynthesis is essential to discover new bioactive derivatives of these peptides. Among all the enzymatic steps in GPA biosynthesis, the most complex occurs during the maturation (cross-linking) of the peptide aglycone. This is achieved-while the peptide remains attached to the nonribosomal peptide synthetase (NRPS) machinery-through the action of a cytochrome P450 (CYP450 or Oxy)-mediated cyclization cascade. There is great interest in understanding the formation of the cross-links between the aromatic side chains in GPAs as this process leads to the cup-shaped aglycone, which is itself a requirement for antibiotic activity. In this regard, the use of in vitro experiments is crucial to study this process. To address the process of peptide cyclization during GPA biosynthesis, a series of peptide substrates and different Oxy enzymes are required. In this chapter, we describe a practical and efficient route for the synthesis of peptidyl-CoAs, the expression of proteins/enzymes involved in the in vitro cyclization assay, the loading of the PCP with peptidyl-CoAs, an optimized CYP450-mediated cyclization cascade and assay workup followed by mass spectrometry (MS) characterization. This in vitro assay affords high conversion to cyclic peptides and demonstrates the tolerance of the P450s for novel GPA precursor peptide substrates.


Asunto(s)
Antibacterianos , Glicopéptidos , Glicopéptidos/química , Antibacterianos/química , Sistema Enzimático del Citocromo P-450/metabolismo , Péptidos/metabolismo , Biosíntesis de Péptidos , Péptido Sintasas/química
6.
Antibiotics (Basel) ; 12(4)2023 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-37107003

RESUMEN

Teicoplanin and A40926 (natural precursor of dalbavancin) are clinically relevant glycopeptide antibiotics (GPAs) produced by Actinoplanes teichomyceticus NRRL B-16726 and Nonomuraea gerenzanensis ATCC 39727. Their biosynthetic enzymes are coded within large biosynthetic gene clusters (BGCs), named tei for teicoplanin and dbv for A40926, whose expression is strictly regulated by pathway-specific transcriptional regulators (PSRs), coded by cluster-situated regulatory genes (CSRGs). Herein, we investigated the "cross-talk" between the CSRGs from tei and dbv, through the analysis of GPA production levels in A. teichomyceticus and N. gerenzanensis strains, with knockouts of CSRGs cross-complemented by the expression of heterologous CSRGs. We demonstrated that Tei15* and Dbv4 StrR-like PSRs, although orthologous, were not completely interchangeable: tei15* and dbv4 were only partially able or unable to cross-complement N. gerenzanensis knocked out in dbv4 and A. teichomyceticus knocked out in tei15*, implying that the DNA-binding properties of these PSRs are more different in vivo than it was believed before. At the same time, the unrelated LuxR-like PSRs Tei16* and Dbv3 were able to cross-complement corresponding N. gerenzanensis knocked out in dbv3 and A. teichomyceticus knocked out in tei16*. Moreover, the heterologous expression of dbv3 in A. teichomyceticus led to a significant increase in teicoplanin production. Although the molecular background of these events merits further investigations, our results contribute to a deeper understanding of GPA biosynthesis regulation and offer novel biotechnological tools to improve their production.

7.
ChemMedChem ; 18(9): e202200708, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-36823383

RESUMEN

In the arsenal of glycopeptide antibiotics, norvancomycin, which differs from vancomycin by a single methyl group, has received much less attention. Facing the risks of serious antibiotic resistance and even the collapse of last-line defenses, we designed and synthesized 40 novel norvancomycin derivatives to combat the threat. 32 compounds are single N-terminally modified derivatives generated through simple and efficient methods. Diversity at the N-terminus was greatly enriched, mainly by lipophilic attachment and strategies for the introduction of lipo-sulfonium moieties for extensive structure-activity relationship analysis. The first incorporation of a sulfonium moiety into the norvancomycin structure gave rise to compounds that exhibited 4- to 2048-fold higher activity against vancomycin-resistant bacteria VISA and VRE. This N-terminal modification for norvancomycin provides an alternatively useful and promising strategy to restore the antibacterial activity of glycopeptide antibiotics against resistant bacteria, highlighting the same importance of the N-terminal site as well as the vancosamine position, which is worth further study and development.


Asunto(s)
Antibacterianos , Vancomicina , Antibacterianos/química , Glicopéptidos/farmacología , Glicopéptidos/química , Bacterias Grampositivas
8.
World J Microbiol Biotechnol ; 39(2): 67, 2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36593427

RESUMEN

Glycopeptide antibiotics (GPAs) are a family of non-ribosomal peptide natural products with polypeptide skeleton characteristics, which are considered the last resort for treating severe infections caused by multidrug-resistant Gram-positive pathogens. Over the past few years, an increasing prevalence of Gram-positive resistant strain "superbugs" has emerged. Therefore, more efforts are needed to study and modify the GPAs to overcome the challenge of superbugs. In this mini-review, we provide an overview of the complex biosynthetic gene clusters (BGCs), the ingenious crosslinking and tailoring modifications, the new GPA derivatives, the discoveries of new natural GPAs, and the new applications of GPAs in antivirus and anti-Gram-negative bacteria. With the development and interdisciplinary integration of synthetic biology, next-generation sequencing (NGS), and artificial intelligence (AI), more GPAs with new chemical structures and action mechanisms will constantly be emerging.


Asunto(s)
Antibacterianos , Inteligencia Artificial , Antibacterianos/farmacología , Antibacterianos/química , Glicopéptidos/farmacología , Glicopéptidos/química
9.
Chembiochem ; 24(6): e202200686, 2023 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-36534957

RESUMEN

The glycopeptide antibiotics (GPAs) are a clinically approved class of antimicrobial agents that classically function through the inhibition of bacterial cell-wall biosynthesis by sequestration of the precursor lipid II. The oxidative crosslinking of the core peptide by cytochrome P450 (Oxy) enzymes during GPA biosynthesis is both essential to their function and the source of their synthetic challenge. Thus, understanding the activity and selectivity of these Oxy enzymes is of key importance for the future engineering of this important compound class. Recent reports of GPAs that display an alternative mode of action and a wider range of core peptide structures compared to classic lipid II-binding GPAs raises the question of the tolerance of Oxy enzymes for larger changes in their peptide substrates. In this work, we explore the ability of Oxy enzymes from the biosynthesis pathways of lipid II-binding GPAs to accept altered peptide substrates based on a vancomycin template. Our results show that Oxy enzymes are more tolerant of changes at the N terminus of their substrates, whilst C-terminal extension of the peptide substrates is deleterious to the activity of all Oxy enzymes. Thus, future studies should prioritise the study of Oxy enzymes from atypical GPA biosynthesis pathways bearing C-terminal peptide extension to increase the substrate scope of these important cyclisation enzymes.


Asunto(s)
Antibacterianos , Glicopéptidos , Antibacterianos/química , Glicopéptidos/química , Péptidos , Vancomicina/farmacología , Sistema Enzimático del Citocromo P-450/metabolismo
10.
Insects ; 13(8)2022 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-36005373

RESUMEN

The increasing number of microorganisms that are resistant to antibiotics is prompting the development of new antimicrobial compounds and strategies to fight bacterial infections. The use of insects to screen and test new drugs is increasingly considered a promising tool to accelerate the discovery phase and limit the use of mammalians. In this study, we used for the first time the silkworm, Bombyx mori, as an in vivo infection model to test the efficacy of three glycopeptide antibiotics (GPAs), against the nosocomial pathogen Staphylococcus epidermidis. To reproduce the human physiological temperature, the bacterial infection was performed at 37 °C and it was monitored over time by evaluating the survival rate of the larvae, as well the response of immunological markers (i.e., activity of hemocytes, activation of the prophenoloxidase system, and lysozyme activity). All the three GPAs tested (vancomycin, teicoplanin, and dalbavancin) were effective in curing infected larvae, significantly reducing their mortality and blocking the activation of the immune system. These results corroborate the use of this silkworm infection model for the in vivo studies of antimicrobial molecules active against staphylococci.

11.
Pharmaceuticals (Basel) ; 15(6)2022 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-35745578

RESUMEN

Glycopeptide antibiotics have side effects that limit their clinical use. In view of this, the development of glycopeptides with improved chemotherapeutic properties remains the main direction in the search for new antibacterial drugs. The objective of this study was to evaluate the toxicological characteristics of new semi-synthetic glycopeptide flavancin. Acute and chronic toxicity of antibiotic was evaluated in Wistar rats. The medium lethal dose (LD50) and the maximum tolerated doses (MTD) were calculated by the method of Litchfield and Wilcoxon. In the chronic toxicity study, the treatment regimen consisted of 15 daily intraperitoneal injections using two dosage levels: 6 and 10 mg/kg/day. Total doses were equivalent to MTD or LD50 of flavancin, respectively. The study included assessment of the body weight, hematological parameters, blood biochemical parameters, urinalysis, and pathomorphological evaluation of the internal organs. The results of the study demonstrated that no clinical-laboratory signs of toxicity were found after 15 daily injections of flavancin at a total dose close to the MTD or LD50. The pathomorphological study did not reveal any lesions on the organ structure of animals after low-dose administration of flavancin. Thus, flavancin favorably differs in terms of toxicological properties from the glycopeptides currently used in the clinic.

12.
Front Chem ; 10: 858708, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35402387

RESUMEN

Glycopeptide antibiotics are valuable natural metabolites endowed with different pharmacological properties, among them are dalbaheptides used to treat different infections caused by multidrug-resistant Gram-positive pathogens. Dalbaheptides are produced by soil-dwelling high G-C Gram-positive actinobacteria. Their biosynthetic pathways are encoded within large biosynthetic gene clusters. A non-ribosomally synthesized heptapeptide aglycone is the common scaffold for all dalbaheptides. Different enzymatic tailoring steps, including glycosylation, are further involved in decorating it. Glycosylation of dalbaheptides is a crucial step, conferring them specific biological activities. It is achieved by a plethora of glycosyltransferases, encoded within the corresponding biosynthetic gene clusters, able to install different sugar residues. These sugars might originate from the primary metabolism, or, alternatively, their biosynthesis might be encoded within the biosynthetic gene clusters. Already installed monosaccharides might be further enzymatically modified or work as substrates for additional glycosylation. In the current minireview, we cover recent updates concerning the genetics and enzymology behind the glycosylation of dalbaheptides, building a detailed and consecutive picture of this process and of its biological evolution. A thorough understanding of how glycosyltransferases function in dalbaheptide biosynthesis might open new ways to use them in chemo-enzymatic synthesis and/or in combinatorial biosynthesis for building novel glycosylated antibiotics.

13.
Methods Enzymol ; 665: 325-346, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35379441

RESUMEN

Glycopeptide antibiotics are essential drugs used to treat infections caused by multi-drug resistant Gram-positive pathogens. There is a continuous need for new antibiotics, including GPAs, to address emerging resistance and offer desirable pharmacological profiles for improved efficacy. Microbial natural products are proven sources of antibiotics, and this source has dominated drug discovery over the past century. Bacteria from the phylum Actinobacteria are particularly renowned for producing a diverse range of bioactive natural products including glycopeptide antibiotics. The traditional approach to mining this resource is through the culture and extraction of natural products followed by assay for cell-killing activity. Unfortunately, this method no longer efficiently yields new antibiotic leads, delivering instead known compounds. Whole-genome sequencing programs on the other hand are revealing thousands of unexplored natural product biosynthetic gene clusters in the chromosomes of Actinobacteria. These gene clusters encode the necessary enzymes, transport and resistance mechanisms, along with regulatory elements for the biosynthesis of a variety of antibiotics. Identification of uncharacterized or cryptic biosynthetic gene clusters to unlock the chemical "dark matter" represents a new direction for the discovery of new drug candidates. This chapter discusses the identification of glycopeptide antibiotic biosynthetic gene clusters in microbial genomes, the improved production of these antibiotics using the GPAHex synthetic biology platform, and methods for their purification.


Asunto(s)
Productos Biológicos , Glicopéptidos , Antibacterianos/farmacología , Productos Biológicos/química , Productos Biológicos/farmacología , Descubrimiento de Drogas , Genómica , Glicopéptidos/genética , Glicopéptidos/farmacología
14.
Biotechnol Adv ; 57: 107948, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35337933

RESUMEN

The spread of antimicrobial resistance in Gram-positive pathogens represents a threat to human health. To counteract the current lack of novel antibiotics, alternative antibacterial treatments have been increasingly investigated. This review covers the last decade's developments in using nanoparticles as carriers for the two classes of frontline antibiotics active on multidrug-resistant Gram-positive pathogens, i.e., glycopeptide antibiotics and daptomycin. Most of the reviewed papers deal with vancomycin nanoformulations, being teicoplanin- and daptomycin-carrying nanosystems much less investigated. Special attention is addressed to nanoantibiotics used for contrasting biofilm-associated infections. The status of the art related to nanoantibiotic toxicity is critically reviewed.


Asunto(s)
Daptomicina , Infecciones por Bacterias Grampositivas , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Bacterias Grampositivas , Infecciones por Bacterias Grampositivas/tratamiento farmacológico , Infecciones por Bacterias Grampositivas/microbiología , Humanos , Pruebas de Sensibilidad Microbiana , Teicoplanina
15.
Pharmaceuticals (Basel) ; 15(2)2022 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-35215272

RESUMEN

As multidrug-resistant bacteria represent a concerning burden, experts insist on the need for a dramatic rethinking on antibiotic use and development in order to avoid a post-antibiotic era. New and rapidly developable strategies for antimicrobial substances, in particular substances highly potent against multidrug-resistant bacteria, are urgently required. Some of the treatment options currently available for multidrug-resistant bacteria are considerably limited by side effects and unfavorable pharmacokinetics. The glycopeptide vancomycin is considered an antibiotic of last resort. Its use is challenged by bacterial strains exhibiting various types of resistance. Therefore, in this study, highly active polycationic peptide-vancomycin conjugates with varying linker characteristics or the addition of PEG moieties were synthesized to optimize pharmacokinetics while retaining or even increasing antimicrobial activity in comparison to vancomycin. The antimicrobial activity of the novel conjugates was determined by microdilution assays on susceptible and vancomycin-resistant bacterial strains. VAN1 and VAN2, the most promising linker-modified derivatives, were further characterized in vivo with molecular imaging and biodistribution studies in rodents, showing that the linker moiety influences both antimicrobial activity and pharmacokinetics. Encouragingly, VAN2 was able to undercut the resistance breakpoint in microdilution assays on vanB and vanC vancomycin-resistant enterococci. Out of all PEGylated derivatives, VAN:PEG1 and VAN:PEG3 were able to overcome vanC resistance. Biodistribution studies of the novel derivatives revealed significant changes in pharmacokinetics when compared with vancomycin. In conclusion, linker modification of vancomycin-polycationic peptide conjugates represents a promising strategy for the modulation of pharmacokinetic behavior while providing potent antimicrobial activity.

16.
ACS Infect Dis ; 8(1): 1-28, 2022 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-34878254

RESUMEN

Glycopeptides, a class of cell wall biosynthesis inhibitors, have been the antibiotics of choice against drug-resistant Gram-positive bacterial infections. Their unique mechanism of action involving binding to the substrate of cell wall biosynthesis and substantial longevity in clinics makes this class of antibiotics an attractive choice for drug repurposing and reprofiling. However, resistance to glycopeptides has been observed due to alterations in the substrate, cell wall thickening, or both. The emergence of glycopeptide resistance has resulted in the development of synthetic and semisynthetic glycopeptide analogues to target acquired resistance. Recent findings demonstrate that these derivatives, along with some of the FDA approved glycopeptides have been shown to have antimicrobial activity against Gram-negative bacteria, Mycobacteria, and viruses thus expanding their spectrum of activity across the microbial kingdom. Additional mechanisms of action and identification of novel targets have proven to be critical in broadening the spectrum of activity of glycopeptides. This review focuses on the applications of glycopeptides beyond their traditional target group of Gram-positive bacteria. This will aid in making the scientific community aware about the nontraditional activity profiles of glycopeptides, identify the existing loopholes, and further explore this antibiotic class as a potential broad-spectrum antimicrobial agent.


Asunto(s)
Bacterias Grampositivas , Infecciones por Bacterias Grampositivas , Antibacterianos/farmacología , Glicopéptidos/farmacología , Bacterias Gramnegativas , Humanos
17.
Antibiotics (Basel) ; 10(12)2021 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-34943745

RESUMEN

The spread of antimicrobial resistance (AMR) creates a challenge for global health security, rendering many previously successful classes of antibiotics useless. Unfortunately, this also includes glycopeptide antibiotics (GPAs), such as vancomycin and teicoplanin, which are currently being considered last-resort drugs. Emerging resistance towards GPAs risks limiting the clinical use of this class of antibiotics-our ultimate line of defense against multidrug-resistant (MDR) Gram-positive pathogens. But where does this resistance come from? It is widely recognized that the GPA resistance determinants-van genes-might have originated from GPA producers, such as soil-dwelling Gram-positive actinobacteria, that use them for self-protection. In the current work, we present a comprehensive bioinformatics study on the distribution and phylogeny of GPA resistance determinants within the Actinobacteria phylum. Interestingly, van-like genes (vlgs) were found distributed in different arrangements not only among GPA-producing actinobacteria but also in the non-producers: more than 10% of the screened actinobacterial genomes contained one or multiple vlgs, while less than 1% encoded for a biosynthetic gene cluster (BGC). By phylogenetic reconstructions, our results highlight the co-evolution of the different vlgs, indicating that the most diffused are the ones coding for putative VanY carboxypeptidases, which can be found alone in the genomes or associated with a vanS/R regulatory pair.

18.
J Chromatogr A ; 1659: 462630, 2021 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-34731750

RESUMEN

Glycopeptide antibiotics are critical weapons against serious Gram-positive resistant bacteria, and therefore the development of analytical methods for their determination is essential. In this work, with the aim of extending the scope of molecularly imprinted mesoporous materials to the recognition of large molecules such as proteins and peptides, we selected the glycosyl moiety of glycopeptide antibiotics as a template and synthesised a boronic acid functional monomer by click chemistry reaction to prepare glycosyl imprinted mesoporous microspheres. On the basis of boronate affinity, the template and the functional monomer formed a self-assembly structure that was incorporated into the silica framework during polymerisation. The removal of the glycosyl moiety created cavities with boronic acid groups covalently anchored to the pore walls of the glycosyl imprinted mesoporous microspheres. The resultant microspheres showed regular spherical shape, narrow size distribution and porous structure and exhibited high adsorption capability and fast adsorption kinetics. The size exclusion effect of the mesoporous structure prevents large molecules from entering the cavities, while the glycosyl imprinted cavities provide selectivity for glycopeptide antibiotics. The glycosyl imprinted mesoporous microspheres were employed to separate six glycopeptide antibiotics in serum samples, which were then determined using ultra-high performance liquid chromatography tandem mass spectrometry. The proposed method exhibited satisfactory linearity in the range of 0.1 to 20.0 µg/L, demonstrating great potential for the determination of glycopeptide antibiotics in serum samples.


Asunto(s)
Impresión Molecular , Espectrometría de Masas en Tándem , Adsorción , Antibacterianos , Cromatografía Líquida de Alta Presión , Glicopéptidos , Microesferas
19.
Pharmaceuticals (Basel) ; 14(11)2021 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-34832964

RESUMEN

The increase in antibiotic resistance among Gram-positive bacteria underscores the urgent need to develop new antibiotics. New antibiotics should target actively growing susceptible bacteria that are resistant to clinically accepted antibiotics including bacteria that are not growing or are protected in a biofilm environment. In this paper, we compare the in vitro activities of two new semisynthetic glycopeptide antibiotics, MA79 and ERJ390, with two clinically used glycopeptide antibiotics-vancomycin and teicoplanin. The new antibiotics effectively killed not only exponentially growing cells of Staphylococcus aureus, but also cells in the stationary growth phase and biofilm.

20.
Antibiotics (Basel) ; 10(10)2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34680834

RESUMEN

The emergence of antibiotic-resistant pathogenic bacteria in recent decades leads us to an urgent need for the development of new antibacterial agents. The species of the genus Amycolatopsis are known as producers of secondary metabolites that are used in medicine and agriculture. The complete genome sequences of the Amycolatopsis demonstrate a wide variety of biosynthetic gene clusters, which highlights the potential ability of actinomycetes of this genus to produce new antibiotics. In this review, we summarize information about antibiotics produced by Amycolatopsis species. This knowledge demonstrates the prospects for further study of this genus as an enormous source of antibiotics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA