Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros











Intervalo de año de publicación
1.
Heliyon ; 9(3): e14466, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36967965

RESUMEN

DNA is derived from reverse transcription and its origin is related to reverse transcriptase, DNA polymerase and integrase. The gene structure originated from the evolution of the first RNA polymerase. Thus, an explanation of the origin of the genetic system must also explain the evolution of these enzymes. This paper proposes a polymer structure model, termed the stable complex evolution model, which explains the evolution of enzymes and functional molecules. Enzymes evolved their functions by forming locally tightly packed complexes with specific substrates. A metabolic reaction can therefore be considered to be the result of adaptive evolution in this way when a certain essential molecule is lacking in a cell. The evolution of the primitive genetic and metabolic systems was thus coordinated and synchronized. According to the stable complex model, almost all functional molecules establish binding affinity and specific recognition through complementary interactions, and functional molecules therefore have the nature of being auto-reactive. This is thermodynamically favorable and leads to functional duplication and self-organization. Therefore, it can be speculated that biological systems have a certain tendency to maintain functional stability or are influenced by an inherent selective power. The evolution of dormant bacteria may support this hypothesis, and inherent selectivity can be unified with natural selection at the molecular level.

2.
Genes (Basel) ; 13(10)2022 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-36292782

RESUMEN

The objective of this study was to evaluate the genetic diversity of the Tropical Milking Criollo cattle (TMC) breed in Mexico through parameters derived from pedigree and genomic information assessment. The pedigree file consisted of 3780 animals. Seventy-nine bovines were genotyped with the medium-density single nucleotide polymorphism chip and considered a reference population for pedigree analysis. The effective population size and the probability of gene origin used to assess the evolution of genetic diversity were calculated with pedigree information. Inbreeding coefficients were evaluated based on pedigree (FPed), the genomic relationship matrix (FGRM), and runs of homozygosity (FROH) of different length classes. The average inbreeding was 2.82 ± 2.66%, −0.7 ± 3.8%, and 10.9 ± 3.0% for FPED, FGRM, and FROH, respectively. Correlation between FPED and FROH was significant only for runs of homozygosity > 4 Mb, indicating the FPED of a population with an average equivalent complete generation of five only recovers the most recent inbreeding. The parameters of the probability of gene origin indicated the existence of genetic bottlenecks and the loss of genetic diversity in the history of the TMC cattle population; however, pedigree and genomic information revealed the existence of current sufficient genetic diversity to design a sustainable breeding program.


Asunto(s)
Genómica , Endogamia , Bovinos/genética , Animales , Linaje , Homocigoto , Polimorfismo de Nucleótido Simple
3.
Animals (Basel) ; 12(16)2022 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-36009663

RESUMEN

The Mezohegyes Stud was founded in 1784 where three different horse breeds were developed: the Furioso-North Star, the Gidran, and the Nonius. These breeds were based on the same mare population, but each breed had different utilization purposes. Our aim was to analyze the pedigree information of these three indigenous breeds. The genealogical information was traced back from the actual breeding population back to the founder animals, and the final database contained more than 47,000 horses. The reference populations were defined as the registered breeding animals in 2019. The complete generation equivalent was 16.45 for the Gidran breed, 15.18 for Furioso-North Star, and 12.64 for Nonius, respectively. Due to the utilization of English Thoroughbred during the breeding history, the average maximum generations were close to 36 generations for each breed. The average relatedness was approximately 4%. The average Wright's inbreeding coefficient was the highest for the Nonius breed (5.59%). Kalinowski's decomposition of inbreeding showed that inbreeding is originated mainly from the past; the current fixation of alleles was higher for the Nonius horse breed. There was a reasonable bottleneck effect for each breed. The estimated effective population sizes suggest that there is no problem with the maintaining of Mezohegyes horse breeds.

4.
Animals (Basel) ; 12(7)2022 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-35405917

RESUMEN

Loss of genetic diversity and high inbreeding rates confer an increased risk of congenital anomalies and diseases and thus impacting dog breeding. In this study, we analyzed recent and ancestral inbreeding as well as other measures of genetic variability in the Deutsch Drahthaar (DD) dog population. Analyses included pedigree data from 101,887 animals and a reference population with 65,927 dogs born between 2000 and 2020. The mean equivalent complete generations was 8.6 with 69% known ancestors in generation 8. The mean realized effective population size was 92 with an increasing trend from 83 to 108 over birth years. The numbers of founders, effective founders and effective ancestors, as well as founder genomes, were 814, 66, 38 and 16.15, respectively. Thirteen ancestors explained 50% of the genetic diversity. The mean coefficient of inbreeding and individual rate of inbreeding (ΔFi) were 0.042 and 0.00551, respectively, with a slightly decreasing trend in ΔFi. Exposure of ancestors to identical-by-descent alleles explored through ancestral coefficients of inbreeding showed a strong increasing trend. Comparisons between new and ancestral inbreeding coefficients according to Kalinowski et al. showed an average relative contribution of 62% of new inbreeding to individual inbreeding. Comparisons among average coancestry within the parental population and average inbreeding in the reference population were not indicative of genetic substructures. In conclusion, the creation of the DD dog breed about 120 years ago resulted in a popular breed with considerable genetic diversity without substructuring into lines or subpopulations. The trend of new inbreeding was declining, while ancestral inbreeding through ancestors who were autozygous at least once in previous generations was increasing.

5.
Insect Mol Biol ; 31(2): 139-158, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34747062

RESUMEN

While the striking effects of seminal fluid proteins (SFPs) on females are fairly conserved among Diptera, most SFPs lack detectable homologues among the SFP repertoires of phylogenetically distant species. How such a rapidly changing proteome conserves functions across taxa is a fascinating question. However, this and other pivotal aspects of SFPs' evolution remain elusive because discoveries on these proteins have been mainly restricted to the model Drosophila melanogaster. Here, we provide an overview of the current knowledge on the inter-specific divergence of the SFP repertoire in Drosophila and compile the increasing amount of relevant genomic information from multiple species. Capitalizing on the accumulated knowledge in D. melanogaster, we present novel sets of high-confidence SFP candidates and transcription factors presumptively involved in regulating the expression of SFPs. We also address open questions by performing comparative genomic analyses that failed to support the existence of many conserved SFPs shared by most dipterans and indicated that gene co-option is the most frequent mechanism accounting for the origin of Drosophila SFP-coding genes. We hope our update establishes a starting point to integrate further data and thus widen the understanding of the intricate evolution of these proteins.


Asunto(s)
Proteínas de Drosophila , Animales , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiología , Femenino , Proteoma/metabolismo , Proteínas de Plasma Seminal/genética , Proteínas de Plasma Seminal/metabolismo
6.
Rice (N Y) ; 14(1): 48, 2021 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-34056673

RESUMEN

BACKGROUND: The rice (Oryza sativa) gene Xa7 has been hypothesized to be a typical executor resistance gene against Xanthomonas oryzae pv. oryzae (Xoo), and has conferred durable resistance in the field for decades. Its identity and the molecular mechanisms underlying this resistance remain elusive. RESULTS: Here, we filled in gaps of genome in Xa7 mapping locus via BAC library construction, revealing the presence of a 100-kb non-collinear sequence in the line IRBB7 compared with Nipponbare reference genomes. Complementary transformation with sequentially overlapping subclones of the BACs demonstrated that Xa7 is an orphan gene, encoding a small novel protein distinct from any other resistance proteins reported. A 27-bp effector binding element (EBE) in the Xa7 promoter is essential for AvrXa7-inducing expression model. XA7 is anchored in the endoplasmic reticulum membrane and triggers programmed cell death in rice and tobacco (Nicotiana benthamiana). The Xa7 gene is absent in most cultivars, landraces, and wild rice accessions, but highly homologs of XA7 were identified in Leersia perrieri, the nearest outgroup of the genus Oryza. CONCLUSIONS: Xa7 acts as a trap to perceive AvrXa7 via EBEAvrXa7 in its promoter, leading to the initiation of resistant reaction. Since EBEAvrXa7 is ubiquitous in promoter of rice susceptible gene SWEET14, the elevated expression of which is conducive to the proliferation of Xoo, that lends a great benefit for the Xoo strains retaining AvrXa7. As a result, varieties harboring Xa7 would show more durable resistance in the field. Xa7 alleles analysis suggests that the discovery of new resistance genes could be extended beyond wild rice, to include wild grasses such as Leersia species.

7.
Animals (Basel) ; 11(1)2021 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-33440788

RESUMEN

Increase of inbreeding and loss of genetic diversity have large impact on farm animal genetic resources. Therefore, the aims of the present study were to analyse measures of genetic diversity as well as recent and ancestral inbreeding using pedigree data of the German Brown population, and to identify causes for loss of genetic diversity. The reference population included 922,333 German Brown animals born from 1990 to 2014. Pedigree depth and completeness reached an average number of complete equivalent generations of 6.24. Estimated effective population size for the German Brown reference population was about 112 with a declining trend from 141 to 95 for the birth years. Individual inbreeding coefficients increased from 0.013 to 0.036. Effective number of founders, ancestors and founder genomes of 63.6, 36.23 and 20.34 indicated unequal contributions to the reference population. Thirteen ancestors explained 50% of the genetic diversity. Higher breed proportions of US Brown Swiss were associated with higher levels of individual inbreeding. Ancestral inbreeding coefficients, which are indicative for exposure of ancestors to identical-by-descent alleles, increased with birth years but recent individual inbreeding was higher than ancestral inbreeding. Given the increase of inbreeding and decline of effective population size, measures to decrease rate of inbreeding and increase effective population size through employment of a larger number of sires are advisable.

8.
Rev. colomb. cienc. pecu ; 33(1): 44-59, Jan.-Mar. 2020. tab, graf
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1156302

RESUMEN

Abstract Background: Romosinuano cattle breed in Mexico has endured isolation and it is necessary to characterize it in order to facilitate sustainable genetic management. Objective: To assess the evolution of the structure and genetic diversity of the Romosinuano breed in Mexico, through pedigree analysis. Methods: Pedigree data was obtained from Asociación Mexicana de Criadores de Ganado Romosinuano y Lechero Tropical (AMCROLET). The ENDOG program (4.8 version) was used to analyze two datasets, one that includes upgrading from F1 animals (UP) and the other with only straight-bred cattle (SP). For both datasets, three reference populations were defined: 1998-2003 (RP1), 2004-2009 (RP2), and 2010-2017 (RP3). The pedigree included 3,432 animals in UP and 1,518 in SP. Demographic parameters were: Generation interval (GI), equivalent number of generations (EG), pedigree completeness index (PCI), and gene flow among herds. Genetic parameters were: Inbreeding (F) and average relatedness (AR) coefficients, effective population size (Nec), effective number of founders and ancestors, and number of founder genome equivalents. Results: The GI varied from 6.10 to 6.54 for UP, and from 6.47 to 7.16 yr for SP. The EG of the UP and SP improved >63% from RP1 to RP3. The PCI increased over time. No nucleus or isolated herds were found. For RP3, F and AR reached 2.08 and 5.12% in the UP, and 2.55 and 5.94% in the SP. For RP3, Nec was 57 in the UP and 45 in the SP. Genetic diversity losses were attributed mainly (>66%) to genetic drift, except for RP3 in the SP (44%). Conclusions: A reduction of the genetic diversity has been occurring after the Romosinuano breed association was established in Mexico, and this is mainly due to random loss of genes.


Resumen Antecedentes: La raza bovina Romosinuano ha estado prácticamente aislada en México y requiere ser caracterizada para un manejo genético sostenible. Objetivo: Evaluar la evolución de la estructura y diversidad genética de la raza Romosinuano en México, mediante el análisis del pedigrí. Métodos: Los datos genealógicos provinieron de la Asociación Mexicana de Criadores de Ganado Romosinuano y Lechero Tropical (AMCROLET). Los análisis se realizaron con el programa ENDOG (versión 4.8) para dos bases de datos, una que incluyó animales en cruzamiento absorbente (UP) a partir de F1 y la otra con sólo animales puros (SP). Para ambas bases de datos se definieron tres poblaciones de referencia: 1998-2003 (RP1), 2004- 2009 (RP2), y 2010-2017 (RP3). El pedigrí incluyó 3.432 animales en la UP y 1.518 en la SP. Los parámetros demográficos fueron: intervalo generacional (GI), número de generaciones equivalentes (EG), índice de completitud del pedigrí (PCI), y flujo de genes entre hatos. Los parámetros genéticos fueron: coeficientes de consanguinidad (F) y de relación genética aditiva (AR), tamaño efectivo de la población (Nec), número efectivo de fundadores y ancestros, y número equivalente de genomas fundadores. Resultados: El GI varió de 6,10 a 6,54 para la UP, y de 6,47 a 7,16 años para la SP. El EG de la UP y la SP mejoró >63%, de RP1 a RP3. El PCI aumentó a través de los años, pero más para la SP que para la UP. No se encontraron hatos núcleo o aislados. Para RP3, F y AR alcanzaron 2,08 y 5,12% en la UP, y 2,55 y 5,94% en la SP. Para RP3, Nec fue 57 en la UP y 45 en la SP. Más de 66% de las pérdidas en diversidad genética se debieron a deriva genética, excepto para RP3 en la UP (44%). Conclusiones: una reducción de la diversidad genética ha estado ocurriendo después de que se formó la asociación de criadores de ganado Romosinuano en México, y es debida principalmente a pérdidas aleatorias de genes.


Resumo Antecedentes: A raça bovina Romosinuano tem estado praticamente isolada no México e precisa ser caracterizada para um manejo genético sustentável. Objetivo: Avaliar a evolução da estrutura e diversidade genética da raça Romosinuano no México, através da análise de pedigree. Métodos: Os dados genealógicos vieram da Asociación Mexicana de Criadores de Ganado Romosinuano y Lechero Tropical (AMCROLET). As análises foram feitas com o programa ENDOG (versão 4.8) para duas bases de dados, uma que incluiu animais em cruzamento absorvente (UP) a partir da F1 e a outra base de dados somente com animais puros (SP). Para ambas bases de dados foram definidas três populações de referência: 1998-2003 (RP1), 2004-2009 (RP2) e 2010-2017 (RP3). O pedigree incluiu 3.432 animais na UP e 1.518 na SP. Os parâmetros demográficos foram: intervalo entre gerações (GI), número de gerações equivalentes (EG), índice de completude do pedigree (PCI), e fluxo de genes entre rebanhos. Os parâmetros genéticos foram: coeficiente de consanguinidade (F) e da relação genética aditiva (AR), tamanho efetivo da população (Nec), número efetivo de fundadores e ancestrais, e número equivalente de genomas fundadores. Resultados: O GI variou de 6,10 a 6,54 para a UP, e de 6,47 a 7,16 anos para a SP. EG da UP e a SP melhorou >63%, de RP1 a RP3. O PCI aumentou ao longo dos anos, mas mais para a SP do que para o UP. Não se encontraram rebanhos núcleo ou isolados. Para RP3, F e AR alcançaram 2,08 e 5,12% na UP, e 2,55 e 5,94% na SP. Para RP3, Nec foi 57 na UP e 45 na SP. Mais de 66% das perdas em diversidade genética foram ocasionadas pela deriva genética, exceto para RP3 no UP (44%). Conclusões: Depois que a associação da raça Romosinuano foi estabelecida no México, tem ocorrido uma redução da diversidade genética, principalmente devido a perdas aleatórias de genes.

9.
Trop Anim Health Prod ; 52(3): 1133-1139, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-31745753

RESUMEN

A vital requirement to design and implement a breeding program is to know the structure and genetic diversity of a population. The aim of this study was to characterize population structure and genetic diversity of the Colombian Simmental cattle. The pedigree file included 27,985 animals born from 1975 to 2017. The level of genetic diversity and breed structure was evaluated through probabilities of gene origin expressed via effective number of founders, ancestors and founders genomes. The inbreeding rates and the degree of genetic connectivity were estimated using a regression analysis and a genetic drift variance analysis, respectively. The lowest effective number of founders and ancestors were 50 and 38 by year, respectively. The average inbreeding by year of birth decreased from 5.06% in 1980 to 2.25% in 2017. The dairy line genetic contributions in the overall population increased significantly in the last 37 years, and the beef line contribution decreased. Regarding the genetic connectivity, Colombian regions (administrative divisions) with the largest cattle population had higher values. The results indicate that the availability of European and North American bulls contributes to genetic diversity by increasing the effective number of founders over time in the Colombian Simmental cattle population. However, the intensive use of relatively few founders causes an unbalanced genetic contribution and the loss of genetic diversity by gene pool erosion.


Asunto(s)
Bovinos/fisiología , Flujo Genético , Variación Genética , Animales , Bovinos/genética , Colombia , Femenino , Endogamia , Masculino , Linaje , Dinámica Poblacional
10.
BMC Plant Biol ; 19(1): 307, 2019 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-31299897

RESUMEN

BACKGROUND: DNA methylation is a crucial epigenetic modification, which is involved in many biological processes, including gene expression regulation, embryonic development, cell differentiation and genomic imprinting etc. And it also involves many key regulatory genes in eukaryotes. By tracing the evolutionary history of methylation-related genes, we can understand the origin and expansion time of these genes, which helps to understand the evolutionary history of plants, and we can also understand the changes of DNA methylation patterns in different species. However, most studies on the evolution of methylation-related genes failed to be carried out for the whole DNA methylation pathway. RESULTS: In this study, we conducted a comprehensive identification of 33 methylation-related genes in 77 species, and investigated gene origin and evolution throughout the plant kingdom. We found that the origin of genes responsible for methylation maintenance and demethylation evolved early, while most de novo methylation-related genes appeared late. The methylation-related genes were expanded by whole genome duplication and tandem replication, but were also accompanied by a large number of gene absence events in different species. The gene length and intron length varied a lot in different species, but exon structure and functional domains were relatively conserved. The phylogenetic relationships of methylation-related genes were traced to reveal the evolution history of DNA methylation in different species. The expression patterns of methylation-related genes have changed during the evolution of species, and the expression patterns of these genes in different species can be clustered into four categories. CONCLUSIONS: The study describes a global characterization of DNA methylation-related genes in the plant kingdom. The similarities and differences in origin time, gene structure and phylogenetic relationship of these genes lead us to understand the evolutionary conservation and dynamics of DNA methylation in plants.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Impresión Genómica , Plantas/genética , Evolución Molecular , Exones/genética , Intrones/genética , Filogenia
11.
Bioessays ; 41(5): e1900006, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31026339

RESUMEN

Comparative genomics has proven a fruitful approach to acquire many functional and evolutionary insights into core cellular processes. Here it is argued that in order to perform accurate and interesting comparative genomics, one first and foremost has to be able to recognize, postulate, and revise different evolutionary scenarios. After all, these studies lack a simple protocol, due to different proteins having different evolutionary dynamics and demanding different approaches. The authors here discuss this challenge from a practical (what are the observations?) and conceptual (how do these indicate a specific evolutionary scenario?) viewpoint, with the aim to guide investigators who want to analyze the evolution of their protein(s) of interest. By sharing how the authors draft, test, and update such a scenario and how it directs their investigations, the authors hope to illuminate how to execute molecular evolution studies and how to interpret them. Also see the video abstract here https://youtu.be/VCt3l2pbdbQ.


Asunto(s)
Biología Computacional/métodos , Evolución Molecular , Proteínas/genética , Proteínas de Caenorhabditis elegans/genética , Bases de Datos de Proteínas , Células Eucariotas , Genómica/métodos , Humanos , Filogenia , Dominios Proteicos , Proteínas/química
12.
Proc Natl Acad Sci U S A ; 113(13): 3579-84, 2016 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-26976593

RESUMEN

The integration of foreign genetic information is central to the evolution of eukaryotes, as has been demonstrated for the origin of the Calvin cycle and of the heme and carotenoid biosynthesis pathways in algae and plants. For photosynthetic lineages, this coordination involved three genomes of divergent phylogenetic origins (the nucleus, plastid, and mitochondrion). Major hurdles overcome by the ancestor of these lineages were harnessing the oxygen-evolving organelle, optimizing the use of light, and stabilizing the partnership between the plastid endosymbiont and host through retargeting of proteins to the nascent organelle. Here we used protein similarity networks that can disentangle reticulate gene histories to explore how these significant challenges were met. We discovered a previously hidden component of algal and plant nuclear genomes that originated from the plastid endosymbiont: symbiogenetic genes (S genes). These composite proteins, exclusive to photosynthetic eukaryotes, encode a cyanobacterium-derived domain fused to one of cyanobacterial or another prokaryotic origin and have emerged multiple, independent times during evolution. Transcriptome data demonstrate the existence and expression of S genes across a wide swath of algae and plants, and functional data indicate their involvement in tolerance to oxidative stress, phototropism, and adaptation to nitrogen limitation. Our research demonstrates the "recycling" of genetic information by photosynthetic eukaryotes to generate novel composite genes, many of which function in plastid maintenance.


Asunto(s)
Evolución Molecular , Plastidios/genética , Proteínas/genética , Simbiosis/genética , Eucariontes/genética , Fusión Génica , Genoma de Planta , Modelos Genéticos , Familia de Multigenes , Oxidación-Reducción , Fotosíntesis/genética , Filogenia , Plantas/genética , Homología de Secuencia de Aminoácido
13.
Rev. cient. (Maracaibo) ; 18(3): 284-290, mayo-jun. 2008. ilus, tab, graf
Artículo en Inglés | LILACS | ID: lil-548700

RESUMEN

Con el objetivo de continuar el programa de conservación genética de la raza Criollo Limonero, se realizó un estudio para evaluar la variabilidad genética del rebaño, utilizando 2552 registros genealógicos disponibles entre los años 1985 y 2003 en la Estación Local Carrasquero, ubicada en el sector playa Bonita, municipio Mara, al norte del estado Zulia-Venezuela. Se determinó la consanguinidad de cada animal y la consanguinidad global del rebaño (fh), el promedio de relación de parentesco (AR), los parámetros de la probabilidad de orígen del gen, el número de fundadores (NF), el número efectivo de fundadores (fe), el número efectivo de ancestros (fa), número de genomas fundadores (Ng) y el número de fundadores que explican el 50 por ciento (F50) de la variabilidad genética. La fh en el año 2003 fue de 0,35 por ciento y el AR 3,4 por ciento, el NF 386, fe 63,5, fa 38, Ng 27,71; y el valor de F50 fue 18. La fh no tuvo un incremento marcado a pesar que el AR indicó que existe una alta relación entre los individuos de la población, por lo que los apareamientos deben planificarse para evitar el apareamiento de animales emparentados. Los valores de probabilidad de origen de los genes indican que la población ha perdido variabilidad genética por un efecto de cuello de botella y por deriva genética aunque este deterioro no se refleje en un incremento en la consanguinidad. Aun existe una cantidad importante de diversidad que debe preservarse, dada la importancia que representa este germoplasma para la región y el país.


In order to continue the genetic program for the conservation of the Criollo Limonero population, a study was carried out to evaluate the genetic variability of this local breed. For this purpose, 2552 genealogical records from the Criollo herd at the Carrasquero Local Station (INIA) located at Playa Bonita, Mara County, North of Zulia State-Venezuela, during the 1985-2003 period were used. Global inbreeding of the herd (fH) and animal inbreeding were determined; in addition, Average of relatedness (AR), probabilities of gene origin, number of founders (NF), effective number of founders (fe), effective ancestors number (fa), genome founders number (Ng ) and number of founders explaining 50% (F50) of the genetic variability. For the year 2003 fH was 0.35%, whereas AR, NF, fe, fa, Ng and F50 were 3.4%, 386, 63.5, 38, 27.71 and 18 respectively. Even though AR showed a high relationship among the individuals in the herd, fH did not have a significant increase. For this reason, mates should be planned carefully in order to avoid related mates. Probabilities of gene origin suggest that genetic variation has decreased in this population due to a bottleneck effect and genetic drift, without increasing inbreeding. An important genetic diversity exists in this population which should be preserved, given the importance of this genetic resource for the region and the country.


Asunto(s)
Animales , Consanguinidad , Probabilidad , Técnicas Genéticas/veterinaria , Medicina Veterinaria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA