Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-39207679

RESUMEN

Non-invasive monitoring of glucose levels in tears and saliva is crucial for diagnosing and predicting various illnesses, such as diabetic nephropathy. However, the capability of the current glucose detection methods to identify small amounts of glucose with a high sensitivity remains a significant obstacle. This study proposes a simple, visual technique for sensitively detecting glucose levels from tears and saliva using glucose oxidase (GOx) to catalyze glucose and pistol-like DNAzyme (PLDz) to enhance the signal. In particular, the ß-D-glucose present in the samples serves as the initial molecule that GOx identifies and catalyzes to generate gluconic acid and hydrogen peroxide (H2O2). The H2O2 induces the self-cleavage of PLDz, activating the "part b" sequence. This activation initiates catalytic hairpin assembly (CHA) and releases the DNAzyme section in the H1 probe. The DNAzyme acts as a peroxidase analog, facilitating the catalysis of the 3,3',5,5'-tetramethylbenzidine (TMB)-hydrogen peroxide (H2O2) system and resulting in color changes. The proposed method exhibits a broad detection range of six orders of magnitude and a low limit of 0.32 µM for glucose detection. Furthermore, the proposed method was highly effective in detecting glucose in saliva and tears, suggesting that it could potentially diagnose hyperglycemia-related disorders in clinical environments.

2.
Acta Biomater ; 182: 245-259, 2024 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-38729545

RESUMEN

Diabetic wound healing is a great clinical challenge due to the microenvironment of hyperglycemia and high pH value, bacterial infection and persistent inflammation. Here, we develop a cascade nanoreactor hydrogel (Arg@Zn-MOF-GOx Gel, AZG-Gel) with arginine (Arg) loaded Zinc metal organic framework (Zn-MOF) and glucose oxidase (GOx) based on chondroitin sulfate (CS) and Pluronic (F127) to accelerate diabetic infected wound healing. GOx in AZG-Gel was triggered by hyperglycemic environment to reduce local glucose and pH, and simultaneously produced hydrogen peroxide (H2O2) to enable Arg-to release nitric oxide (NO) for inflammation regulation, providing a suitable microenvironment for wound healing. Zinc ions (Zn2+) released from acid-responsive Zn-MOF significantly inhibited the proliferation and biofilm formation of S.aureus and E.coli. AZG-Gel significantly accelerated diabetic infected wound healing by down-regulating pro-inflammatory tumor necrosis factor (TNF)-α and interleukin (IL)-6, up-regulating anti-inflammatory factor IL-4, promoting angiogenesis and collagen deposition in vivo. Collectively, our nanoreactor cascade strategy combining "endogenous improvement (reducing glucose and pH)" with "exogenous resistance (anti-bacterial and anti-inflammatory)" provides a new idea for promoting diabetic infected wound healing by addressing both symptoms and root causes. STATEMENT OF SIGNIFICANCE: A cascade nanoreactor (AZG-Gel) is constructed to solve three key problems in diabetic wound healing, namely, hyperglycemia and high pH microenvironment, bacterial infection and persistent inflammation. Local glucose and pH levels are reduced by GOx to provide a suitable microenvironment for wound healing. The release of Zn2+ significantly inhibits bacterial proliferation and biofilm formation, and NO reduces wound inflammation and promotes angiogenesis. The pH change when AZG-Gel is applied to wounds is expected to enable the visualization of wound healing to guide the treatment of diabetic wound. Our strategy of "endogenous improvement (reducing glucose and pH)" combined with "exogenous resistance (anti-bacterial and anti-inflammatory)" provides a new way for promoting diabetic wound healing.


Asunto(s)
Glucosa Oxidasa , Estructuras Metalorgánicas , Óxido Nítrico , Cicatrización de Heridas , Zinc , Cicatrización de Heridas/efectos de los fármacos , Animales , Zinc/química , Zinc/farmacología , Óxido Nítrico/metabolismo , Estructuras Metalorgánicas/farmacología , Estructuras Metalorgánicas/química , Glucosa Oxidasa/farmacología , Glucosa Oxidasa/metabolismo , Diabetes Mellitus Experimental/patología , Microambiente Celular/efectos de los fármacos , Ratones , Hidrogeles/química , Hidrogeles/farmacología , Masculino , Staphylococcus aureus/efectos de los fármacos , Biopelículas/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/química , Arginina/farmacología , Arginina/química
3.
Int J Mol Sci ; 24(17)2023 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-37685946

RESUMEN

Research in the treatment of type 1 diabetes has been addressed into two main areas: the development of "intelligent insulins" capable of auto-regulating their own levels according to glucose concentrations, or the exploitation of artificial intelligence (AI) and its learning capacity, to provide decision support systems to improve automated insulin therapy. This review aims to provide a synthetic overview of the current state of these two research areas, providing an outline of the latest development in the search for "intelligent insulins," and the results of new and promising advances in the use of artificial intelligence to regulate automated insulin infusion and glucose control. The future of insulin treatment in type 1 diabetes appears promising with AI, with research nearly reaching the possibility of finally having a "closed-loop" artificial pancreas.


Asunto(s)
Diabetes Mellitus Tipo 1 , Insulina , Humanos , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Inteligencia Artificial , Insulina Regular Humana , Inteligencia
4.
Viruses ; 15(9)2023 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-37766357

RESUMEN

Immunosorbent turnip vein clearing virus (TVCV) particles displaying the IgG-binding domains D and E of Staphylococcus aureus protein A (PA) on every coat protein (CP) subunit (TVCVPA) were purified from plants via optimized and new protocols. The latter used polyethylene glycol (PEG) raw precipitates, from which virions were selectively re-solubilized in reverse PEG concentration gradients. This procedure improved the integrity of both TVCVPA and the wild-type subgroup 3 tobamovirus. TVCVPA could be loaded with more than 500 IgGs per virion, which mediated the immunocapture of fluorescent dyes, GFP, and active enzymes. Bi-enzyme ensembles of cooperating glucose oxidase and horseradish peroxidase were tethered together on the TVCVPA carriers via a single antibody type, with one enzyme conjugated chemically to its Fc region, and the other one bound as a target, yielding synthetic multi-enzyme complexes. In microtiter plates, the TVCVPA-displayed sugar-sensing system possessed a considerably increased reusability upon repeated testing, compared to the IgG-bound enzyme pair in the absence of the virus. A high coverage of the viral adapters was also achieved on Ta2O5 sensor chip surfaces coated with a polyelectrolyte interlayer, as a prerequisite for durable TVCVPA-assisted electrochemical biosensing via modularly IgG-assembled sensor enzymes.


Asunto(s)
Colorantes Fluorescentes , Polietilenglicoles , Polielectrolitos , Inmunoglobulina G
5.
J Chem Ecol ; 49(9-10): 518-527, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37432514

RESUMEN

Caterpillar salivary glucose oxidase (GOX) can function as both an elicitor or as an effector of plant defense responses depending upon the system. Treatment with GOX reduces the stomatal aperture of tomato and soybean leaves, thereby reducing the emission of volatile organic compounds (VOCs), that are important indirect defense responses of plants by attracting natural enemies of the caterpillars. Here we examined the effect of fungal GOX (fungal glucose oxidases have been used to determine specificity in defense response elicitation) on stomatal closure of maize leaves and on the volatile emission pattern whole maize plants. We also used salivary gland homogenate from wild-type and CRISPR-Cas9 Helicoverpa zea mutants deficient in GOX activity to determine the effect caterpillar saliva with and without GOX had on maize volatile emission. Collecting volatiles at 2-hour intervals allowed us to examine the changes in emission over time. Fungal GOX reduced the stomatal aperture in maize leaves, which may have influenced the observed significant reduction in total green leaf volatile (GLV) emission. Furthermore, fungal GOX significantly increased the emission of several key terpenes: linalool, DMNT, and Z-ß-farnesene from maize, while salivary gland homogenate from wild type (WT; GOX+) H. zea increased the emission of α-pinene, ß-pinene, and ocimene compared to H. zea unable to synthesize GOX. This study addressed a significant knowledge gap about the effect of GOX on maize volatiles and provides a baseline for further research on the effect of GOX on the regulation of terpene synthase genes and their relation to terpene volatile emission.


Asunto(s)
Mariposas Nocturnas , Terpenos , Animales , Terpenos/farmacología , Zea mays/fisiología , Glucosa Oxidasa , Hojas de la Planta
6.
J Biomol Struct Dyn ; 41(24): 15234-15242, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36914234

RESUMEN

Diabetes mellitus is one of the foremost global concerns, as it has impacted millions of lives. Therefore, there is an urgent need to develop a technology for continuous glucose monitoring in vivo. In the current study, we employed computational methods such as docking, MD simulations, and MM/GBSA, to obtain molecular insights into the interaction between (ZnO)12 nanocluster and glucose oxidase (GOx) that cannot be obtained through experiments alone. For this, theoretical modeling of the 3D cage-like (ZnO)12 nanocluster in ground state configuration was performed. Further docking of (ZnO)12 nanocluster with GOx molecule was carried out to find the nano-bio-interaction of (ZnO)12-GOx complex. To understand the whole interaction and dynamics of (ZnO)12-GOx-FAD-with and without glucose, we performed MD simulation and MM/GBSA analysis of (ZnO)12-GOx-FAD complex and glucose-(ZnO)12-GOx-FAD complex separately. The interaction was found to be stable, and the binding energy of (ZnO)12 to GOx-FAD increases in the presence of glucose by 6 kcal mol-1. This may be helpful in nano probing of the interaction of GOx with glucose. It can help in making a device like fluorescence resonance energy transfer (FRET) based nano-biosensor to monitor the glucose level in pre and post diabetic patient.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Técnicas Biosensibles , Óxido de Zinc , Humanos , Glucosa/química , Glucemia , Glucosa Oxidasa/química , Glucosa Oxidasa/metabolismo , Óxido de Zinc/química , Automonitorización de la Glucosa Sanguínea , Técnicas Biosensibles/métodos
7.
Sensors (Basel) ; 23(1)2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36617063

RESUMEN

In this study, we designed a new biosensing membrane for the development of an electrochemical glucose biosensor. To proceed, we used a chitosan-based hydrogel that entraps glucose oxidase enzyme (GOx), and we crosslinked the whole matrix using glutaraldehyde, which is known for its quick and reactive crosslinking behavior. Then, the stability of the designed biosensors was investigated over time, according to different storage conditions (in PBS solution at temperatures of 4 °C and 37 °C and in the presence or absence of glucose). In some specific conditions, we found that our biosensor is capable of maintaining its stability for more than six months of storage. We also included catalase to protect the biosensing membranes from the enzymatic reaction by-products (e.g., hydrogen peroxide). This design protects the biocatalytic activity of GOx and enhances the lifetime of the biosensor.


Asunto(s)
Técnicas Biosensibles , Quitosano , Glucosa Oxidasa , Glucosa , Enzimas Inmovilizadas , Electrodos
8.
ACS Appl Bio Mater ; 5(6): 2536-2542, 2022 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-35535955

RESUMEN

Mild-temperature photothermal therapy (PTT) is being extensively explored because it causes less injury to normal cells. However, the effect of mild-temperature PTT is decreased because of heat shock protein (HSP) overexpression. To solve this problem, we designed functional conjugated polymer nanoparticles (CPNs-G) that enhance the mild-temperature photothermal effect. Upon near-infrared (NIR) light irradiation, CPNs-G generate local heat to realize the photothermal effect. Meanwhile, the increased temperature enhances the catalytic activity of GOx, thus impeding the generation of adenosine triphosphate (ATP) and inhibiting HSP expression. Therefore, this work provides a strategy for overcoming thermoresistance through an enzyme-mediated starvation effect regulated by NIR light.


Asunto(s)
Hipertermia Inducida , Nanopartículas , Nanopartículas/uso terapéutico , Fototerapia , Polímeros , Temperatura
9.
Molecules ; 26(19)2021 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-34641443

RESUMEN

Chemodynamic therapy (CDT) based on intracellular Fenton reactions is attracting increasing interest in cancer treatment. A simple and novel method to regulate the tumor microenvironment for improved CDT with satisfactory effectiveness is urgently needed. Therefore, glutathione (GSH)/ROS (reactive oxygen species) dual-responsive supramolecular nanoparticles (GOx@BNPs) for chemo-chemodynamic combination therapy were constructed via host-guest complexation between water-soluble pillar[6]arene and the ferrocene-modified natural anticancer product betulinic acid (BA) prodrug, followed by encapsulation of glucose oxidase (GOx) in the nanoparticles. The novel supramolecular nanoparticles could be activated by the overexpressed GSH and ROS in the tumor microenvironment (TME), not only accelerating the dissociation of nanoparticles-and, thus, improving the BA recovery and release capability in tumors-but also showing the high-efficiency conversion of glucose into hydroxyl radicals (·OH) in succession through intracellular Fenton reactions. Investigation of antitumor activity and mechanisms revealed that the dramatic suppression of cancer cell growth induced by GOx@BNPs was derived from the elevation of ROS, decrease in ATP and mitochondrial transmembrane potential (MTP) and, finally, cell apoptosis. This work presents a novel method for the regulation of the tumor microenvironment for improved CDT, and the preparation of novel GSH/ROS dual-responsive supramolecular nanoparticles, which could exert significant cytotoxicity against cancer cells through the synergistic interaction of chemodynamic therapy, starvation therapy, and chemotherapy (CDT/ST/CT).


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Glutatión/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Triterpenos Pentacíclicos/farmacología , Profármacos/farmacología , Compuestos de Amonio Cuaternario/farmacología , Especies Reactivas de Oxígeno/metabolismo , Antineoplásicos Fitogénicos/farmacología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Quimioterapia Combinada , Femenino , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Nanopartículas/administración & dosificación , Nanopartículas/química , Células Tumorales Cultivadas , Ácido Betulínico
10.
Nanomaterials (Basel) ; 11(8)2021 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-34443722

RESUMEN

Carbon-based electrodes have demonstrated great promise as electrochemical transducers in the development of biosensors. More recently, laser-induced graphene (LIG), a graphene derivative, appears as a great candidate due to its superior electron transfer characteristics, high surface area and simplicity in its synthesis. The continuous interest in the development of cost-effective, more stable and reliable biosensors for glucose detection make them the most studied and explored within the academic and industry community. In this work, the electrochemistry of glucose oxidase (GOx) adsorbed on LIG electrodes is studied in detail. In addition to the well-known electroactivity of free flavin adenine dinucleotide (FAD), the cofactor of GOx, at the expected half-wave potential of -0.490 V vs. Ag/AgCl (1 M KCl), a new well-defined redox pair at 0.155 V is observed and shown to be related to LIG/GOx interaction. A systematic study was undertaken in order to understand the origin of this activity, including scan rate and pH dependence, along with glucose detection tests. Two protons and two electrons are involved in this reaction, which is shown to be sensitive to the concentration of glucose, restraining its origin to the electron transfer from FAD in the active site of GOx to the electrode via direct or mediated by quinone derivatives acting as mediators.

11.
Sensors (Basel) ; 21(12)2021 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-34207185

RESUMEN

Bioanalytical methods, in particular electrochemical biosensors, are increasingly used in different industrial sectors due to their simplicity, low cost, and fast response. However, to be able to reliably use this type of device, it is necessary to undertake in-depth evaluation of their fundamental analytical parameters. In this work, analytical parameters of an amperometric biosensor based on covalent immobilization of glucose oxidase (GOx) were evaluated. GOx was immobilized using plasma-grafted pentafluorophenyl methacrylate (pgPFM) as an anchor onto a tailored HEMA-co-EGDA hydrogel that coats a titanium dioxide nanotubes array (TiO2NTAs). Finally, chitosan was used to protect the enzyme molecules. The biosensor offered outstanding analytical parameters: repeatability (RSD = 1.7%), reproducibility (RSD = 1.3%), accuracy (deviation = 4.8%), and robustness (RSD = 2.4%). In addition, the Ti/TiO2NTAs/ppHEMA-co-EGDA/pgPFM/GOx/Chitosan biosensor showed good long-term stability; after 20 days, it retained 89% of its initial sensitivity. Finally, glucose concentrations of different food samples were measured and compared using an official standard method (HPLC). Deviation was lower than 10% in all measured samples. Therefore, the developed biosensor can be considered to be a reliable analytical tool for quantification measurements.


Asunto(s)
Técnicas Biosensibles , Nanotubos , Electrodos , Enzimas Inmovilizadas , Glucosa , Glucosa Oxidasa , Reproducibilidad de los Resultados
12.
Carbohydr Polym ; 253: 117239, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33278995

RESUMEN

Novel microwave-assisted green in-situ synthesis of positively charged gold nanoparticles (AuNPs) supported by cationic cellulose nanofibrils (C.CNF) within 30 s and devoid of additional reducing agent is reported. Peroxidase activity of these positive AuNPs was studied and that appeared to be superior over its negative charged counterpart. Further the AuNPs@C.CNF is casted into a film which makes it reusable. Using TMB substrate, simple and sensitive colorimetric detection methods for H2O2 and glucose were established. Under optimal conditions, the linear ranges were found to be 0.5-30 µM and 1-60 µM, and the detection limits were 0.30 and 0.67 µM for H2O2 and glucose, respectively. The film was potentially reused for the detection of glucose up to five cycles without a decrease in the activity. Further, this technique was employed to quantify glucose in human serum samples, and the obtained results were comparable with those of the standard GOD-POD method.


Asunto(s)
Glucemia/análisis , Cationes/química , Celulosa/química , Oro/química , Nanopartículas del Metal/química , Nanofibras/química , Reciclaje , Donantes de Sangre , Colorimetría/métodos , Humanos , Peróxido de Hidrógeno/análisis , Cinética , Límite de Detección , Peroxidasa/química , Sustancias Reductoras/química
13.
ACS Appl Mater Interfaces ; 12(13): 15023-15033, 2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-32156109

RESUMEN

Introducing an efficient method for the rapid conversion of starch into gluconic acid is desirable to solve the current problems existing in traditional gluconic acid preparation processes. In this study, a robust and easy-to-use multienzymatic cascade reaction system of coimmobilized GA@GOx hybrid nanoflowers with a specific spatial distribution of enzymes by compartmentalization was constructed and applied to catalyze starch to gluconic acid in one pot. In the preparation processes, the glucose oxidase (GOx) hybrid nanoflowers were first synthesized via a self-assembly mechanism, and then, glucoamylase (GA) was adsorbed on the surface of GOx hybrid nanoflowers through the interaction of Cu2+ and amino acids of GA. The optimum preparation conditions and reaction parameters of the GA@GOx hybrid nanoflowers had been investigated. In addition, the morphology, composition, and crystallization of the GA@GOx hybrid nanoflowers had been fully studied. Based on the lower Km, the GA@GOx hybrid nanoflowers with compartmentalization had a better effect of the substrate channeling on the catalytic efficiency. The final results indicated that the overall enzyme activity of the GA@GOx hybrid nanoflowers increased by 1.5 times, and the conversion efficiency was 92.12% within 80 min significantly superior to the free multienzyme system, which showed the outstanding conversion of starch into gluconic acid in one pot.


Asunto(s)
Glucano 1,4-alfa-Glucosidasa/metabolismo , Gluconatos/química , Glucosa Oxidasa/metabolismo , Nanoestructuras/química , Almidón/química , Biocatálisis , Estabilidad de Enzimas , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Glucano 1,4-alfa-Glucosidasa/química , Glucosa Oxidasa/química , Concentración de Iones de Hidrógeno , Cinética , Temperatura
14.
Biotechnol Bioeng ; 115(10): 2405-2415, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29959868

RESUMEN

Glucose oxidase (GOx) is of high industrial interest for glucose sensing because of its high ß-d-glucose specificity. The efficient and specific electrochemical communication between the redox center and electrodes is crucial to ensure accurate glucose determination. The efficiency of the electron transfer rates (ETR) with GOx, together with quinone diamine based mediators, is low and differs even among mediator derivatives. To design optimized enzyme-mediator couples and to describe a mediator binding model, a joint experimental and computational study was performed based on an oxygen-independent GOx variant V7 and two quinone diimine based electron mediators (QDM-1 and QDM-2), which differ in polarity and size, and ferrocenemethanol (FM). A site saturation library at position 414 was screened with all three mediators and yielded four beneficial substitutions Tyr, Met, Leu, and Val. The variants showed increased mediator activity for the more polar QDM-2 with a simultaneously decreased activity for the less polar and smaller QDM-1 and for FM. The variant GOx V7-I414Y exhibited the biggest change for the quinone diimine derivatives compared with V7 (QDM-1: 55.9 U/mg V7, 33.2 U/mg V7-I414Y; QDM-2: 2.7 U/mg V7, 12.9 U/mg V7-I414Y). Theoretical ETR calculated based on the Marcus theory were in good agreement with the experimental results. Molecular docking studies revealed a preferable binding of the two QD mediators directly in the active site, 3.5 Å away from the N5 atom of the flavin adenine dinucleotide (FAD) and in direct vicinity to position 414. In summary, position 414 in the active site was identified to modulate the electron shuttling from the FAD of the GOx to small water-soluble mediators dependent on the polarity and size of residue 414 and on the polarity and size of the mediator. The presented mediator binding model offers a promising possibility for the design of optimized enzyme-mediator couples.


Asunto(s)
Benzoquinonas/química , Glucosa Oxidasa/química , Glucosa/química , Simulación del Acoplamiento Molecular , Oxígeno/química , Ingeniería de Proteínas , Dominio Catalítico , Transporte de Electrón , Glucosa Oxidasa/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
15.
Talanta ; 173: 36-43, 2017 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-28602189

RESUMEN

In present study, we highlight one-step electrochemical synthesis of nearly uniform size (~ 5nm) of graphene quantum dots (E-GQDs) from wood charcoal and their further application as a peroxidase enzyme mimetic. The structural and optical properties of as-synthesized E-GQDs were probed by TEM, AFM, and spectroscopic techniques. Peroxidase enzyme mimetic potential of E-GQDs were examined for colorimetric detection of H2O2 and glucose. E-GQDs allowed a rapid and sensitive detection of glucose with a detection limit of 0.006mM for dynamic response range of 0.01-0.6mM. The calculated higher value of Vmax (7.2 × 10-7Ms-1) along with lower Km (0.012mM) corroborate enhanced the peroxidase-like activity of E-GQDs. Study introduces a cheap and widely available raw material for the electrochemical synthesis of graphene quantum dots with commendable enzyme mimetic activity which may have a huge impact in developing calorimetric bioanalysis systems.


Asunto(s)
Materiales Biomiméticos/química , Carbón Orgánico/química , Grafito/química , Peroxidasa/metabolismo , Puntos Cuánticos/química , Madera/química , Colorimetría , Electroquímica , Glucosa/análisis , Glucosa/química , Peróxido de Hidrógeno/análisis , Peróxido de Hidrógeno/química , Oxidación-Reducción
16.
Colloids Surf B Biointerfaces ; 155: 104-110, 2017 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-28411475

RESUMEN

Poly(3-hexylthiophene) (P3HT) is utilized as a material to enhance the glucose sensing performance of glucose oxidase (GOx) Langmuir-Blodgett (LB) films. To enhance the extensibility and homogeneity of the P3HT in the LB films, octadecylamine (ODA) is introduced. The characteristics of the mixed P3HT/ODA Langmuir monolayers are investigated first and then, utilized as template layers to adsorb GOx from the subphase, preparing P3HT/ODA/GOx Langmuir-Blodgett films for glucose sensing. The results show that P3HT molecules tend to aggregate at the air/liquid interface and, furthermore, the P3HT monolayer has a weak ability to adsorb GOx from the subphase. By using mixed P3HT/ODA monolayer, the presence of ODA not only inhibits the aggregation of P3HT, but also increases the adsorption ability of the monolayer to GOx. The extensibility of P3HT and the homogeneity of the P3HT/ODA monolayers are closely related to the concentration of P3HT/ODA stock solutions. On the glucose sensing experiments, the performance of the P3HT/ODA/GOx LB film is greatly improved due to the presence of P3HT and, furthermore, the sensibility increases with increasing extensibility of P3HT molecules. The best sensitivity achieved for the P3HT/ODA/GOx film is 5.4µAmM-1cm-2 which is over two times the value obtained by the ODA/GOx film (2.3µAmM-1cm-2).


Asunto(s)
Aminas/química , Técnicas Biosensibles/métodos , Enzimas Inmovilizadas/química , Glucosa Oxidasa/química , Glucosa/análisis , Tiofenos/química , Adsorción , Silicatos de Aluminio/química , Tampones (Química) , Técnicas Electroquímicas , Membranas Artificiales , Estructura Secundaria de Proteína , Soluciones , Propiedades de Superficie
17.
Anal Bioanal Chem ; 409(14): 3623-3632, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28331958

RESUMEN

A versatile and universal DNA sensing platform is presented based on enzyme-DNA binding protein tags conjugates and simple DNA nanostructures. Two enzyme conjugates were thus prepared, with horseradish peroxidase linked to the dimeric single-chain bacteriophage Cro repressor protein (HRP-scCro) and glucose oxidase linked to the dimeric headpiece domain of Escherichia coli LacI repressor protein (GOx-dHP), and used in conjunction with a hybrid ssDNA-dsDNA detection probe. This probe served as a simple DNA nanostructure allowing first for target recognition through its target-complementary single-stranded DNA (ssDNA) part and then for signal generation after conjugate binding on the double-stranded DNA (dsDNA) containing the specific binding sites for the dHP and scCro DNA binding proteins. The DNA binding proteins chosen in this work have different sequence specificity, high affinity, and lack of cross-reactivity. The proposed sensing system was validated for the detection of model target ssDNA from high-risk human papillomavirus (HPV16) and the limits of detection of 45, 26, and 21 pM were achieved using the probes with scCro/dHP DNA binding sites ratio of 1:1, 2:1, and 1:2, respectively. The performance of the platform in terms of limit of detection was comparable to direct HRP systems using target-specific oligonucleotide-HRP conjugates. The ratio of the two enzymes can be easily manipulated by changing the number of binding sites on the detection probe, offering further optimization possibilities of the signal generation step. Moreover, since the signal is obtained in the absence of externally added hydrogen peroxide, the described platform is compatible with paper-based assays for molecular diagnostics applications. Finally, just by changing the ssDNA part of the detection probe, this versatile nucleic acid platform can be used for the detection of different ssDNA target sequences or in a multiplex detection configuration without the need to change any of the conjugates. Graphical abstract DNA sensing platform based on an immobilized ssDNA capture probe and a hybrid ssDNA-dsDNA detection probe that specifically hybridize with the ssDNA target. The hybrid ssDNA-dsDNA detection probe also provides the binding sites for the enzyme-DNA binding protein conjugates (HRP-scCro and GOx-dHP) that generate the colorimetric signal.


Asunto(s)
Alphapapillomavirus/aislamiento & purificación , Técnicas Biosensibles/métodos , ADN Viral/análisis , Ácidos Nucleicos Inmovilizados/química , Nanoestructuras/química , Hibridación de Ácido Nucleico/métodos , Armoracia/enzimología , Aspergillus niger/enzimología , Bacteriófagos/química , ADN/análisis , Sondas de ADN/química , ADN de Cadena Simple/química , Enzimas Inmovilizadas/química , Escherichia coli/química , Proteínas de Escherichia coli/química , Glucosa Oxidasa/química , Peroxidasa de Rábano Silvestre/química , Humanos , Represoras Lac/química , Infecciones por Papillomavirus/virología , Proteínas Represoras/química , Proteínas Reguladoras y Accesorias Virales/química
18.
New Phytol ; 214(3): 1294-1306, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28170113

RESUMEN

Insect gut-associated microbes modulating plant defenses have been observed in beetles and piercing-sucking insects, but the role of caterpillar-associated bacteria in regulating plant induced defenses has not been adequately examined. We identified bacteria from the regurgitant of field-collected Helicoverpa zea larvae using 16S ribosomal RNA (rRNA) gene sequencing and matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) mass spectrometry. A combination of biochemical, molecular, and confocal electron microscopy methods were used to determine the role of caterpillar-associated bacteria in mediating defenses in Solanum lycopersicum (tomato). Laboratory-reared H. zea inoculated with one of the bacteria identified in field-collected H. zea, Enterobacter ludwigii, induced expression of the tomato defense-related enzyme polyphenol oxidase and genes regulated by jasmonic acid (JA), whereas the salicylic acid (SA)-responsive pathogenesis-related gene was suppressed. Additionally, saliva and its main component glucose oxidase from inoculated caterpillars played an important role in elevating tomato anti-herbivore defenses. However, there were only low detectable amounts of regurgitant or bacteria on H. zea-damaged tomato leaves. Our results suggest that H. zea gut-associated bacteria indirectly mediate plant-insect interactions by triggering salivary elicitors. These findings provide a proof of concept that introducing gut bacteria to a herbivore may provide a novel approach to pest management through indirect induction of plant resistance.


Asunto(s)
Sistema Digestivo/microbiología , Enterobacter/fisiología , Lepidópteros/microbiología , Saliva/metabolismo , Solanum lycopersicum/inmunología , Animales , Catecol Oxidasa/metabolismo , Ciclopentanos , Glucosa Oxidasa/metabolismo , Herbivoria , Larva/microbiología , Solanum lycopersicum/enzimología , Oxilipinas
19.
Int J Mol Sci ; 17(11)2016 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-27801788

RESUMEN

Glucose oxidase (GOx) is an enzyme produced by Aspergillus, Penicillium and other fungi species. It catalyzes the oxidation of ß-d-glucose (by the molecular oxygen or other molecules, like quinones, in a higher oxidation state) to form d-glucono-1,5-lactone, which hydrolyses spontaneously to produce gluconic acid. A coproduct of this enzymatic reaction is hydrogen peroxide (H2O2). GOx has found several commercial applications in chemical and pharmaceutical industries including novel biosensors that use the immobilized enzyme on different nanomaterials and/or polymers such as polyethylenimine (PEI). The problem of GOx immobilization on PEI is retaining the enzyme native activity despite its immobilization onto the polymer surface. Therefore, the molecular dynamic (MD) study of the PEI ligand (C14N8_07_B22) and the GOx enzyme (3QVR) was performed to examine the final complex PEI-GOx stabilization and the affinity of the PEI ligand to the docking sites of the GOx enzyme. The docking procedure showed two places/regions of major interaction of the protein with the polymer PEI: (LIG1) of -5.8 kcal/mol and (LIG2) of -4.5 kcal/mol located inside the enzyme and on its surface, respectively. The values of enthalpy for the PEI-enzyme complex, located inside of the protein (LIG1) and on its surface (LIG2) were computed. Docking also discovered domains of the GOx protein that exhibit no interactions with the ligand or have even repulsive characteristics. The structural data clearly indicate some differences in the ligand PEI behavior bound at the two places/regions of glucose oxidase.


Asunto(s)
Enzimas Inmovilizadas/química , Glucosa Oxidasa/química , Sustancias Macromoleculares/química , Polietileneimina/química , Aspergillus niger/enzimología , Catálisis , Glucosa/metabolismo , Glucosa Oxidasa/metabolismo , Peróxido de Hidrógeno/química , Ligandos , Sustancias Macromoleculares/metabolismo , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Oxidación-Reducción , Polietileneimina/metabolismo , Conformación Proteica
20.
Bioelectrochemistry ; 106(Pt A): 3-13, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26257008

RESUMEN

A 1-D mathematical model of a porous enzymatic electrode exhibiting the mediated electron transfer (MET) mechanism has been developed. As a model system, glucose oxidation catalyzed by immobilized glucose oxidase (GOx) in the presence of a co-immobilized tetrathiafulvalene (TTF) mediator in the porous electrode matrix has been selected. The balance equations for potential fields in the electron- and ion-conducting phases as well as concentration field have been formulated, solved numerically and validated experimentally under steady state conditions. The relevant kinetic parameters of the lumped reaction kinetics have been obtained by global optimization. The confidence intervals (CIs) of each parameter have been extracted from the respective likelihood. The parameter study has shown that the parameters related to mediator consumption/regeneration steps can be responsible for the shift of the reaction onset potential. Additionally, the model has shown that diffusion of the oxidized mediator out of the catalyst layer (CL) plays a significant role only at more positive potentials and low glucose concentrations. Only concentration profiles in different layers influence the electrode performance while other state fields like potential distributions in different phases have no impact on the performance. The concentration profiles reveal that all electrodes work through; the observed limiting currents are diffusion-reaction limiting. The normalized electrode activity decreases with an increase of enzyme loading. According to the model, the reason for this observation is glucose depletion along the CL at higher enzyme loadings. Comparison with experiments advices a decrease of enzyme utilization at higher enzyme loadings.


Asunto(s)
Glucosa Oxidasa/química , Glucosa Oxidasa/metabolismo , Modelos Químicos , Aspergillus niger/enzimología , Biocatálisis , Electroquímica , Electrodos , Transporte de Electrón , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Glucosa/química , Compuestos Heterocíclicos/química , Porosidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA