Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Más filtros











Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-39113300

RESUMEN

BACKGROUND: Germacrone, a naturally occurring active compound found in essential oils extracted from medicinal plants within the Zingiberaceae family, has garnered attention for its potential therapeutic applications. Extensive research has highlighted its multi-targeting capabilities, positioning it as a promising treatment for various chronic diseases, including cancer, cardiovascular conditions, and neurodegenerative disorders like Alzheimer's disease. OBJECTIVE: This review aims to provide a comprehensive overview of germacrone as a scaffold for developing multi-targeting drugs with therapeutic potential against a range of chronic disorders. The study delves into the molecular mechanisms that underlie the therapeutic effects of germacrone and explores its potential targets, including NF-κB, PI3K/AKT/mTOR, p53, JAK/STAT, caspase, apoptosis, and autophagy induction. METHODS: A systematic review of literature databases was conducted to gather relevant studies on germacrone and its therapeutic applications. The molecular mechanisms and potential targets of germacrone were examined to elucidate its multi-targeting capabilities. RESULTS: Germacrone exhibits significant potential in the management of chronic diseases, with demonstrated effects on various cellular pathways. The review highlights its impact on NF-κB, PI3K/AKT/mTOR, p53, JAK/STAT, caspase, apoptosis, and autophagy induction, showcasing its versatility in targeting multiple pathways associated with chronic conditions. Germacrone has emerged as a promising candidate for the treatment of diverse chronic diseases. The understanding of its multi-targeting capabilities, coupled with its natural origin, positions it as a valuable scaffold for developing therapeutics. CONCLUSION: The exploration of germacrone as a structural framework for multi-targeting drugs offers a potential avenue to enhance efficacy while minimizing potential side effects. Further research and clinical trials are warranted to validate the therapeutic potential of germacrone in diverse medical contexts.

2.
J Pharm Biomed Anal ; 248: 116288, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38981330

RESUMEN

Germacrone and curdione are germacrane-type sesquiterpenoids that are widely distributed and have extensive pharmacological activities; they are the main constituents of 'Xing-Nao-Jing Injection' (XNJ). Studies on the metabolic features of germacrane-type sesquiterpenoids are limited. In this study, the metabolites of germacrone and curdione were characterized by UHPLC-Q-Exactive Oribitrap mass spectrometry after they were orally administered to rats. In total, 60 and 76 metabolites were found and preliminarily identified in rats administered germacrone and curdione, respectively, among which at least 123 potential new compounds were included. New metabolic reactions of germacrane-type sesquiterpenoids were identified, which included oxidation (+4 O and +5 O), ethylation, methyl-sulfinylation, vitamin C conjugation, and cysteine conjugation reactions. Among the 136 metabolites (including 113 oxidation metabolites, two glucuronidation, two methylation, nine methyl-sulfinylation, three ethylation, six cysteine conjugation, and one Vitamin C conjugation metabolites), 32 metabolites were detected in nine organs, and the stomach, intestine, liver, kidneys, and small intestine were the main organs for the distribution of these metabolites. All 136 metabolites were detected in urine and 64 of them were found in feces. The results of this study not only contribute to research on in vivo processes related to germacrane-type sesquiterpenoids but also provide a strong foundation for a better understanding of in vivo processes and the effective forms of germacrone, curdione, and XNJ.


Asunto(s)
Medicamentos Herbarios Chinos , Ratas Sprague-Dawley , Sesquiterpenos de Germacrano , Animales , Sesquiterpenos de Germacrano/metabolismo , Ratas , Medicamentos Herbarios Chinos/farmacocinética , Medicamentos Herbarios Chinos/metabolismo , Medicamentos Herbarios Chinos/administración & dosificación , Masculino , Cromatografía Líquida de Alta Presión/métodos , Distribución Tisular , Administración Oral , Heces/química
3.
Tohoku J Exp Med ; 263(3): 185-193, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-38692861

RESUMEN

Retinal ischemia-reperfusion (I/R) is a pathological phenomenon that causes cellular destruction in several ocular disorders, so there is a need for novel possible neuroprotective drugs. Researchers have reported numerous neuroprotective effects of Germacrone (GM). Therefore, this study aimed to elucidate the underlying processes of GM that may contribute to glaucoma development. 40 healthy rats underwent retinal ischemia-reperfusion (I/R) damage. The animals were divided into control, I/R-induced, GM-1d, and GM-7d. After 7 days of I/R, mice were sacrificed and retinal tissue removed. An enzyme-linked immunosorbent assay (ELISA) was used to assess retinal Malondialdehyde (MDA) and 8-OHdG levels after oxidative injury. The Fluro-Gold (FG) labelling assay counted retinal ganglion cells (RGC) before and after labelling. DNA from retinal tissue RNA was amplified. Western blotting and real-time qRT-PCR were utilised to assess Bax, Casapses-3, Bcl-2, retinal NF-kB, and COX-2 expression. Retinal cell apoptotic mediator expression was measured by a TUNEL assay. Retinal I/R damage increases ganglion cell death. Long-term GM treatment (GM-7d) reduced NF-κB activation and raised COX-2 expression, which suggests antioxidant potential. TUNEL-positive apoptotic cells were reduced in long-term GM-treated rats. In GM-treated retinas, the Bax-Bcl-2 ratio was identical to the control group and significantly different from the I/R group. GM reduces I/R-induced retinal cell damage by inhibiting RG cell death. Seven days after GM therapy, histology showed retinal tissue loss. NF-κB signaling and intrinsic mitochondrial apoptosis are possible mechanisms that may be attenuated by GM and are attributed to a retinal protective effect.


Asunto(s)
Apoptosis , Supervivencia Celular , Modelos Animales de Enfermedad , Glaucoma , Inflamación , FN-kappa B , Células Ganglionares de la Retina , Sesquiterpenos de Germacrano , Transducción de Señal , Animales , Células Ganglionares de la Retina/efectos de los fármacos , Células Ganglionares de la Retina/patología , Células Ganglionares de la Retina/metabolismo , Apoptosis/efectos de los fármacos , FN-kappa B/metabolismo , Glaucoma/patología , Glaucoma/metabolismo , Transducción de Señal/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Sesquiterpenos de Germacrano/farmacología , Masculino , Inflamación/patología , Ratas Sprague-Dawley , Ratas , Estrés Oxidativo/efectos de los fármacos
4.
J Nat Med ; 78(4): 863-875, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38809333

RESUMEN

Abnormal melanin synthesis causes hyperpigmentation disorders, such as chloasma, freckles, and melanoma, which are highly multiple and prevalent. There were few reports on the anti-melanogenic effect of Curcuma wenyujin Y.H. Chen et C. Ling, and the bioactive compound has not been elucidated as well. The study aims to investigate the anti-melanogenic effect of C. wenyujin, and identify the bioactive compound, and further explore its underlying mechanism. Our results showed that the Petroleum ether fraction extracted from C. wenyujin rhizome had a significant anti-melanogenic effect, and germacrone isolated from it was confirmed as the major bioactive compound. To our data, germacrone significantly inhibited tyrosinase (TYR) activity, reduced melanosome synthesis, reduced dendrites formation of B16F10 cells, and melanosome transport to keratinocytes. Moreover, germacrone effectively decreased the hyperpigmentation in zebrafish and the skin of guinea pigs in vivo. Western-blot analysis showed that germacrone down-regulated the expression of TYR, TRP-1, TRP-2, Rab27a, Cdc42, and MITF proteins via the activation of the MAPK signaling pathway. Taken together, germacrone is an effective bioactive compound for melanogenesis inhibition. Our studies suggest that germacrone may be considered a potential candidate for skin whitening.


Asunto(s)
Curcuma , Sistema de Señalización de MAP Quinasas , Melaninas , Sesquiterpenos de Germacrano , Pez Cebra , Curcuma/química , Melaninas/metabolismo , Melaninas/biosíntesis , Animales , Sesquiterpenos de Germacrano/farmacología , Sesquiterpenos de Germacrano/química , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones , Cobayas , Monofenol Monooxigenasa/metabolismo , Monofenol Monooxigenasa/antagonistas & inhibidores , Línea Celular Tumoral
5.
IUCrdata ; 9(Pt 4): x240346, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38720999

RESUMEN

The extraction and purification procedures, crystallization and crystal structure refinement (single-crystal X-ray data) of germacrone type II, C15H22O, are presented. The structural results are compared with a previous powder X-ray synchrotron study [Kaduk et al. (2022 ▸). Powder Diffr. 37, 98-104], revealing significant improvements in terms of accuracy and precision. Hirshfeld atom refinement (HAR), as well as Hirshfeld surface analysis, give insight into the inter-molecular inter-actions of germacrone type II.

6.
Phytother Res ; 38(6): 2860-2874, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38558446

RESUMEN

Bone is one of the most frequent sites for metastasis in breast cancer patients. Bone metastasis significantly reduces the survival time and the life quality of breast cancer patients. Germacrone (GM) can serve humans as an anti-cancer and anti-inflammation agent, but its effect on breast cancer-induced osteolysis remains unclear. This study aims to investigate the functions and mechanisms of GM in alleviating breast cancer-induced osteolysis. The effects of GM on osteoclast differentiation, bone resorption, F-actin ring formation, and gene expression were examined in vitro. RNA-sequencing and Western Blot were conducted to explore the regulatory mechanisms of GM on osteoclastogenesis. The effects of GM on breast cancer-induced osteoclastogenesis, and breast cancer cell malignant behaviors were also evaluated. The in vivo efficacy of GM in the ovariectomy model and breast cancer bone metastasis model with micro-CT and histomorphometry. GM inhibited osteoclastogenesis, bone resorption and F-actin ring formation in vitro. Meanwhile, GM inhibited the expression of osteoclast-related genes. RNA-seq analysis and Western Blot confirmed that GM inhibited osteoclastogenesis via inhibition of MAPK/NF-κB signaling pathways. The in vivo mouse osteoporosis model further confirmed that GM inhibited osteolysis. In addition, GM suppressed the capability of proliferation, migration, and invasion and promoted the apoptosis of MDA-MB-231 cells. Furthermore, GM could inhibit MDA-MB-231 cell-induced osteoclastogenesis in vitro and alleviate breast cancer-associated osteolysis in vivo human MDA-MB-231 breast cancer bone metastasis-bearing mouse models. Our findings identify that GM can be a promising therapeutic agent for patients with breast cancer osteolytic bone metastasis.


Asunto(s)
Neoplasias de la Mama , FN-kappa B , Osteoclastos , Osteogénesis , Osteólisis , Transducción de Señal , Animales , Osteólisis/tratamiento farmacológico , Ratones , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Femenino , Humanos , Osteogénesis/efectos de los fármacos , Osteoclastos/efectos de los fármacos , FN-kappa B/metabolismo , Transducción de Señal/efectos de los fármacos , Línea Celular Tumoral , Sesquiterpenos de Germacrano/farmacología , Neoplasias Óseas/tratamiento farmacológico , Neoplasias Óseas/secundario , Diferenciación Celular/efectos de los fármacos , Ratones Endogámicos BALB C , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Células RAW 264.7
7.
Acta Biochim Biophys Sin (Shanghai) ; 56(3): 414-426, 2024 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-38429975

RESUMEN

Diabetic nephropathy (DN) is a severe complication of diabetes and the leading cause of end-stage renal disease and death. Germacrone (Ger) possesses anti-inflammatory, antioxidant and anti-DN properties. However, it is unclear whether the improvement in kidney damage caused by Ger in DN mice is related to abnormal compositions and metabolites of the gut microbiota. This study generates a mouse model of DN to explore the potent therapeutic ability and mechanism of Ger in renal function by 16S rRNA sequencing and untargeted fecal metabolomics. Although there is no significant change in microbiota diversity, the structure of the gut microbiota in the DN group is quite different. Serratia_marcescens and Lactobacillus_iners are elevated in the model group but significantly decreased after Ger intervention ( P<0.05). Under the treatment of Ger, no significant differences in the diversity and richness of the gut microbiota are observed. An imbalance in the intestinal flora leads to the dysregulation of metabolites, and non-targeted metabolomics data indicate high expression of stearic acid in the DN group, and oleic acid could serve as a potential marker of the therapeutic role of Ger in the DN model. Overall, Ger improves kidney injury in diabetic mice, in part potentially by reducing the abundance of Serratia_marcescens and Lactobacillus_iners, as well as regulating the associated increase in metabolites such as oleic acid, lithocholic acid and the decrease in stearic acid. Our research expands the understanding of the relationship between the gut microbiota and metabolites in Ger-treated DN. This contributes to the usage of natural products as a therapeutic approach for the treatment of DN via microbiota regulation.


Asunto(s)
Diabetes Mellitus Experimental , Nefropatías Diabéticas , Lactobacillus , Animales , Ratones , Nefropatías Diabéticas/genética , ARN Ribosómico 16S/genética , Diabetes Mellitus Experimental/genética , Sesquiterpenos de Germacrano
8.
Free Radic Res ; 57(6-12): 413-429, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37897414

RESUMEN

Mitophagy is a critical intracellular event during the progression of diabetic nephropathy (DN). Our previous study demonstrated that germacrone has anti-ferroptotic properties and is a potential therapeutic agent for DN. However, the relationship among germacrone, mitophagy, and ferroptosis in DN remains unclear. In this study, the data confirmed that germacrone ameliorates high glucose (HG)-induced ferroptosis through limiting Fe (2+) content and lipid reactive oxygen species (ROS) accumulation in human kidney 2 (HK-2) cells. Germacrone reversed HG-mediated inhibition of mitophagy. Mitophagy inhibition and anabatic mitochondrial ROS abrogate germacrone-mediated protective effects against ferroptotic death, resulting in the subsequent activation of mitochondrial DNA (mtDNA) cytosolic leakage-induced stimulator of interferon response CGAMP interactor 1 (STING) signaling. The combination of a mitochondrial ROS antagonist and germacrone acts synergistically to alleviate the ferroptotic death of tubular cells and DN symptoms. In summary, germacrone ameliorated ferroptotic death in tubular cells by reactivating mitophagy and inhibiting mtDNA-STING signaling in DN. This study provides a novel insight into germacrone-mediated protection against DN progression and further confirms that antioxidant pharmacological strategies facilitate the treatment of DN.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Humanos , Nefropatías Diabéticas/tratamiento farmacológico , Mitofagia , Especies Reactivas de Oxígeno/farmacología , Riñón , ADN Mitocondrial/farmacología , ADN Mitocondrial/uso terapéutico
9.
Int Immunopharmacol ; 124(Pt A): 110876, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37683399

RESUMEN

Cardiac remodeling is a common consequence of cardiovascular diseases and is closely associated with oxidative stress, inflammation, and apoptosis. Germacrone, a bioactive compound present in Rhizoma curcuma, has been shown to possess anti-oxidative, anti-inflammatory, and anti-apoptotic properties. The aim of this study was to investigate the protective effect of germacrone against cardiac remodeling. Here, C57BL/6 mice were subcutaneous injection with isoproterenol (ISO) once daily for two weeks and were concurrent intragastric injection of germacrone. In vitro, neonatal rat cardiomyocytes (NRCMs) were used to verify the protective effect of germacrone on ISO-induced cardiac injury. Our findings indicated that ISO induce oxidative stress, inflammation, and apoptosis in vivo and in vitro, while germacrone treatment significantly attenuates these effects, thereby attenuating myocardium remodeling and cardiac dysfunction. Mechanistically, germacrone reduced cardiac remodeling-induced activation of phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) pathway, and the cardioprotective effects of germacrone were abrogated by a PI3K agonist. In conclusion, our results suggest that germacrone attenuates oxidative stress, inflammation, and apoptosis in cardiac remodeling by inhibiting the PI3K/AKT pathway, and may therefore represent a promising therapeutic approach for the treatment of cardiac remodeling.

10.
Biomed Pharmacother ; 157: 114016, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36395609

RESUMEN

BACKGROUND: Gynecological cancers encompass all uncontrolled and aberrant cell growth in the female reproductive system, therapeutic interventions are constantly evolving, but there is still a high death rate, significant side effects and medication resistance, making the task of treatment challenging and complex. The essential oil extracted from the rhizome of Curcuma longa is a promising natural drug, which has excellent biological activity on cancer cells and is to be developed as a new type of anti-gynecological tumor therapeutic agent. PURPOSE: To systematically summarize the available evidence for the efficacy of Curcuma oil and its terpenoids (ß-elemene, curcumol, furanodiene, and germacrone) in gynecological cancers, primarily malignancies of the reproductive system, involving ovarian, cervical, and endometrial cancers, explain the underlying mechanisms of preventing and treating gynecological cancers, and assess the shortcomings of existing work. RESULTS: Through several signaling channels, Curcuma oil and its terpenoids can not only stop the growth of ovarian cancer, cervical cancer, and endometrial cancer cells, limit the formation of tumors, but also raise the effectiveness of chemotherapy drugs and improve the quality of life for patients. CONCLUSION: It provides a preclinical basis for the efficacy of Curcuma oil as a broad-spectrum anti-tumor agent for the prevention and treatment of gynecological cancers. Even so, further efforts are still needed to improve the bioavailability of Curcuma oil and upgrade related experiments.


Asunto(s)
Neoplasias , Aceites Volátiles , Humanos , Femenino , Terpenos/farmacología , Terpenos/uso terapéutico , Calidad de Vida , Rizoma , Aceites Volátiles/farmacología , Aceites Volátiles/uso terapéutico
11.
Molecules ; 27(14)2022 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-35889364

RESUMEN

Curcumin and germacrone, natural products present in the Zingiberaceae family of plants, have several biological properties. Among these properties, the anti-NSCLC cancer action is noteworthy. In this paper, kinetics of the two compounds in rat liver microsomes (RLMs), human liver microsomes (HLMs), and cytochrome P450 (CYP) enzymes (CYP3A4, 1A2, 2E1, and 2C19) in an NADPH-generating system in vitro were evaluated by UP-HPLC-MS/MS (ultrahigh-pressure liquid chromatography-tandem mass spectrometry). The contents of four cytochrome P450 (CYP) enzymes, adjusting by the compounds were detected using Western blotting in vitro and in vivo. The t1/2 of curcumin was 22.35 min in RLMs and 173.28 min in HLMs, while 18.02 and 16.37 min were gained for germacrone. The Vmax of curcumin in RLMs was about 4-fold in HLMs, meanwhile, the Vmax of germacrone in RLMs was similar to that of HLMs. The single enzyme t1/2 of curcumin was 38.51 min in CYP3A4, 301.4 min in 1A2, 69.31 min in 2E1, 63.01 min in 2C19; besides, as to the same enzymes, t1/2 of germacrone was 36.48 min, 86.64 min, 69.31 min, and 57.76 min. The dynamic curves were obtained by reasonable experimental design and the metabolism of curcumin and germacrone were selected in RLMs/HLMs. The selectivities in the two liver microsomes differed in degradation performance. These results meant that we should pay more attention to drugs in clinical medication-drug and drug-enzyme interactions.


Asunto(s)
Curcumina , Microsomas Hepáticos , Animales , Curcumina/metabolismo , Curcumina/farmacología , Citocromo P-450 CYP3A/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Humanos , Microsomas Hepáticos/metabolismo , Ratas , Sesquiterpenos de Germacrano , Espectrometría de Masas en Tándem
12.
Zhongguo Zhong Yao Za Zhi ; 47(7): 1739-1753, 2022 Apr.
Artículo en Chino | MEDLINE | ID: mdl-35534245

RESUMEN

Curcuma kwangsiensis root tuber is a widely used genuine medicinal material in Guangxi, with the main active components of terpenoids and curcumins. It has the effects of promoting blood circulation to relieve pain, moving Qi to relieve depression, clearing heart and cooling blood, promoting gallbladder function and anti-icterus. Modern research has proved its functions in liver protection, anti-tumor, anti-oxidation, blood lipid reduction and immunosuppression. Considering the research progress of C. kwangsiensis root tubers and the core concept of quality marker(Q-marker), we predicted the Q-markers of C. kwangsiensis root tubers from plant phylogeny, chemical component specificity, traditional pharmacodynamic properties, new pharmacodynamic uses, chemical component measurability, processing methods, compatibility, and components migrating to blood. Curcumin, curcumol, curcumadiol, curcumenol, curdione, germacrone, and ß-elemene may be the possible Q-markers. Based on the predicted Q-markers, the mechanisms of the liver-protecting and anti-tumor activities of C. kwangsiensis root tubers were analyzed. AKT1, IL6, EGFR, and STAT3 were identified as the key targets, and neuroactive ligand-receptor interaction signaling pathway, nitrogen metabolism pathway, cancer pathway, and hepatitis B pathway were the major involved pathways. This review provides a basis for the quality evaluation and product development of C. kwangsiensis root tubers and gives insights into the research on Chinese medicinal materials.


Asunto(s)
Curcuma , Neoplasias , China , Curcuma/química , Humanos , Hígado , Terpenos/farmacología
13.
Drug Deliv ; 29(1): 692-701, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35225122

RESUMEN

Macrophages can transform into M1 (pro-inflammatory) and M2 (anti-inflammatory) phenotypes, which mediate the immune/inflammatory response in rheumatoid arthritis (RA). Activated M1 phenotype macrophages and overexpression of folate (FA) receptors are abundant in inflammatory synovium and joints and promote the progression of RA. Germacrone (GER) can regulate the T helper 1 cell (Th1)/the T helper 2 cell (Th2) balance to delay the progression of arthritis. To deliver GER to inflammatory tissue cells to reverse M1-type proinflammatory cells and reduce inflammation, FA receptor-targeting nanocarriers loaded with GER were developed. In activated macrophages, FA-NPs/DiD showed significantly higher uptake efficiency than NPs/DiD. In vitro experiments confirmed that FA-NPs/GER could promote the transformation of M1 macrophages into M2 macrophages. In adjuvant-induced arthritis (AIA) rats, the biodistribution profiles showed selective accumulation at the inflammatory site of FA-NPs/GER, and significantly reduced the swelling and inflammation infiltration of the rat's foot. The levels of pro-inflammatory cytokines (TNF-α, IL-1ß) in the rat's inflammatory tissue were significantly lower than other treatment groups, which indicated a significant therapeutic effect in AIA rats. Taken together, macrophage-targeting nanocarriers loaded with GER are a safe and effective method for the treatment of RA.


Asunto(s)
Artritis Reumatoide , Nanopartículas , Animales , Artritis Reumatoide/inducido químicamente , Artritis Reumatoide/tratamiento farmacológico , Macrófagos , Ratas , Sesquiterpenos de Germacrano , Distribución Tisular
14.
Bioengineered ; 13(3): 4898-4910, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35156515

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative disorder with prominent individual morbidity and mortality among elderly people. Germacrone (Germ) has been reported to exert dominant protective roles in multiple human diseases, and neurological diseases are also included. The intention of this paper is to determine the impacts of Germ on okadaic acid (OA)-treated PC12 cells and confirm the hidden regulatory mechanism. First, PC12 cells were induced by OA in the absence or presence of Germ. Cell counting kit-8 assay was to monitor cell proliferation. Western blot was to test the protein levels of cholinergic muscarinic M1 receptor (CHRM1), Galphaq (Gq), phospholipase C beta (PLCß) and protein kinase C (PKC). The levels of reactive oxygen species (ROS) and other oxidative stress markers were evaluated using corresponding kits. ELISA was used to estimate the levels of AD markers. RT-qPCR was used to examine the mRNA levels of beta-site amyloid-precursor-protein-cleaving enzyme 1 (BACE-1) and apolipoprotein E (APOE). The results uncovered that Germ enhanced the proliferation of OA-insulted PC12 cells, elevated the protein level of CHRM1 and activated the Gq/PLCß/PKC signaling. Moreover, after OA-induced PC12 cells were administered with Germ, insufficiency of CHRM1 impeded cell proliferation, enhanced oxidative stress and neuron injury and inactivated the Gq/PLCß/PKC signaling. Furthermore, the addition of Gq inhibitor UBO-QIC, PLCß inhibitor U73122 or PKC inhibitor Go6983 reversed the enhanced proliferation, the reduced oxidative stress and neuron injury in OA-treated PC12 cells caused by Germ. Collectively, Germ modulated M1 muscarinic receptor-mediated Gq/PLCß/PKC signaling, thereby alleviating OA-induced PC12 cell injury.


Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP Gq-G11 , Fosfolipasa C beta , Proteína Quinasa C , Sesquiterpenos de Germacrano , Animales , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Ácido Ocadaico , Células PC12 , Fosfolipasa C beta/metabolismo , Proteína Quinasa C/metabolismo , Ratas , Receptor Muscarínico M1/metabolismo , Sesquiterpenos de Germacrano/farmacología
15.
Antioxid Redox Signal ; 36(10-12): 740-759, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34913724

RESUMEN

Aims: Diabetic nephropathy (DN) is characterized by microalbuminuria, mainly associated with pathological and morphological alterations of podocyte. New drug targeting podocyte injury is a promising approach for treating DN. The present study is aimed at developing new drug targeting podocyte injury for treating DN. Results: In this study, germacrone ameliorated kidney damage and inhibited podocyte apoptosis in a DN mouse model. Based on RNA-seq, mmu_mmu_circRNA_0000309, located in host gene vascular endothelial zinc finger 1 (Vezf1), showed a sharp decline in DN mice and a remarkable recovery in germacrone-challenged DN mice. mmu_circRNA_0000309 silence or miR-188-3p mimics abrogated the antiapoptosis and anti-injury effects of germacrone through aggravating mitochondria damage, and elevating reactive oxygen species and ferroptosis-related protein levels. Mechanistically, mmu_circRNA_0000309 competitively sponged miR-188-3p, and subsequently promoted glutathione peroxidase 4 (GPX4) expression, thereby inactivating ferroptosis-dependent mitochondrial damage and podocyte apoptosis. In addition, GPX4 overexpression neutralized mmu_circRNA_0000309 silence-mediated mitochondria damage and ferroptosis in germacrone-exposed MPC5 cells. Innovation: We describe the novel effect and mechanism of germacrone on treating DN, which is linked to ferroptosis for the first time. Conclusion: mmu_circRNA_0000309 silence mediates drug resistance to germacrone in DN mice. mmu_circRNA_0000309 sponges miR-188-3p, and subsequently upregulates GPX4 expression, inactivating ferroptosis-dependent mitochondrial function and podocyte apoptosis. Possibly germacrone-based treatment for DN can be further motivated by regulating mmu_circRNA_0000309/miR-188-3p/GPX4 signaling axis. Antioxid. Redox Signal. 36, 740-759.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Ferroptosis , MicroARNs , Animales , Proteínas de Unión al ADN , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/genética , Nefropatías Diabéticas/metabolismo , Femenino , Ferroptosis/genética , Humanos , Masculino , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Fosfolípido Hidroperóxido Glutatión Peroxidasa/genética , ARN Circular/genética , Sesquiterpenos de Germacrano , Factores de Transcripción
16.
Bioengineered ; 13(1): 774-788, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34847832

RESUMEN

Mitochondrial injury-triggered podocyte apoptosis is a major risk factor for diabetic nephropathy (DN). However, the detailed relationship between mitochondrial homeostasis and podocyte apoptosis remains unclear. The present study aimed to explore the role and functional mechanism of germacrone in DN in type I diabetes (type I DN). A mouse model of type I DN was established by injecting streptozocin, and a podocyte injury model was constructed using high glucose (HG) induction. Histopathology was detected by hematoxylin and eosin and periodic acid-Schiff staining. Transmission electron microscopy and flow cytometry were used to evaluate the mitochondrial function. Germacrone simultaneously reduced blood glucose, 24 h proteinuria, and other nephrotic symptoms in a type 1 DN mouse model. Moreover, germacrone protected against mitochondrial damage, limited reactive oxygen species (ROS) accumulation, and restored glutathione peroxidase (GPX) activity and GPX4 protein expression, subsequently preventing podocyte apoptosis. Mechanistically, the increased miR-188-3p expression in type I DN mice was reversed in germacrone-challenged DN mice. HG induced miR-188-3p expression and the miR-188-3p antagonist abolished the HG-mediated increase in ROS. Notably, miR-188-3p was found to have a therapeutic effect against DN by aggravating mitochondrial damage and podocyte apoptosis. Germacrone alleviates DN progression in type I diabetes by limiting podocyte apoptosis, which was partly counteracted by miR-188-3p upregulation. The combination of germacrone and miR-188-3p antagonists is expected to be an effective therapeutic strategy for DN.Abbreviations DN: diabetic nephropathy; Type I DN: DN in Type I diabetes; STZ: streptozocin; ROS: reactive oxygen species; NcRNAs: non-coding RNAs; UTR: untranslated regions; NC: negative control; BUN: blood urea nitrogen; BUA: blood uric acid; Ucr: urine creatinine; Scr: serum creatinine; PAS: Periodic Acid-Schiff; IF: Immunofluorescence; FISH: Fluorescence in situ hybridization; TUG1: taurine upregulated gene 1; GPX: Glutathione Peroxidase; GPX4: glutathione peroxidase 4; EMT: epithelial-mesenchymal transition.


Asunto(s)
Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Nefropatías Diabéticas/metabolismo , MicroARNs/metabolismo , Mitocondrias/metabolismo , Podocitos/metabolismo , Animales , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/patología , Nefropatías Diabéticas/genética , Nefropatías Diabéticas/patología , Masculino , Ratones , MicroARNs/genética , Mitocondrias/genética , Mitocondrias/patología , Podocitos/patología
17.
Front Pharmacol ; 12: 745561, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34675811

RESUMEN

Liver fibrosis is an abnormal proliferation of connective tissue in the liver caused by various pathogenic factors. Chronic liver injury leads to release of inflammatory cytokines and reactive oxygen species (ROS) from damaged hepatocytes, which activates hepatic stellate cells (HSCs) to secrete extracellular matrix proteins, thereby leading to fibrosis. Thus, inhibition of hepatocyte injury and HSC activation, and promotion of apoptosis of activated HSCs are important strategies for prevention of liver fibrosis. In this study, we showed that the germacrone (GER), the main component in the volatile oil of zedoary turmeric, inhibited hepatic fibrosis by regulating multiple signaling pathways. First, GER improved the cell survival rate by inhibiting the production of ROS after hepatocyte injury caused by acetaminophen (APAP). In addition, GER inhibited the activation of HSCs and expression of collagen I by blocking TGF-ß/Smad pathway in LX-2 cells. However, when the concentration of GER was higher than 60 µM, it specifically induced HSCs apoptosis by promoting the expression and activation of apoptosis-related proteins, but it had no effect on hepatocytes. Importantly, GER significantly attenuated the methionine- and choline-deficient (MCD) diet-induced liver fibrosis by inhibiting liver injury and the activation of HSCs in vivo. In summary, GER can not only protect hepatocytes by reducing ROS release to avoid the liver injury-induced HSC activation, but also directly inhibit the activation and survival of HSCs by regulating TGF-ß/Smad and apoptosis pathways. These results demonstrate that GER can be used as a potential therapeutic drug for the treatment of liver fibrosis.

18.
Cell Biol Int ; 45(9): 1866-1875, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33835632

RESUMEN

Liver fibrosis is a primary threat to public health, owing to limited therapeutic options. Germacrone (GM) has been shown to exert various curative effects against human diseases, including liver injury. The aim of this study was to investigate the pharmacological effects of GM in the pathophysiology of hepatic fibrosis and determine its potential mechanisms of action. A liver fibrosis rat model was established via carbon tetrachloride (CCl4 ) treatment, and LX-2 cells were stimulated with TGF-ß1. The effects of GM on liver fibrosis and its relationship with the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signalling pathway were investigated. In the CCl4 fibrosis-induced rat model, GM improved histological damage, inhibited the activity of hepatic α-smooth muscle actin and improved serum alanine aminotransferase and aspartate aminotransferase levels in a dose-dependent manner. GM potently inhibited hepatic stellate cells (HSCs) growth and epithelial-mesenchymal transition (EMT) progression, as reflected by the altered expression of proliferative (Ki-67, PCNA and cleaved caspase-3) and EMT-related (E-cadherin and vimentin) proteins. In TGF-ß1-stimulated LX-2 cells, GM significantly inhibited the survival and activation of HSCs and induced cell apoptosis. GM also suppressed the migration ability and reversed the EMT process in HSCs. Following GM treatment, the phosphorylation of the PI3K, AKT and mTOR proteins was reduced in the liver of CCl4 -treated rats and TGF-ß1-stimulated LX-2 cells, indicating that GM may attenuate hepatic fibrosis via the PI3K/AKT/mTOR signalling pathway. These outcomes highlight the anti-fibrotic effects of GM and suggest that it is a potential therapeutic agent for the treatment of liver fibrosis.


Asunto(s)
Medicamentos Herbarios Chinos/farmacología , Cirrosis Hepática/tratamiento farmacológico , Hígado/efectos de los fármacos , Aceites de Plantas/farmacología , Sesquiterpenos de Germacrano/farmacología , Animales , Línea Celular , Células Estrelladas Hepáticas , Humanos , Hígado/patología , Masculino , Ratas , Ratas Sprague-Dawley
19.
Mol Med Rep ; 23(6)2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33880579

RESUMEN

Germacrone (GM) displays a wide range of antitumor, antioxidant and anti­inflammatory effects; however, to the best of our knowledge, the effects of GM on lung cancer cell apoptosis and cell cycle arrest have not been previously reported. The aim of the present study was to investigate discussed the effects of GM on the apoptosis and cycle arrest of lung cancer cells. Cell viability, proliferation and apoptosis were assessed by performing Cell Counting Kit­8, colony formation and TUNEL assays, respectively. Western blotting was performed to detect the expression levels of apoptosis­, cell cycle­ and Akt/MDM2 proto­oncogene (MDM2)/p53 signaling pathway­related proteins. Compared with the control group, 50, 100 and 200 µM GM significantly inhibited lung cancer cell proliferation, but significantly induced cell apoptosis and G1/S cell cycle arrest. GM also significantly altered the expression levels of Akt/MDM2/p53 signaling pathway­related proteins compared with the control group. Administration of Akt activator SC79 significantly reversed GM­mediated antiproliferative, proapoptotic and pro­cell cycle arrest effects in lung cancer cells. Therefore, the results of the present study demonstrated that GM induced lung cancer cell apoptosis and cell cycle arrest via the Akt/MDM2/p53 signaling pathway.


Asunto(s)
Apoptosis/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Neoplasias Pulmonares/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Sesquiterpenos de Germacrano/farmacología , Transducción de Señal/efectos de los fármacos , Proteína p53 Supresora de Tumor/metabolismo , Células A549 , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Humanos
20.
J Environ Sci Health B ; 56(4): 423-430, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33678144

RESUMEN

In this work, we investigated the bioactivities of the essential oil (EO) extracted from the Rhododendron thymifolium and its principal germacrone against Lasioderma serricorne and Tribolium castaneum. The EO was obtained by steam distillation. Germacrone was obtained by cryogenic crystallization. The bioactivity of EO and germacrone was tested via contact and repellent activity assays. The results showed that EO and germacrone possessed contact and repellent activities against two species of insects. EO exhibited obvious contact activity against the L. serricorn adults, larvae and T. castaneum larvae with LD50 values of 29.15 µg/adult, 42.73 µg/larva, 19.65 µg/larva respectively. Germacrone exhibited excellent contact activity against the L. serricorne adults, larvae and the T. castaneum larvae with LD50 values of 17.18 µg/adult, 20.94 µg/larva, 20.93 µg/larva respectively. And at the highest testing concentrations (78.63 and 15.73 nL/cm2), the repellent activity of EO and germacrone on two target insects was comparable to that of the positive control (DEET) after 30 h exposure. In especially, in the treatment of the 120 h after the repellent activity of EO and germacrone against T.castaneum adults and larvae were still very significant and showed the same level percentage repellency as DEET. Meanwhile, germacrone exhibited inhibition of acetylcholinesterase activity with IC50 values of 3%. The results indicated that the EO of R. thymifolium and germacrone had the potential to be developed as natural insecticides and repellents for the control of T. castaneum and L. serricorne.


Asunto(s)
Inhibidores de la Colinesterasa/farmacología , Escarabajos/efectos de los fármacos , Insecticidas/farmacología , Aceites Volátiles/farmacología , Rhododendron/química , Animales , Inhibidores de la Colinesterasa/química , Proteínas de Insectos/antagonistas & inhibidores , Proteínas de Insectos/metabolismo , Repelentes de Insectos/química , Repelentes de Insectos/farmacología , Insecticidas/química , Dosificación Letal Mediana , Aceites Volátiles/química , Sesquiterpenos de Germacrano/farmacología , Tribolium/química , Tribolium/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA