RESUMEN
In recent decades, technological advancements have transformed the industry, highlighting the efficiency of automation and safety. The integration of augmented reality (AR) and gesture recognition has emerged as an innovative approach to create interactive environments for industrial equipment. Gesture recognition enhances AR applications by allowing intuitive interactions. This study presents a web-based architecture for the integration of AR and gesture recognition, designed to interact with industrial equipment. Emphasizing hardware-agnostic compatibility, the proposed structure offers an intuitive interaction with equipment control systems through natural gestures. Experimental validation, conducted using Google Glass, demonstrated the practical viability and potential of this approach in industrial operations. The development focused on optimizing the system's software and implementing techniques such as normalization, clamping, conversion, and filtering to achieve accurate and reliable gesture recognition under different usage conditions. The proposed approach promotes safer and more efficient industrial operations, contributing to research in AR and gesture recognition. Future work will include improving the gesture recognition accuracy, exploring alternative gestures, and expanding the platform integration to improve the user experience.
Asunto(s)
Realidad Aumentada , Gestos , Humanos , Industrias , Programas Informáticos , Reconocimiento de Normas Patrones Automatizadas/métodos , Interfaz Usuario-ComputadorRESUMEN
In recent years, hand gesture recognition (HGR) technologies that use electromyography (EMG) signals have been of considerable interest in developing human-machine interfaces. Most state-of-the-art HGR approaches are based mainly on supervised machine learning (ML). However, the use of reinforcement learning (RL) techniques to classify EMGs is still a new and open research topic. Methods based on RL have some advantages such as promising classification performance and online learning from the user's experience. In this work, we propose a user-specific HGR system based on an RL-based agent that learns to characterize EMG signals from five different hand gestures using Deep Q-network (DQN) and Double-Deep Q-Network (Double-DQN) algorithms. Both methods use a feed-forward artificial neural network (ANN) for the representation of the agent policy. We also performed additional tests by adding a long-short-term memory (LSTM) layer to the ANN to analyze and compare its performance. We performed experiments using training, validation, and test sets from our public dataset, EMG-EPN-612. The final accuracy results demonstrate that the best model was DQN without LSTM, obtaining classification and recognition accuracies of up to 90.37%±10.7% and 82.52%±10.9%, respectively. The results obtained in this work demonstrate that RL methods such as DQN and Double-DQN can obtain promising results for classification and recognition problems based on EMG signals.
Asunto(s)
Gestos , Redes Neurales de la Computación , Humanos , Electromiografía/métodos , Algoritmos , Memoria a Largo Plazo , ManoRESUMEN
Hand gesture recognition systems (HGR) based on electromyography signals (EMGs) and inertial measurement unit signals (IMUs) have been studied for different applications in recent years. Most commonly, cutting-edge HGR methods are based on supervised machine learning methods. However, the potential benefits of reinforcement learning (RL) techniques have shown that these techniques could be a viable option for classifying EMGs. Methods based on RL have several advantages such as promising classification performance and online learning from experience. In this work, we developed an HGR system made up of the following stages: pre-processing, feature extraction, classification, and post-processing. For the classification stage, we built an RL-based agent capable of learning to classify and recognize eleven hand gestures-five static and six dynamic-using a deep Q-network (DQN) algorithm based on EMG and IMU information. The proposed system uses a feed-forward artificial neural network (ANN) for the representation of the agent policy. We carried out the same experiments with two different types of sensors to compare their performance, which are the Myo armband sensor and the G-force sensor. We performed experiments using training, validation, and test set distributions, and the results were evaluated for user-specific HGR models. The final accuracy results demonstrated that the best model was able to reach up to 97.50%±1.13% and 88.15%±2.84% for the classification and recognition, respectively, with regard to static gestures, and 98.95%±0.62% and 90.47%±4.57% for the classification and recognition, respectively, with regard to dynamic gestures with the Myo armband sensor. The results obtained in this work demonstrated that RL methods such as the DQN are capable of learning a policy from online experience to classify and recognize static and dynamic gestures using EMG and IMU signals.
Asunto(s)
Gestos , Redes Neurales de la Computación , Algoritmos , Extremidad Superior , Electromiografía/métodos , ManoRESUMEN
The classification of surface myoelectric signals (sEMG) remains a great challenge when focused on its implementation in an electromechanical hand prosthesis, due to its nonlinear and stochastic nature, as well as the great difference between models applied offline and online. In this work, the selection of the set of the features that allowed us to obtain the best results for the classification of this type of signals is presented. In order to compare the results obtained, the Nina PRO DB2 and DB3 databases were used, which contain information on 50 different movements of 40 healthy subjects and 11 amputated subjects, respectively. The sEMG of each subject was acquired through 12 channels in a bipolar configuration. To carry out the classification, a convolutional neural network (CNN) was used and a comparison of four sets of features extracted in the time domain was made, three of which have shown good performance in previous works and one more that was used for the first time to train this type of network. Set one is composed of six features in the time domain (TD1), Set two has 10 features also in the time domain (TD2) including the autoregression model (AR), the third set has two features in the time domain derived from spectral moments (TD-PSD1), and finally, a set of five features also has information on the power spectrum of the signal obtained in the time domain (TD-PSD2). The selected features in each set were organized in four different ways for the formation of the training images. The results obtained show that the set of features TD-PSD2 obtained the best performance for all cases. With the set of features and the formation of images proposed, an increase in the accuracies of the models of 8.16% and 8.56% was obtained for the DB2 and DB3 databases, respectively, compared to the current state of the art that has used these databases.
Asunto(s)
Amputados , Gestos , Algoritmos , Electromiografía/métodos , Mano , Humanos , Movimiento , Redes Neurales de la ComputaciónRESUMEN
Humans express their emotions verbally and through actions, and hence emotions play a fundamental role in facial expressions and body gestures. Facial expression recognition is a popular topic in security, healthcare, entertainment, advertisement, education, and robotics. Detecting facial expressions via gesture recognition is a complex and challenging problem, especially in persons who suffer face impairments, such as patients with facial paralysis. Facial palsy or paralysis refers to the incapacity to move the facial muscles on one or both sides of the face. This work proposes a methodology based on neural networks and handcrafted features to recognize six gestures in patients with facial palsy. The proposed facial palsy gesture recognition system is designed and evaluated on a publicly available database with good results as a first attempt to perform this task in the medical field. We conclude that, to recognize facial gestures in patients with facial paralysis, the severity of the damage has to be considered because paralyzed organs exhibit different behavior than do healthy ones, and any recognition system must be capable of discerning these behaviors.
RESUMEN
Hand gesture recognition (HGR) systems using electromyography (EMG) bracelet-type sensors are currently largely used over other HGR technologies. However, bracelets are susceptible to electrode rotation, causing a decrease in HGR performance. In this work, HGR systems with an algorithm for orientation correction are proposed. The proposed orientation correction method is based on the computation of the maximum energy channel using a synchronization gesture. Then, the channels of the EMG are rearranged in a new sequence which starts with the maximum energy channel. This new sequence of channels is used for both training and testing. After the EMG channels are rearranged, this signal passes through the following stages: pre-processing, feature extraction, classification, and post-processing. We implemented user-specific and user-general HGR models based on a common architecture which is robust to rotations of the EMG bracelet. Four experiments were performed, taking into account two different metrics which are the classification and recognition accuracy for both models implemented in this work, where each model was evaluated with and without rotation of the bracelet. The classification accuracy measures how well a model predicted which gesture is contained somewhere in a given EMG, whereas recognition accuracy measures how well a model predicted when it occurred, how long it lasted, and which gesture is contained in a given EMG. The results of the experiments (without and with orientation correction) executed show an increase in performance from 44.5% to 81.2% for classification and from 43.3% to 81.3% for recognition in user-general models, while in user-specific models, the results show an increase in performance from 39.8% to 94.9% for classification and from 38.8% to 94.2% for recognition. The results obtained in this work evidence that the proposed method for orientation correction makes the performance of an HGR robust to rotations of the EMG bracelet.
Asunto(s)
Electromiografía , Gestos , Reconocimiento de Normas Patrones Automatizadas , Algoritmos , Electrodos , Mano , HumanosRESUMEN
Many human activities are tactile. Recognizing how a person touches an object or a surface surrounding them is an active area of research and it has generated keen interest within the interactive surface community. In this paper, we compare two machine learning techniques, namely Artificial Neural Network (ANN) and Hidden Markov Models (HMM), as they are some of the most common techniques with low computational cost used to classify an acoustic-based input. We employ a small and low-cost hardware design composed of a microphone, a stethoscope, a conditioning circuit, and a microcontroller. Together with an appropriate surface, we integrated these components into a passive gesture recognition input system for experimental evaluation. To perform the evaluation, we acquire the signals using a small microphone and send it through the microcontroller to MATLAB's toolboxes to implement and evaluate the ANN and HMM models. We also present the hardware and software implementation and discuss the advantages and limitations of these techniques in gesture recognition while using a simple alphabet of three geometrical figures: circle, square, and triangle. The results validate the robustness of the HMM technique that achieved a success rate of 90%, with a shorter training time than the ANN.
Asunto(s)
Acústica , Gestos , Aprendizaje Automático , Cadenas de Markov , Redes Neurales de la Computación , Reconocimiento de Normas Patrones Automatizadas , Algoritmos , HumanosRESUMEN
Today, daily life is composed of many computing systems, therefore interacting with them in a natural way makes the communication process more comfortable. Human-Computer Interaction (HCI) has been developed to overcome the communication barriers between humans and computers. One form of HCI is Hand Gesture Recognition (HGR), which predicts the class and the instant of execution of a given movement of the hand. One possible input for these models is surface electromyography (EMG), which records the electrical activity of skeletal muscles. EMG signals contain information about the intention of movement generated by the human brain. This systematic literature review analyses the state-of-the-art of real-time hand gesture recognition models using EMG data and machine learning. We selected and assessed 65 primary studies following the Kitchenham methodology. Based on a common structure of machine learning-based systems, we analyzed the structure of the proposed models and standardized concepts in regard to the types of models, data acquisition, segmentation, preprocessing, feature extraction, classification, postprocessing, real-time processing, types of gestures, and evaluation metrics. Finally, we also identified trends and gaps that could open new directions of work for future research in the area of gesture recognition using EMG.
Asunto(s)
Electromiografía/métodos , Aprendizaje Automático , Algoritmos , Gestos , Humanos , Reconocimiento de Normas Patrones AutomatizadasRESUMEN
Force myography (FMG) is an appealing alternative to traditional electromyography in biomedical applications, mainly due to its simpler signal pattern and immunity to electrical interference. Most FMG sensors, however, send data to a computer for further processing, which reduces the user mobility and, thus, the chances for practical application. In this sense, this work proposes to remodel a typical optical fiber FMG sensor with smaller portable components. Moreover, all data acquisition and processing routines were migrated to a Raspberry Pi 3 Model B microprocessor, ensuring the comfort of use and portability. The sensor was successfully demonstrated for 2 input channels and 9 postures classification with an average precision and accuracy of ~99.5% and ~99.8%, respectively, using a feedforward artificial neural network of 2 hidden layers and a competitive output layer.
RESUMEN
Activity recognition, a key component in pervasive healthcare monitoring, relies on classification algorithms that require labeled data of individuals performing the activity of interest to train accurate models. Labeling data can be performed in a lab setting where an individual enacts the activity under controlled conditions. The ubiquity of mobile and wearable sensors allows the collection of large datasets from individuals performing activities in naturalistic conditions. Gathering accurate data labels for activity recognition is typically an expensive and time-consuming process. In this paper we present two novel approaches for semi-automated online data labeling performed by the individual executing the activity of interest. The approaches have been designed to address two of the limitations of self-annotation: (i) The burden on the user performing and annotating the activity, and (ii) the lack of accuracy due to the user labeling the data minutes or hours after the completion of an activity. The first approach is based on the recognition of subtle finger gestures performed in response to a data-labeling query. The second approach focuses on labeling activities that have an auditory manifestation and uses a classifier to have an initial estimation of the activity, and a conversational agent to ask the participant for clarification or for additional data. Both approaches are described, evaluated in controlled experiments to assess their feasibility and their advantages and limitations are discussed. Results show that while both studies have limitations, they achieve 80% to 90% precision.
Asunto(s)
Atención a la Salud/métodos , Dedos/fisiología , Gestos , Reconocimiento de Normas Patrones Automatizadas/métodos , Algoritmos , HumanosRESUMEN
Abstract Introduction Sign language is a collection of gestures, postures, movements, and facial expressions used by deaf people. The Brazilian sign language is Libras. The use of Libras has been increased among the deaf communities, but is still not disseminated outside this community. Sign language recognition is a field of research, which intends to help the deaf community communication with non-hearing-impaired people. In this context, this paper describes a new method for recognizing hand configurations of Libras - using depth maps obtained with a Kinect® sensor. Methods The proposed method comprises three phases: hand segmentation, feature extraction, and classification. The segmentation phase is independent from the background and depends only on pixel value. The feature extraction process is independent from rotation and translation. The features are extracted employing two techniques: (2D)2LDA and (2D)2PCA. The classification employs two classifiers: a novelty classifier and a KNN classifier. A robust database is constructed for classifier evaluation, with 12,200 images of Libras and 200 gestures of each hand configuration. Results The best accuracy obtained was 96.31%. Conclusion The best gesture recognition accuracy obtained is much higher than the studies previously published. It must be emphasized that this recognition rate is obtained for different conditions of hand rotation and proximity of the depth camera, and with a depth camera resolution of only 640×480 pixels. This performance must be also credited to the feature extraction technique, and to the size standardization and normalization processes used previously to feature extraction step.
RESUMEN
BACKGROUND: Systems for range of motion (ROM) measurement such as OptoTrak, Motion Capture, Motion Analysis, Vicon, and Visual 3D are so expensive that they become impracticable in public health systems and even in private rehabilitation clinics. Telerehabilitation is a branch within telemedicine intended to offer ways to increase motor and/or cognitive stimuli, aimed at faster and more effective recovery of given disabilities, and to measure kinematic data such as the improvement in ROM. MATERIALS AND METHODS: In the development of the RehabGesture tool, we used the gesture recognition sensor Kinect(®) (Microsoft, Redmond, WA) and the concepts of Natural User Interface and Open Natural Interaction. RESULTS: RehabGesture can measure and record the ROM during rehabilitation sessions while the user interacts with the virtual reality environment. The software allows the measurement of the ROM (in the coronal plane) from 0° extension to 145° flexion of the elbow joint, as well as from 0° adduction to 180° abduction of the glenohumeral (shoulder) joint, leaving the standing position. The proposed tool has application in the fields of training and physical evaluation of professional and amateur athletes in clubs and gyms and may have application in rehabilitation and physiotherapy clinics for patients with compromised motor abilities. CONCLUSIONS: RehabGesture represents a low-cost solution to measure the movement of the upper limbs, as well as to stimulate the process of teaching and learning in disciplines related to the study of human movement, such as kinesiology.