Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Adv Sci (Weinh) ; : e2402727, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39285656

RESUMEN

Lattice materials are an emerging family of advanced engineering materials with unique advantages for lightweight applications. However, the mechanical behaviors of lattice materials at ultra-low relative densities are still not well understood, and this severely limits their lightweighting potential. Here, a high-precision micro-laser powder bed fusion technique is dveloped that enables the fabrication of metallic lattices with a relative density range much wider than existing studies. This technique allows to confirm that cubic lattices in compression undergo a yielding-to-buckling failure mode transition at low relative densities, and this transition fundamentally changes the usual strength ranking from plate > shell > truss at high relative densities to shell > plate > truss or shell > truss > plate at low relative densities. More importantly, it is shown that increasing bending energy ratio in the lattice through imperfections such as slightly-corrugated geometries can significantly enhance the stability and strength of lattice materials at ultra-low relative densities. This counterintuitive result suggests a new way for designing ultra-lightweight lattice materials at ultra-low relative densities.

2.
Heliyon ; 10(5): e26951, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38495194

RESUMEN

Steel cross-sections with thin walls are vulnerable to fire-induced buckling instability, which reduces their load-bearing capacity. Eurocode 3 design provisions have been found inadequate, leading to alternative methods such as effective design strategies and advanced structural models built mostly with shell FE, which can be complex. For Class 4 steel beam-columns subjected to fire conditions, beam-type modelling to predict the Flexural-Torsional Buckling (FTB) strength has been proposed as an alternative approach, but it has not yielded satisfactory results for large compressive load eccentricities. This paper presents two new low computational cost modelling strategies based on Timoshenko's beam FE to address this issue: the Single beam-column Model (SbcM) and the Cruciform beam-column Model (CbcM). The first consists of a single line of beam FE, while the second uses a grid of beam FE for more flexibility. Both strategies effectively simulate the FTB behaviour in Class 4 steel beam-column during a fire, offering quicker computations compared to shell models. Still, the single-line model is favoured for its simplicity, making it more efficient in analysing complex fire engineering problems.

3.
Sci Prog ; 104(2): 368504211025905, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34115552

RESUMEN

The buckling behavior of latticed columns had been widely investigated based on the theory of Euler, Engesser and Timoshenko shear beam. Although these methods had been formulated and proved to be accurate in case of special assumptions, the influences of lacing bars on the buckling behavior of latticed columns were unclear. This paper modeled a general four-legged latticed column to study the influence of the cross-section characteristics of lacing bars along with their imperfections on the buckling capacity of latticed columns. Three loading conditions and four geometric imperfect models were built to testify the performance of lacing bars. To calculate the buckling load of latticed columns with imperfections accurately, advanced nonlinear analytical procedures using Newton-Raphson incremental-iterative method (ANAP-NR) and Risk arc-length incremental-iterative method (ANAP-Risk) were developed, and then validated by FE software ABAQUS. The current data in the paper show the maximum variation on the critical buckling load of latticed columns, caused by the cross-section area, the bending moment of inertia outer lacing plane, and the imperfections of lacing bars, could reach 68%, 30%, and 25%. The analytical results indicate the great importance of lacing bars on the buckling capacity of latticed columns.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA