Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Intervalo de año de publicación
1.
Biomedicines ; 11(4)2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37189777

RESUMEN

Despite the availability of many glucose-lowering drugs, patients with type 2 diabetes mellitus (T2DM) often do not achieve the desired effect, and cardiovascular complications remain the leading cause of death in this group of patients. Recently, more and more attention has been paid to the properties of drugs, with particular emphasis on the possibility of reducing cardiovascular risk. One of them is liraglutide, which belongs to long-acting analogs of glucagon-like peptides-1 (GLP-1); it imitates incretins and causes an increase in insulin secretion. The current study focused on analyzing the efficacy and safety of liraglutide, as well as its impact on microvascular and cardiovascular outcomes in the treatment of patients with T2DM. Hyperglycemia-induced endothelial dysfunction, which is known to play a key role in maintaining cardiovascular homeostasis, is common in diabetes. Liraglutide reduces endothelial dysfunction by reversing damage to endothelial cells. By reducing the generation of reactive oxygen species (ROS), thereby affecting Bax, Bcl-2 protein levels, and restoring signaling pathways, Liraglutide reduces oxidative stress, inflammation, and prevents endothelial cell apoptosis. Liraglutide has beneficial effects on the cardiovascular system; patients with high cardiovascular risk particularly benefit from treatment, as it reduces their major adverse cardiovascular event (MACE) rate, which takes into account cardiovascular death, stroke, and non-fatal myocardial infarction. Liraglutide reduces the occurrence and progression of nephropathy, which is one of the most common microvascular complications of diabetes.

2.
Chinese Journal of Diabetes ; (12): 1134-1137, 2015.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-672247

RESUMEN

[Summary] Bile acid is a main component of bile ,which plays a key role in keeping cholesterol metabolism balance in vivo and promoting lipids digestion in intestine. Recently ,more and more researches focus on bile acid for its regulating effect on glucose ,lipid and energy metabolism as a signal molecule. The reabsorbed bile acid stimulates the secretion of fibroblast growth factor 19 (FGF19) and glucagon-like peptide-1(GLP-1) in the intestine by activating a nuclear receptor farnesoid X-activated receptor (FXR) and a membrane receptor TGR5. FGF19 and GLP-1 regulate hepatic glucose metabolism through different pathways. Here ,we briefly summarize the research progress and relationship between bile acid induced gut hormones and hepatic glucose metabolism.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA