Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 148
Filtrar
1.
Heliyon ; 10(15): e35362, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39170309

RESUMEN

Mahvash disease, a rare autosomal recessive metabolic disorder characterized by biallelic loss-of-function mutations in the glucagon receptor gene (GCGR), induces significant pancreatic hyperglucagonemia, resulting in α-cell hyperplasia and occasional hypoglycemia. Utilizing CRISPR-Cas9 technology, we engineered a mouse model, designated as Gcgr V369M/V369M, harboring a homozygous V369M substitution in the glucagon receptor (GCGR). Although wild-type (WT) and Gcgr V369M/V369M mice exhibited no discernible difference in appearance or weight, adult Gcgr V369M/V369M mice, approximately 12 months of age, displayed a notable decrease in fasting blood glucose levels and elevated the levels of cholesterol and low-density lipoprotein-cholesterol. Moreover, plasma amino acid levels such as alanine (Ala), proline (Pro) and arginine (Arg) were elevated in Gcgr V369M/V369M mice contributing to α-cell proliferation and hyperglucagonemia. Despite sustained α-cell hyperplasia and increased circulating glucagon levels in Gcgr V369M/V369M mice, metabolic disparities between the two groups gradually waned with age accompanied by a reduction in α-cell hyperplasia. Throughout the lifespan of the mice (up to approximately 30 months), pancreatic neuroendocrine tumors (PNETs) did not manifest. This prolonged observation of metabolic alterations in Gcgr V369M/V369M mice furnishes valuable insights for a deeper comprehension of mild Mahvash disease in humans.

2.
Diabetes Ther ; 15(10): 2183-2196, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39008234

RESUMEN

INTRODUCTION: ISIS 449884, a 2'-O-methoxyethyl antisense oligonucleotide that targets the glucagon receptor (GCGR), has demonstrated an ability to reduce hepatic glucose output and lower the blood glucose level. The primary objective of this study was to investigate the safety and efficacy of ISIS 449884 as an add-on to metformin in a population of Chinese patients with type 2 diabetes mellitus (T2DM). METHOD: This was a multicenter, placebo-controlled (2:1), randomized, double-blind, parallel-enrollment, multiple-dose phase II study in Chinese patients with T2DM. A total of 90 patients who were uncontrolled by stable metformin monotherapy were randomized into three cohorts. Thirty subjects were enrolled in each cohort and received injections of ISIS 449884 (50 mg or 60 mg weekly or 100 mg every other week) or a corresponding volume of placebo (0.25 mL and 0.3 mL weekly or 0.5 mL every other week) subcutaneously in a 2:1 ratio for 16 weeks. RESULTS: The primary efficacy endpoint was analyzed in 88 subjects (ISIS 449884, n = 59; placebo, n = 29). The corrected LS mean change from baseline in glycated hemoglobin (HbA1c) at week 17 in the pooled ISIS 449884 treatment group was - 1.31% (95% CI - 1.66%, - 0.96%), and that in the pooled placebo group was 0.15% (95% CI - 0.37%, 0.66%). The LS mean difference between the two groups was - 1.46% (95% CI - 1.92%, - 1.00%, P < 0.001). Treatment-emergent adverse events (TEAEs) occurred in 53/60 subjects (88.3%) and 25/30 subjects (83.3%) in the pooled ISIS 449884 treatment group and the pooled placebo group, respectively, with similar incidences. Drug-related TEAEs occurred in 41/60 subjects (68.3%) and 9/30 subjects (30.0%), respectively. TEAEs of grade 3 or higher occurred in 5/60 (8.3%) subjects and 2/30 (6.7%) subjects, respectively, and none of them were drug related. CONCLUSIONS: The ISIS 449884 injection add-on to metformin significantly reduced HbA1c in patients with T2DM uncontrolled by stable metformin monotherapy and showed an acceptable benefit/risk profile. CLINICAL TRIAL REGISTRATION: www.chinadrugtrials.org.cn , CTR20191096.

3.
Artículo en Inglés | MEDLINE | ID: mdl-38984948

RESUMEN

The secretin-like, class B1 sub-family of seven transmembrane-spanning G protein coupled receptors (GPCRs) consists of 15 members that coordinate important physiological processes. These receptors bind peptide ligands and utilize a distinct mechanism of activation that is driven by evolutionarily conserved structural features. For the class B1 receptors, the C-terminus of the cognate ligand is initially recognized by the receptor via a large N-terminal extracellular domain that forms a hydrophobic ligand binding groove. This binding enables the N-terminus of the ligand to engage deep into a large volume, open transmembrane pocket of the receptor. Importantly, the phylogenetic basis of this ligand-receptor activation mechanism has provided opportunities to engineer analogues of several class B1 ligands for therapeutic use. Among the most successful of these are drugs targeting the glucagon-like peptide-1 (GLP-1) receptor for the treatment of type 2 diabetes and obesity. Recently, multi-functional agonists possessing activity at the GLP-1 receptor and the glucose-dependent insulinotropic polypeptide (GIP) receptor, such as tirzepatide, and others that also contain glucagon receptor activity, have been developed. In this article, we review members of the class B1 GPCR family with focus on receptors for GLP-1, GIP, and glucagon, including their signal transduction and receptor trafficking characteristics. The metabolic importance of these receptors is also highlighted, along with the benefit of poly-pharmacologic ligands. Further, key structural features and comparative analyses of high-resolution cryogenic electron microscopy structures for these receptors in active-state complex with either native ligands or multi-functional agonists are provided, supporting the pharmacological basis of such therapeutic agents.

4.
Domest Anim Endocrinol ; 89: 106874, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39018655

RESUMEN

The role of glucagon disturbances in diabetes mellitus is increasingly recognized and, hence, glucagon antagonism might aid in treatment of hyperglycemia and other metabolic disturbances. The aim of this study was to assess the pharmacokinetics of the glucagon receptor antagonist MK-3577 and its effect on plasma glucose, insulin, and glucagon concentrations in healthy cats. In a cross-over placebo-controlled study, 5 purpose-bred cats were treated with either Placebo, MK-3577 (1 mg/kg), or MK-3577 (3 mg/kg). Glucose, insulin and glucagon concentrations were measured at 0, 15, 225, 240 min post-treatment administration. Glucagon (20 mcg/kg, IM) was administered at 240 min and glucose and insulin were measured at 255, 265, 275, 285 and 300 min. Plasma MK-3577 concentrations peaked at 4.2 and 3.2 hours after 1 and 3 mg/kg dosing with a half-life of 14.8h and 15.5h respectively. Baseline glucose, insulin and glucagon concentrations did not differ significantly between treatment groups. At a dose of 3 mg/kg, MK-3577 blunted the glucagon-stimulated rise of glucose (p=0.0089) and insulin (p=0.02). Similar trends were observed with MK-3577 at the 1 mg/kg dose but the effect was smaller, and not significant. In conclusion, the GRA MK-3577 has a pharmacokinetic profile suitable for diminishing the glucagon-induced rise of glucose and insulin in healthy cats.


Asunto(s)
Glucemia , Estudios Cruzados , Glucagón , Insulina , Sobrepeso , Animales , Gatos , Glucagón/sangre , Insulina/sangre , Masculino , Femenino , Sobrepeso/veterinaria , Enfermedades de los Gatos/tratamiento farmacológico , Receptores de Glucagón/antagonistas & inhibidores , Quinolizinas
5.
Adv Sci (Weinh) ; 11(29): e2400819, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38837628

RESUMEN

Glucagon receptor (GCGR) agonism offers potentially greater effects on the mitigation of hepatic steatosis. However, its underlying mechanism is not fully understood. Here, it screened tetraspanin CD9 might medicate hepatic effects of GCGR agonist. CD9 is decreased in the fatty livers of patients and upregulated upon GCGR activation. Deficiency of CD9 in the liver exacerbated diet-induced hepatic steatosis via complement factor D (CFD) regulated fatty acid metabolism. Specifically, CD9 modulated hepatic fatty acid synthesis and oxidation genes through regulating CFD expression via the ubiquitination-proteasomal degradation of FLI1. In addition, CD9 influenced body weight by modulating lipogenesis and thermogenesis of adipose tissue through CFD. Moreover, CD9 reinforcement in the liver alleviated hepatic steatosis, and blockage of CD9 abolished the remission of hepatic steatosis induced by cotadutide treatment. Thus, CD9 medicates the hepatic beneficial effects of GCGR signaling, and may server as a promising therapeutic target for hepatic steatosis.


Asunto(s)
Hígado Graso , Tetraspanina 29 , Tetraspanina 29/metabolismo , Tetraspanina 29/genética , Animales , Ratones , Humanos , Hígado Graso/metabolismo , Hígado Graso/tratamiento farmacológico , Modelos Animales de Enfermedad , Masculino , Receptores de Glucagón/agonistas , Receptores de Glucagón/metabolismo , Receptores de Glucagón/genética , Ratones Endogámicos C57BL , Hígado/metabolismo , Hígado/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
6.
Biomedicines ; 12(6)2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38927527

RESUMEN

Guidelines for the management of obesity and type 2 diabetes (T2DM) emphasize the importance of lifestyle changes, including a reduced-calorie diet and increased physical activity. However, for many people, these changes can be difficult to maintain over the long term. Medication options are already available to treat obesity, which can help reduce appetite and/or reduce caloric intake. Incretin-based peptides exert their effect through G-protein-coupled receptors, the receptors for glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP), and glucagon peptide hormones are important regulators of insulin secretion and energy metabolism. Understanding the role of intercellular signaling pathways and inflammatory processes is essential for the development of effective pharmacological agents in obesity. GLP-1 receptor agonists have been successfully used, but it is assumed that their effectiveness may be limited by desensitization and downregulation of the target receptor. A growing number of new agents acting on incretin hormones are becoming available for everyday clinical practice, including oral GLP-1 receptor agonists, the dual GLP-1/GIP receptor agonist tirzepatide, and other dual and triple GLP-1/GIP/glucagon receptor agonists, which may show further significant therapeutic potential. This narrative review summarizes the therapeutic effects of different incretin hormones and presents future prospects in the treatment of T2DM and obesity.

7.
J Biol Chem ; 300(8): 107499, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38944125

RESUMEN

Blood amino acid levels are maintained in a narrow physiological range. The pancreatic α cells have emerged as the primary aminoacidemia regulator through glucagon secretion to promote hepatic amino acid catabolism. Interruption of glucagon signaling disrupts the liver-α cells axis leading to hyperaminoacidemia, which triggers a compensatory rise in glucagon secretion and α cell hyperplasia. The mechanisms of hyperaminoacidemia-induced α cell hyperplasia remain incompletely understood. Using a mouse α cell line and in vivo studies in zebrafish and mice, we found that hyperaminoacidemia-induced α cell hyperplasia requires ErbB3 signaling. In addition to mechanistic target of rapamycin complex 1, another ErbB3 downstream effector signal transducer and activator of transcription 3 also plays a role in α cell hyperplasia. Mechanistically, ErbB3 may partner with ErbB2 to stimulate cyclin D2 and suppress p27 via mechanistic target of rapamycin complex 1 and signal transducer and activator of transcription 3. Our study identifies ErbB3 as a new regulator for hyperaminoacidemia-induced α cell proliferation and a critical component of the liver-α cells axis that regulates aminoacidemia.


Asunto(s)
Ciclina D2 , Células Secretoras de Glucagón , Hiperplasia , Diana Mecanicista del Complejo 1 de la Rapamicina , Receptor ErbB-3 , Pez Cebra , Animales , Células Secretoras de Glucagón/metabolismo , Células Secretoras de Glucagón/patología , Receptor ErbB-3/metabolismo , Receptor ErbB-3/genética , Hiperplasia/metabolismo , Hiperplasia/patología , Ratones , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ciclina D2/metabolismo , Ciclina D2/genética , Receptor ErbB-2/metabolismo , Receptor ErbB-2/genética , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción STAT3/genética , Transducción de Señal , Proliferación Celular , Aminoácidos/metabolismo , Línea Celular , Humanos
8.
Diabetologia ; 67(8): 1602-1615, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38705923

RESUMEN

AIMS/HYPOTHESES: Glucagon and glucagon-like peptide-1 (GLP-1) are derived from the same precursor; proglucagon, and dual agonists of their receptors are currently being explored for the treatment of obesity and metabolic dysfunction-associated steatotic liver disease (MASLD). Elevated levels of endogenous glucagon (hyperglucagonaemia) have been linked with hyperglycaemia in individuals with type 2 diabetes but are also observed in individuals with obesity and MASLD. GLP-1 levels have been reported to be largely unaffected or even reduced in similar conditions. We investigated potential determinants of plasma proglucagon and associations of glucagon receptor signalling with metabolic diseases based on data from the UK Biobank. METHODS: We used exome sequencing data from the UK Biobank for ~410,000 white participants to identify glucagon receptor variants and grouped them based on their known or predicted signalling. Data on plasma levels of proglucagon estimated using Olink technology were available for a subset of the cohort (~40,000). We determined associations of glucagon receptor variants and proglucagon with BMI, type 2 diabetes and liver fat (quantified by liver MRI) and performed survival analyses to investigate if elevated proglucagon predicts type 2 diabetes development. RESULTS: Obesity, MASLD and type 2 diabetes were associated with elevated plasma levels of proglucagon independently of each other. Baseline proglucagon levels were associated with the risk of type 2 diabetes development over a 14 year follow-up period (HR 1.13; 95% CI 1.09, 1.17; n=1562; p=1.3×10-12). This association was of the same magnitude across strata of BMI. Carriers of glucagon receptor variants with reduced cAMP signalling had elevated levels of proglucagon (ß 0.847; 95% CI 0.04, 1.66; n=17; p=0.04), and carriers of variants with a predicted frameshift mutation had higher levels of liver fat compared with the wild-type reference group (ß 0.504; 95% CI 0.03, 0.98; n=11; p=0.04). CONCLUSIONS/INTERPRETATION: Our findings support the suggestion that glucagon receptor signalling is involved in MASLD, that plasma levels of proglucagon are linked to the risk of type 2 diabetes development, and that proglucagon levels are influenced by genetic variation in the glucagon receptor, obesity, type 2 diabetes and MASLD. Determining the molecular signalling pathways downstream of glucagon receptor activation may guide the development of biased GLP-1/glucagon co-agonist with improved metabolic benefits. DATA AVAILABILITY: All coding is available through https://github.com/nicwin98/UK-Biobank-GCG.


Asunto(s)
Bancos de Muestras Biológicas , Diabetes Mellitus Tipo 2 , Obesidad , Proglucagón , Receptores de Glucagón , Transducción de Señal , Humanos , Receptores de Glucagón/genética , Receptores de Glucagón/metabolismo , Reino Unido , Femenino , Proglucagón/metabolismo , Proglucagón/genética , Masculino , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/metabolismo , Persona de Mediana Edad , Obesidad/sangre , Anciano , Adulto , Índice de Masa Corporal , Glucagón/sangre , Péptido 1 Similar al Glucagón/sangre , Biobanco del Reino Unido
9.
Int J Mol Sci ; 25(7)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38612640

RESUMEN

Glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are incretins that regulate postprandial glucose regulation, stimulating insulin secretion from pancreatic ß-cells in response to food ingestion. Modified GLP-1 receptor agonists (GLP-1RAs) are being administered for the treatment of obesity and type 2 diabetes mellitus (T2DM). Strongly related to those disorders, metabolic dysfunction-associated steatotic liver disease (MASLD), especially its aggressive form, defined as metabolic dysfunction-associated steatohepatitis (MASH), is a major healthcare burden associated with high morbidity and extrahepatic complications. GLP-1RAs have been explored in MASH patients with evident improvement in liver dysfunction enzymes, glycemic control, and weight loss. Importantly, the combination of GLP-1RAs with GIP and/or glucagon RAs may be even more effective via synergistic mechanisms in amelioration of metabolic, biochemical, and histological parameters of MASLD but also has a beneficial impact on MASLD-related complications. In this current review, we aim to provide an overview of incretins' physiology, action, and signaling. Furthermore, we provide insight into the key pathophysiological mechanisms through which they impact MASLD aspects, as well as we analyze clinical data from human interventional studies. Finally, we discuss the current challenges and future perspectives pertinent to this growing area of research and clinical medicine.


Asunto(s)
Diabetes Mellitus Tipo 2 , Hígado Graso , Hepatopatías , Enfermedades Metabólicas , Humanos , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Polipéptido Inhibidor Gástrico/uso terapéutico , Péptido 1 Similar al Glucagón/uso terapéutico , Incretinas/uso terapéutico , Receptores Acoplados a Proteínas G , Receptores de Glucagón
10.
J Endocrinol ; 261(3)2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38614123

RESUMEN

The glucagon receptor family are typical class B1 G protein-coupled receptors (GPCRs) with important roles in metabolism, including the control of pancreas, brain, and liver function. As proteins with seven transmembrane domains, GPCRs are intimately in contact with lipid bilayers and therefore can be putatively regulated by interactions with their lipidic components, including cholesterol, sphingolipids, and other lipid species. Additionally, these receptors, as well as the agonists they bind to, can undergo lipid modifications, which can influence their binding capacity and/or elicit modified or biased signalling profiles. While the effect of lipids, and in particular cholesterol, has been widely studied for other GPCR classes, information about their role in regulating the glucagon receptor family is only beginning to emerge. Here we summarise our current knowledge on the effects of cholesterol modulation of glucagon receptor family signalling and trafficking profiles, as well as existing evidence for specific lipid-receptor binding and indirect effects of lipids via lipid modification of cognate agonists. Finally, we discuss the different methodologies that can be employed to study lipid-receptor interactions and summarise the importance of this area of investigation to increase our understanding of the biology of this family of metabolically relevant receptors.


Asunto(s)
Colesterol , Receptores de Glucagón , Transducción de Señal , Humanos , Receptores de Glucagón/metabolismo , Animales , Colesterol/metabolismo , Transducción de Señal/fisiología , Metabolismo de los Lípidos/fisiología
11.
Acta Pharm Sin B ; 14(3): 1283-1301, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38486997

RESUMEN

The role of co-agonists of glucagon-like peptide-1 receptor (GLP-1R) and glucagon receptor (GCGR) in chronic kidney disease (CKD) remains unclear. Herein we found that GLP-1R and GCGR expression levels were lower in the kidneys of mice with CKD compared to healthy mice and were correlated with disease severity. Interestingly, GLP-1R or GCGR knockdown aggravated the progression of kidney injury in both diabetic db/db mice and non-diabetic mice undergoing unilateral ureteral obstruction (UUO). Based on the importance of GLP-1R and GCGR in CKD, we reported a novel monomeric peptide, 1907-B, with dual-agonism on both GLP-1R and GCGR. The data confirmed that 1907-B had a longer half-life than long-acting semaglutide in rats or cynomolgus monkeys (∼2-3 fold) and exhibited better therapeutic contribution to CKD than best-in-class monoagonists, semaglutide, or glucagon, in db/db mice and UUO mice. Various lock-of-function models, including selective pharmacological activation and genetic knockdown, confirmed that 1907-B's effects on ameliorating diabetic nephropathy in db/db mice, as well as inhibiting kidney fibrosis in UUO mice, were mediated through GLP-1 and glucagon signaling. These findings highlight that 1907-B, a novel GLP-1R and GCGR co-agonist, exerts multifactorial improvement in kidney injuries and is an effective and promising therapeutic option for CKD treatment.

12.
Cell Metab ; 36(3): 575-597.e7, 2024 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-38237602

RESUMEN

The glucagon receptor (GCGR) in the kidney is expressed in nephron tubules. In humans and animal models with chronic kidney disease, renal GCGR expression is reduced. However, the role of kidney GCGR in normal renal function and in disease development has not been addressed. Here, we examined its role by analyzing mice with constitutive or conditional kidney-specific loss of the Gcgr. Adult renal Gcgr knockout mice exhibit metabolic dysregulation and a functional impairment of the kidneys. These mice exhibit hyperaminoacidemia associated with reduced kidney glucose output, oxidative stress, enhanced inflammasome activity, and excess lipid accumulation in the kidney. Upon a lipid challenge, they display maladaptive responses with acute hypertriglyceridemia and chronic proinflammatory and profibrotic activation. In aged mice, kidney Gcgr ablation elicits widespread renal deposition of collagen and fibronectin, indicative of fibrosis. Taken together, our findings demonstrate an essential role of the renal GCGR in normal kidney metabolic and homeostatic functions. Importantly, mice deficient for kidney Gcgr recapitulate some of the key pathophysiological features of chronic kidney disease.


Asunto(s)
Receptores de Glucagón , Insuficiencia Renal Crónica , Humanos , Animales , Ratones , Receptores de Glucagón/metabolismo , Regulación hacia Abajo , Ratones Noqueados , Riñón/metabolismo , Homeostasis/fisiología , Lípidos
13.
Eur J Pharmacol ; 962: 176215, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38056618

RESUMEN

OBJECTIVE: Dual glucagon-like peptide-1 (GLP-1) and glucagon receptor agonists are therapeutic agents with an interesting liver-specific mode of action suitable for metabolic complications. In this study, dual GLP-1 and glucagon receptor agonist OXM-104 is compared head-to-head with the once-daily dual GLP-1 and glucagon receptor agonist cotadutide and GLP-1 receptor agonist semaglutide to explore the metabolic efficacy of OXM-104. METHODS: The in vitro potencies of OXM-104, cotadutide and semaglutide were assessed using reporter assays. In addition, in vivo efficacy was investigated using mouse models of diet-induced obesity (DIO mice), diabetes (db/db mice) and diet-induced NASH mice (MS-NASH). RESULTS: OXM-104 was found to only activate the GLP-1 and glucagon with no cross-reactivity at the (GIP) receptor. Cotadutide was also found to activate the GLP-1 and glucagon receptors, whereas semaglutide only showed activity at the GLP-1 receptor. OXM-104, cotadutide, and semaglutide elicited marked reductions in body weight and improved glucose control. In contrast, hepatoprotective effects, i.e., reductions in steatosis and fibrosis, as well as liver fibrotic biomarkers, were more prominent with OXM-104 and cotadutide than those seen with semaglutide, demonstrated by an improved NAFLD activity score (NAS) by OXM-104 and cotadutide, underlining the importance of the glucagon receptor. CONCLUSION: These results show that dual GLP-1 and glucagon receptor agonism is superior to GLP-1 alone. OXM-104 was found to be a promising therapeutic candidate for the treatment of metabolic complications such as obesity, type 2 diabetes and NASH.


Asunto(s)
Diabetes Mellitus Tipo 2 , Enfermedad del Hígado Graso no Alcohólico , Ratones , Animales , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Receptores de Glucagón/metabolismo , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Oxintomodulina/farmacología , Oxintomodulina/uso terapéutico , Glucagón/farmacología , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Péptido 1 Similar al Glucagón/farmacología , Receptor del Péptido 1 Similar al Glucagón/agonistas , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico
14.
Diabetologia ; 67(3): 528-546, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38127123

RESUMEN

AIMS/HYPOTHESIS: Diabetes mellitus is associated with impaired insulin secretion, often aggravated by oversecretion of glucagon. Therapeutic interventions should ideally correct both defects. Glucagon-like peptide 1 (GLP-1) has this capability but exactly how it exerts its glucagonostatic effect remains obscure. Following its release GLP-1 is rapidly degraded from GLP-1(7-36) to GLP-1(9-36). We hypothesised that the metabolite GLP-1(9-36) (previously believed to be biologically inactive) exerts a direct inhibitory effect on glucagon secretion and that this mechanism becomes impaired in diabetes. METHODS: We used a combination of glucagon secretion measurements in mouse and human islets (including islets from donors with type 2 diabetes), total internal reflection fluorescence microscopy imaging of secretory granule dynamics, recordings of cytoplasmic Ca2+ and measurements of protein kinase A activity, immunocytochemistry, in vivo physiology and GTP-binding protein dissociation studies to explore how GLP-1 exerts its inhibitory effect on glucagon secretion and the role of the metabolite GLP-1(9-36). RESULTS: GLP-1(7-36) inhibited glucagon secretion in isolated islets with an IC50 of 2.5 pmol/l. The effect was particularly strong at low glucose concentrations. The degradation product GLP-1(9-36) shared this capacity. GLP-1(9-36) retained its glucagonostatic effects after genetic/pharmacological inactivation of the GLP-1 receptor. GLP-1(9-36) also potently inhibited glucagon secretion evoked by ß-adrenergic stimulation, amino acids and membrane depolarisation. In islet alpha cells, GLP-1(9-36) led to inhibition of Ca2+ entry via voltage-gated Ca2+ channels sensitive to ω-agatoxin, with consequential pertussis-toxin-sensitive depletion of the docked pool of secretory granules, effects that were prevented by the glucagon receptor antagonists REMD2.59 and L-168049. The capacity of GLP-1(9-36) to inhibit glucagon secretion and reduce the number of docked granules was lost in alpha cells from human donors with type 2 diabetes. In vivo, high exogenous concentrations of GLP-1(9-36) (>100 pmol/l) resulted in a small (30%) lowering of circulating glucagon during insulin-induced hypoglycaemia. This effect was abolished by REMD2.59, which promptly increased circulating glucagon by >225% (adjusted for the change in plasma glucose) without affecting pancreatic glucagon content. CONCLUSIONS/INTERPRETATION: We conclude that the GLP-1 metabolite GLP-1(9-36) is a systemic inhibitor of glucagon secretion. We propose that the increase in circulating glucagon observed following genetic/pharmacological inactivation of glucagon signalling in mice and in people with type 2 diabetes reflects the removal of GLP-1(9-36)'s glucagonostatic action.


Asunto(s)
Diabetes Mellitus Tipo 2 , Hipoglucemia , Islotes Pancreáticos , Fragmentos de Péptidos , Humanos , Glucagón/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Péptido 1 Similar al Glucagón/metabolismo , Islotes Pancreáticos/metabolismo , Hipoglucemia/metabolismo , Insulina/metabolismo
15.
Acta Biochim Biophys Sin (Shanghai) ; 55(12): 1855-1863, 2023 12 25.
Artículo en Inglés | MEDLINE | ID: mdl-37969012

RESUMEN

Glucose is essential to the physiological processes of vertebrates. Mammalian physiological stability requires a relatively stable blood glucose level (~5 mM), whereas other vertebrates have greater flexibility in regulating blood glucose (0.5-25 mM). GCGR family receptors play an important role in vertebrate glucose regulation. Here, we examine the evolution of the GCGR family ligand-receptor systems in different species. Comparatively, we discover that the conserved sequences among GCG family ligands lead to the non-specific activation of ligands across species. In particular, we observe that glucagon-like peptide 1 receptor (GLP1R), glucagon-like peptide 2 receptor (GLP2R), and glucagon-like receptor (GCGLR, also called GCRPR) are arbitrarily activated by other members of the ligand family in birds. Moreover, we reveal that Gallus gallus GLP2 (gGLP2) effectively activates mammalian GLP1R and improves glucose tolerance in diabetic mice. Our study has important implications for understanding blood glucose stabilization in vertebrates and demonstrates that gGLP2 may be a potential drug for treating type 2 diabetes.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Hiperglucemia , Animales , Ratones , Glucemia , Receptores de Glucagón , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Ligandos , Glucosa , Hiperglucemia/tratamiento farmacológico , Mamíferos , Receptor del Péptido 1 Similar al Glucagón/genética
16.
Mol Metab ; 78: 101812, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37777009

RESUMEN

OBJECTIVE: Sialic acid is a terminal monosaccharide of glycans in glycoproteins and glycolipids, and its derivation from glucose is regulated by the rate-limiting enzyme UDP-GlcNAc 2-epimerase/ManNAc kinase (GNE). Although the glycans on key endogenous hepatic proteins governing glucose metabolism are sialylated, how sialic acid synthesis and sialylation in the liver influence glucose homeostasis is unknown. Studies were designed to fill this knowledge gap. METHODS: To decrease the production of sialic acid and sialylation in hepatocytes, a hepatocyte-specific GNE knockdown mouse model was generated, and systemic glucose metabolism, hepatic insulin signaling and glucagon signaling were evaluated in vivo or in primary hepatocytes. Peripheral insulin sensitivity was also assessed. Furthermore, the mechanisms by which sialylation in the liver influences hepatic insulin signaling and glucagon signaling and peripheral insulin sensitivity were identified. RESULTS: Liver GNE deletion in mice caused an impairment of insulin suppression of hepatic glucose production. This was due to a decrease in the sialylation of hepatic insulin receptors (IR) and a decline in IR abundance due to exaggerated degradation through the Eph receptor B4. Hepatic GNE deficiency also caused a blunting of hepatic glucagon receptor (GCGR) function which was related to a decline in its sialylation and affinity for glucagon. An accompanying upregulation of hepatic FGF21 production caused an enhancement of skeletal muscle glucose disposal that led to an overall increase in glucose tolerance and insulin sensitivity. CONCLUSION: These collective observations reveal that hepatic sialic acid synthesis and sialylation modulate glucose homeostasis in both the liver and skeletal muscle. By interrogating how hepatic sialic acid synthesis influences glucose control mechanisms in the liver, a new metabolic cycle has been identified in which a key constituent of glycans generated from glucose modulates the systemic control of its precursor.


Asunto(s)
Resistencia a la Insulina , Ácido N-Acetilneuramínico , Ratones , Animales , Ácido N-Acetilneuramínico/metabolismo , Glucagón , Músculo Esquelético/metabolismo , Hígado/metabolismo , Glucosa , Insulina , Homeostasis , Polisacáridos
17.
Int J Mol Sci ; 24(16)2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37629010

RESUMEN

Glucagon exerts effects on the mammalian heart. These effects include alterations in the force of contraction, beating rate, and changes in the cardiac conduction system axis. The cardiac effects of glucagon vary according to species, region, age, and concomitant disease. Depending on the species and region studied, the contractile effects of glucagon can be robust, modest, or even absent. Glucagon is detected in the mammalian heart and might act with an autocrine or paracrine effect on the cardiac glucagon receptors. The glucagon levels in the blood and glucagon receptor levels in the heart can change with disease or simultaneous drug application. Glucagon might signal via the glucagon receptors but, albeit less potently, glucagon might also signal via glucagon-like-peptide-1-receptors (GLP1-receptors). Glucagon receptors signal in a species- and region-dependent fashion. Small molecules or antibodies act as antagonists to glucagon receptors, which may become an additional treatment option for diabetes mellitus. Hence, a novel review of the role of glucagon and the glucagon receptors in the mammalian heart, with an eye on the mouse and human heart, appears relevant. Mouse hearts are addressed here because they can be easily genetically modified to generate mice that may serve as models for better studying the human glucagon receptor.


Asunto(s)
Glucagón , Receptores de Glucagón , Humanos , Animales , Ratones , Corazón , Sistema de Conducción Cardíaco , Anticuerpos , Receptor del Péptido 1 Similar al Glucagón , Mamíferos
18.
J Biol Chem ; 299(9): 105160, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37586587

RESUMEN

Dynamic information is vital to understanding the activation mechanism of G protein-coupled receptors (GPCRs). Despite the availability of high-resolution structures of different conformational states, the dynamics of those states at the molecular level are poorly understood. Here, we used total internal reflection fluorescence microscopy to study the extracellular domain (ECD) of the glucagon receptor (GCGR), a class B family GPCR that controls glucose homeostasis. Single-molecule fluorescence resonance energy transfer was used to observe the ECD dynamics of GCGR molecules expressed and purified from mammalian cells. We observed that for apo-GCGR, the ECD is dynamic and spent time predominantly in a closed conformation. In the presence of glucagon, the ECD is wide open and also shows more dynamic behavior than apo-GCGR, a finding that was not previously reported. These results suggest that both apo-GCGR and glucagon-bound GCGRs show reversible opening and closing of the ECD with respect to the seven-transmembrane (7TM) domain. This work demonstrates a molecular approach to visualizing the dynamics of the GCGR ECD and provides a foundation for understanding the conformational changes underlying GPCR activation, which is critical in the development of new therapeutics.


Asunto(s)
Glucagón , Receptores de Glucagón , Animales , Glucagón/metabolismo , Mamíferos/metabolismo , Unión Proteica , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Glucagón/química , Imagen Individual de Molécula
19.
J Diabetes ; 15(12): 1081-1094, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37596940

RESUMEN

INTRODUCTION: The role of cardiac microvascular endothelial cells (CMECs) in diabetic cardiomyopathy is not fully understood. We aimed to investigate whether a glucagon receptor (GCGR) monoclonal antibody (mAb) ameliorated diabetic cardiomyopathy and clarify whether and how CMECs participated in the process. RESEARCH DESIGN AND METHODS: The db/db mice were treated with GCGR mAb or immunoglobulin G (as control) for 4 weeks. Echocardiography was performed to evaluate cardiac function. Immunofluorescent staining was used to determine microvascular density. The proteomic signature in isolated primary CMECs was analyzed by using tandem mass tag-based quantitative proteomic analysis. Some target proteins were verified by using western blot. RESULTS: Compared with db/m mice, cardiac microvascular density and left ventricular diastolic function were significantly reduced in db/db mice, and this reduction was attenuated by GCGR mAb treatment. A total of 199 differentially expressed proteins were upregulated in db/db mice versus db/m mice and downregulated in GCGR mAb-treated db/db mice versus db/db mice. The enrichment analysis demonstrated that fatty acid ß-oxidation and mitochondrial fusion were the key pathways. The changes of the related proteins carnitine palmitoyltransferase 1B, optic atrophy type 1, and mitofusin-1 were further verified by using western blot. The levels of these three proteins were upregulated in db/db mice, whereas this upregulation was attenuated by GCGR mAb treatment. CONCLUSION: GCGR antagonism has a protective effect on CMECs and cardiac diastolic function in diabetic mice, and this beneficial effect may be mediated via inhibiting fatty acid ß-oxidation and mitochondrial fusion in CMECs.


Asunto(s)
Diabetes Mellitus Experimental , Cardiomiopatías Diabéticas , Ratones , Animales , Receptores de Glucagón/metabolismo , Células Endoteliales , Cardiomiopatías Diabéticas/prevención & control , Cardiomiopatías Diabéticas/metabolismo , Dinámicas Mitocondriales , Proteómica , Anticuerpos Monoclonales/farmacología , Ácidos Grasos
20.
Proc Natl Acad Sci U S A ; 120(33): e2303696120, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37549266

RESUMEN

Glucagon-like peptide-1 receptor (GLP-1R) and glucagon receptor (GCGR), two members of class B1 G protein-coupled receptors, play important roles in glucose homeostasis and energy metabolism. They share a high degree of sequence homology but have different functionalities. Unimolecular dual agonists of both receptors developed recently displayed better clinical efficacies than that of monotherapy. To study the underlying molecular mechanisms, we determined high-resolution cryo-electron microscopy structures of GLP-1R or GCGR in complex with heterotrimeric Gs protein and three GLP-1R/GCGR dual agonists including peptide 15, MEDI0382 (cotadutide) and SAR425899 with variable activating profiles at GLP-1R versus GCGR. Compared with related structures reported previously and supported by our published pharmacological data, key residues responsible for ligand recognition and dual agonism were identified. Analyses of peptide conformational features revealed a difference in side chain orientations within the first three residues, indicating that distinct engagements in the deep binding pocket are required to achieve receptor selectivity. The middle region recognizes extracellular loop 1 (ECL1), ECL2, and the top of transmembrane helix 1 (TM1) resulting in specific conformational changes of both ligand and receptor, especially the dual agonists reshaped ECL1 conformation of GLP-1R relative to that of GCGR, suggesting an important role of ECL1 interaction in executing dual agonism. Structural investigation of lipid modification showed a better interaction between lipid moiety of MEDI0382 and TM1-TM2 cleft, in line with its increased potency at GCGR than SAR425899. Together, the results provide insightful information for the design and development of improved therapeutics targeting these two receptors simultaneously.


Asunto(s)
Receptor del Péptido 1 Similar al Glucagón , Receptores de Glucagón , Microscopía por Crioelectrón , Receptor del Péptido 1 Similar al Glucagón/agonistas , Ligandos , Lípidos , Péptidos/química , Receptores de Glucagón/agonistas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA