Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros











Intervalo de año de publicación
1.
Cell Mol Life Sci ; 81(1): 222, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38767725

RESUMEN

BACKGROUND: Epigenetic variation is mediated by epigenetic marks such as DNA methylation occurring in all cytosine contexts in plants. CG methylation plays a critical role in silencing transposable elements and regulating gene expression. The establishment of CG methylation occurs via the RNA-directed DNA methylation pathway and CG methylation maintenance relies on METHYLTRANSFERASE1, the homologue of the mammalian DNMT1. PURPOSE: Here, we examined the capacity to stably alter the tomato genome methylome by a bacterial CG-specific M.SssI methyltransferase expressed through the LhG4/pOP transactivation system. RESULTS: Methylome analysis of M.SssI expressing plants revealed that their euchromatic genome regions are specifically hypermethylated in the CG context, and so are most of their genes. However, changes in gene expression were observed only with a set of genes exhibiting a greater susceptibility to CG hypermethylation near their transcription start site. Unlike gene rich genomic regions, our analysis revealed that heterochromatic regions are slightly hypomethylated at CGs only. Notably, some M.SssI-induced hypermethylation persisted even without the methylase or transgenes, indicating inheritable epigenetic modification. CONCLUSION: Collectively our findings suggest that heterologous expression of M.SssI can create new inherited epigenetic variations and changes in the methylation profiles on a genome wide scale. This open avenues for the conception of epigenetic recombinant inbred line populations with the potential to unveil agriculturally valuable tomato epialleles.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Epigenoma , Genoma de Planta , Solanum lycopersicum , Solanum lycopersicum/genética , Metilación de ADN/genética , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente/genética
2.
BMC Bioinformatics ; 25(1): 96, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38438881

RESUMEN

BACKGROUND: Bisulfite sequencing detects and quantifies DNA methylation patterns, contributing to our understanding of gene expression regulation, genome stability maintenance, conservation of epigenetic mechanisms across divergent taxa, epigenetic inheritance and, eventually, phenotypic variation. Graphical representation of methylation data is crucial in exploring epigenetic regulation on a genome-wide scale in both plants and animals. This is especially relevant for non-model organisms with poorly annotated genomes and/or organisms where genome sequences are not yet assembled on chromosome level. Despite being a technology of choice to profile DNA methylation for many years now there are surprisingly few lightweight and robust standalone tools available for efficient graphical analysis of data in non-model systems. This significantly limits evolutionary studies and agrigenomics research. BSXplorer is a tool specifically developed to fill this gap and assist researchers in explorative data analysis and in visualising and interpreting bisulfite sequencing data more easily. RESULTS: BSXplorer provides in-depth graphical analysis of sequencing data encompassing (a) profiling of methylation levels in metagenes or in user-defined regions using line plots and heatmaps, generation of summary statistics charts, (b) enabling comparative analyses of methylation patterns across experimental samples, methylation contexts and species, and (c) identification of modules sharing similar methylation signatures at functional genomic elements. The tool processes methylation data quickly and offers API and CLI capabilities, along with the ability to create high-quality figures suitable for publication. CONCLUSIONS: BSXplorer facilitates efficient methylation data mining, contrasting and visualization, making it an easy-to-use package that is highly useful for epigenetic research.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Sulfitos , Animales , Análisis de Secuencia de ADN , Genómica
3.
Cell Syst ; 14(11): 953-967.e17, 2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37944515

RESUMEN

Methylation of CG dinucleotides (mCGs), which regulates eukaryotic genome functions, is epigenetically propagated by Dnmt1/MET1 methyltransferases. How mCG is established and transmitted across generations despite imperfect enzyme fidelity is unclear. Whether mCG variation in natural populations is governed by genetic or epigenetic inheritance also remains mysterious. Here, we show that MET1 de novo activity, which is enhanced by existing proximate methylation, seeds and stabilizes mCG in Arabidopsis thaliana genes. MET1 activity is restricted by active demethylation and suppressed by histone variant H2A.Z, producing localized mCG patterns. Based on these observations, we develop a stochastic mathematical model that precisely recapitulates mCG inheritance dynamics and predicts intragenic mCG patterns and their population-scale variation given only CG site spacing. Our results demonstrate that intragenic mCG establishment, inheritance, and variance constitute a unified epigenetic process, revealing that intragenic mCG undergoes large, millennia-long epigenetic fluctuations and can therefore mediate evolution on this timescale.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Metilación de ADN/genética , Proteínas de Arabidopsis/genética , ADN (Citosina-5-)-Metiltransferasas/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Epigénesis Genética/genética , Histonas/metabolismo
4.
Genome Biol ; 24(1): 227, 2023 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-37828516

RESUMEN

BACKGROUND: In several eukaryotes, DNA methylation occurs within the coding regions of many genes, termed gene body methylation (GbM). Whereas the role of DNA methylation on the silencing of transposons and repetitive DNA is well understood, gene body methylation is not associated with transcriptional repression, and its biological importance remains unclear. RESULTS: We report a newly discovered type of GbM in plants, which is under constitutive addition and removal by dynamic methylation modifiers in all cells, including the germline. Methylation at Dynamic GbM genes is removed by the DRDD demethylation pathway and added by an unknown source of de novo methylation, most likely the maintenance methyltransferase MET1. We show that the Dynamic GbM state is present at homologous genes across divergent lineages spanning over 100 million years, indicating evolutionary conservation. We demonstrate that Dynamic GbM is tightly associated with the presence of a promoter or regulatory chromatin state within the gene body, in contrast to other gene body methylated genes. We find Dynamic GbM is associated with enhanced gene expression plasticity across development and diverse physiological conditions, whereas stably methylated GbM genes exhibit reduced plasticity. Dynamic GbM genes exhibit reduced dynamic range in drdd mutants, indicating a causal link between DNA demethylation and enhanced gene expression plasticity. CONCLUSIONS: We propose a new model for GbM in regulating gene expression plasticity, including a novel type of GbM in which increased gene expression plasticity is associated with the activity of DNA methylation writers and erasers and the enrichment of a regulatory chromatin state.


Asunto(s)
Metilación de ADN , Plantas , Plantas/genética , Evolución Biológica , Expresión Génica , Cromatina
5.
Curr Opin Plant Biol ; 75: 102436, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37597469

RESUMEN

Gene body methylation (gbM) is a widely conserved epigenetic feature of plant genomes. Efforts to delineate the mechanisms by which gbM contributes to transcriptional regulation remain largely inconclusive, and its evolutionary significance continues to be debated. Curiously, although steady-state gbM levels are remarkably stable across mitotic and meiotic cell divisions, the methylation status of individual CG dinucleotides in gbM genes is highly stochastic. How can these two seemingly contradictory observations be reconciled? Here, we discuss how stochastic processes relate to gbM maintenance dynamics. We show that a quantitative understanding of these processes can shed deeper insights into the molecular and evolutionary biology of this enigmatic epigenetic trait.


Asunto(s)
Evolución Biológica , Genoma de Planta , Metilación , Genoma de Planta/genética , División Celular , Epigenómica
6.
Genetics ; 225(2)2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37556604

RESUMEN

DNA methylation in plants is depleted from cis-regulatory elements in and near genes but is present in some gene bodies, including exons. Methylation in exons solely in the CG context is called gene body methylation (gbM). Methylation in exons in both CG and non-CG contexts is called TE-like methylation (teM). Assigning functions to both forms of methylation in genes has proven to be challenging. Toward that end, we utilized recent genome assemblies, gene annotations, transcription data, and methylome data to quantify common patterns of gene methylation and their relations to gene expression in maize. We found that gbM genes exist in a continuum of CG methylation levels without a clear demarcation between unmethylated genes and gbM genes. Analysis of expression levels across diverse maize stocks and tissues revealed a weak but highly significant positive correlation between gbM and gene expression except in endosperm. gbM epialleles were associated with an approximately 3% increase in steady-state expression level relative to unmethylated epialleles. In contrast to gbM genes, which were conserved and were broadly expressed across tissues, we found that teM genes, which make up about 12% of genes, are mainly silent, are poorly conserved, and exhibit evidence of annotation errors. We used these data to flag teM genes in the 26 NAM founder genome assemblies. While some teM genes are likely functional, these data suggest that the majority are not, and their inclusion can confound the interpretation of whole-genome studies.

7.
Genome Biol ; 24(1): 106, 2023 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-37147734

RESUMEN

BACKGROUND: Plants memorize previous pathogen attacks and are "primed" to produce a faster and stronger defense response, which is critical for defense against pathogens. In plants, cytosines in transposons and gene bodies are reported to be frequently methylated. Demethylation of transposons can affect disease resistance by regulating the transcription of nearby genes during defense response, but the role of gene body methylation (GBM) in defense responses remains unclear. RESULTS: Here, we find that loss of the chromatin remodeler decrease in DNA methylation 1 (ddm1) synergistically enhances resistance to a biotrophic pathogen under mild chemical priming. DDM1 mediates gene body methylation at a subset of stress-responsive genes with distinct chromatin properties from conventional gene body methylated genes. Decreased gene body methylation in loss of ddm1 mutant is associated with hyperactivation of these gene body methylated genes. Knockout of glyoxysomal protein kinase 1 (gpk1), a hypomethylated gene in ddm1 loss-of-function mutant, impairs priming of defense response to pathogen infection in Arabidopsis. We also find that DDM1-mediated gene body methylation is prone to epigenetic variation among natural Arabidopsis populations, and GPK1 expression is hyperactivated in natural variants with demethylated GPK1. CONCLUSIONS: Based on our collective results, we propose that DDM1-mediated GBM provides a possible regulatory axis for plants to modulate the inducibility of the immune response.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Metilación de ADN , Factores de Transcripción/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cromatina/metabolismo , Regulación de la Expresión Génica de las Plantas
8.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-993284

RESUMEN

DNA methylation is an important epigenetic regulatory mechanism, including gene promoter methylation and gene body methylation. Abnormal DNA methylation is closely related to the development and progression of malignant tumors, and the correlation between promoter methylation and tumors has been more clearly described previously. However, with the in-depth study of genome-wide DNA methylation, it has been found that there are more extensive methylation levels in gene body regions, which also play an important role in tumor-related gene expression, cell differentiation and tumor development. In this paper, we review the effects of gene bodymethylation on tumors in recent years and provide clues for the research and application of gene body methylation in the field of tumors by elaborating the role and regulatory mechanism of gene body methylation on tumors.

9.
Clin Epigenetics ; 14(1): 154, 2022 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-36443876

RESUMEN

DNA methylation is an important epigenetic mechanism that regulates gene expression. To date, most DNA methylation studies have focussed on CpG islands in the gene promoter region, and the mechanism of methylation and the regulation of gene expression after methylation have been clearly elucidated. However, genome-wide methylation studies have shown that DNA methylation is widespread not only in promoters but also in gene bodies. Gene body methylation is widely involved in the expression regulation of many genes and is closely related to the occurrence and progression of malignant tumours. This review focusses on the formation of gene body methylation patterns, its regulation of transcription, and its relationship with tumours, providing clues to explore the mechanism of gene body methylation in regulating gene transcription and its significance and application in the field of oncology.


Asunto(s)
Metilación de ADN , Neoplasias , Humanos , Procesamiento Proteico-Postraduccional , Neoplasias/genética , Islas de CpG , Epigénesis Genética
10.
Front Plant Sci ; 13: 871890, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35712593

RESUMEN

Cytosine methylation, epigenetic DNA modification, is well known to regulate gene expression. Among the epigenetic modifications, 5-methylcytosine (5-mC) has been one of the extensively studied epigenetic changes responsible for regulating gene expression in animals and plants. Though a dramatic change in 5-mC content is observed at the genome level, the variation in gene expression is generally less than that it is expected. Only less is understood about the significance of 5-mC in gene regulation under P-starvation stress in plants. Using whole-genome bisulfite sequencing of a pair of rice [Pusa-44 and its near-isogenic line (NIL)-23 harboring Pup1 QTL] genotypes, we could decipher the role of Pup1 on DNA (de)methylation-mediated regulation of gene expression under P-starvation stress. We observed 13-15% of total cytosines to be methylated in the rice genome, which increased significantly under the stress. The number of differentially methylated regions (DMRs) for hypomethylation (6,068) was higher than those (5,279) for hypermethylated DMRs under the stress, particularly in root of NIL-23. Hypomethylation in CHH context caused upregulated expression of 489 genes in shoot and 382 genes in root of NIL-23 under the stress, wherein 387 genes in shoot and 240 genes in root were upregulated exclusively in NIL-23. Many of the genes for DNA methylation, a few for DNA demethylation, and RNA-directed DNA methylation were upregulated in root of NIL-23 under the stress. Methylation or demethylation of DNA in genic regions differentially affected gene expression. Correlation analysis for the distribution of DMRs and gene expression indicated the regulation of gene mainly through (de)methylation of promoter. Many of the P-responsive genes were hypomethylated or upregulated in roots of NIL-23 under the stress. Hypermethylation of gene body in CG, CHG, and CHH contexts caused up- or downregulated expression of transcription factors (TFs), P transporters, phosphoesterases, retrotransposon proteins, and other proteins. Our integrated transcriptome and methylome analyses revealed an important role of the Pup1 QTL in epigenetic regulation of the genes for transporters, TFs, phosphatases, carbohydrate metabolism, hormone-signaling, and chromatin architecture or epigenetic modifications in P-starvation tolerance. This provides insights into the molecular function of Pup1 in modulating gene expression through DNA (de)methylation, which might be useful in improving P-use efficiency or productivity of rice in P-deficient soil.

11.
Evol Lett ; 6(2): 118-135, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35386832

RESUMEN

It has been hypothesized that the effects of pollutants on phenotypes can be passed to subsequent generations through epigenetic inheritance, affecting populations long after the removal of a pollutant. But there is still little evidence that pollutants can induce persistent epigenetic effects in animals. Here, we show that low doses of commonly used pollutants induce genome-wide differences in cytosine methylation in the freshwater crustacean Daphnia pulex. Uniclonal populations were either continually exposed to pollutants or switched to clean water, and methylation was compared to control populations that did not experience pollutant exposure. Although some direct changes to methylation were only present in the continually exposed populations, others were present in both the continually exposed and switched to clean water treatments, suggesting that these modifications had persisted for 7 months (>15 generations). We also identified modifications that were only present in the populations that had switched to clean water, indicating a long-term legacy of pollutant exposure distinct from the persistent effects. Pollutant-induced differential methylation tended to occur at sites that were highly methylated in controls. Modifications that were observed in both continually and switched treatments were highly methylated in controls and showed reduced methylation in the treatments. On the other hand, modifications found just in the switched treatment tended to have lower levels of methylation in the controls and showed increase methylation in the switched treatment. In a second experiment, we confirmed that sublethal doses of the same pollutants generate effects on life histories for at least three generations following the removal of the pollutant. Our results demonstrate that even low doses of pollutants can induce transgenerational epigenetic effects that are stably transmitted over many generations. Persistent effects are likely to influence phenotypic development, which could contribute to the rapid adaptation, or extinction, of populations confronted by anthropogenic stressors.

12.
BMC Genomics ; 23(1): 234, 2022 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-35337260

RESUMEN

BACKGROUND: As human activity alters the planet, there is a pressing need to understand how organisms adapt to environmental change. Of growing interest in this area is the role of epigenetic modifications, such as DNA methylation, in tailoring gene expression to fit novel conditions. Here, we reanalyzed nine invertebrate (Anthozoa and Hexapoda) datasets to validate a key prediction of this hypothesis: changes in DNA methylation in response to some condition correlate with changes in gene expression. RESULTS: In accord with previous observations, baseline levels of gene body methylation (GBM) positively correlated with transcription, and negatively correlated with transcriptional variation between conditions. Correlations between changes in GBM and transcription, however, were negligible. There was also no consistent negative correlation between methylation and transcription at the level of gene body methylation class (either highly- or lowly-methylated), anticipated under the previously described "seesaw hypothesis". CONCLUSION: Our results do not support the direct involvement of GBM in regulating dynamic transcriptional responses in invertebrates. If changes in DNA methylation regulate invertebrate transcription, the mechanism must involve additional factors or regulatory influences.


Asunto(s)
Antozoos , Artrópodos , Animales , Antozoos/genética , Artrópodos/genética , Metilación de ADN , Epigénesis Genética , Expresión Génica , Humanos
13.
Sci Total Environ ; 812: 151468, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-34742794

RESUMEN

DNA hypermethylation caused by environmental pollutants like cadmium (Cd) has already been demonstrated in many invertebrates, including earthworms. However, the exact epigenetic mechanisms that drive this hypermethylation are largely unknown and even basic DNA methylation and demethylation processes are hardly characterized. Therefore, we used an important bioindicator, the earthworm Lumbricus terrestris, as a model organism to determine time- and dose-dependent effects of Cd on global and gene-specific DNA methylation and its underlying mechanisms. We revealed Cd-induced adenine and cytosine hypermethylation using specific antibodies in dot blots and found that the methylation level of adenine compared to cytosine changed even to a bigger extent. However, the levels of hydroxymethylated cytosine did not differ between treatment groups. General methylation and demethylation components like methyltransferases (DNMT1 and 3), and ten-eleven translocation (TET) genes were confirmed in L. terrestris by quantitative RealTime PCR. However, neither gene expression, nor DNMT and TET enzyme activity showed significant differences in the Cd exposure groups. Using bisulfite conversion and sequencing, gene body methylation (gbm) of metallothionein 2 (MT2), one of the most important detoxification proteins, was characterized. Cd-dependent changes in MT2 gbm could, however, not be correlated to MT2 gene activity evaluated by quantitative RealTime PCR. Future directions as well as missing links are discussed in the present study hinting towards the importance of studying epigenetic marks and mechanistic insights in a broad variety of species to deepen our knowledge on the effects of changing environmental conditions.


Asunto(s)
Metilación de ADN , Oligoquetos , Animales , Cadmio/metabolismo , Cadmio/toxicidad , Epigénesis Genética , Metalotioneína/genética , Oligoquetos/genética , Oligoquetos/metabolismo
14.
Front Plant Sci ; 12: 733846, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34630483

RESUMEN

Whether induced epigenetic changes contribute to long-term adaptation remains controversial. Recent studies indicate that environmentally cued changes in gene body methylation (gbM) can facilitate acclimatization. However, such changes are often associated with genetic variation and their contribution to long-term stress adaptation remains unclear. Using whole-genome bisulfite sequencing, we examined evolutionary gains and losses of gbM in mangroves that adapted to extreme intertidal environments. We treated mangrove seedlings with salt stress, and investigated expression changes in relation with stress-induced or evolutionarily-acquired gbM changes. Evolution and function of gbM was compared with that of genetic variation. Mangroves gained much more gbM than their terrestrial relatives, mainly through convergent evolution. Genes that convergently gained gbM during evolution are more likely to become methylated in response to salt stress in species where they are normally not marked. Stress-induced and evolutionarily convergent gains of gbM both correlate with reduction in expression variation, conferring genome-wide expression robustness under salt stress. Moreover, convergent gbM evolution is uncoupled with convergent sequence evolution. Our findings suggest that transgenerational inheritance of acquired gbM helps environmental canalization of gene expression, facilitating long-term stress adaptation of mangroves in the face of a severe reduction in genetic diversity.

15.
J Biol Chem ; 297(4): 101195, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34520760

RESUMEN

DNA methylation shows complex correlations with gene expression, and the role of promoter hypermethylation in repressing gene transcription has been well addressed. Emerging evidence indicates that gene body methylation promotes transcription; however, the underlying mechanisms remain to be further investigated. Here, using methylated DNA immunoprecipitation sequencing (MeDIP-seq), bisulfite genomic sequencing, and immunofluorescent labeling, we show that gene body methylation is indeed positively correlated with rRNA gene (rDNA) transcription. Mechanistically, gene body methylation is largely maintained by DNA methyltransferase 1 (DNMT1), deficiency or downregulation of which during myoblast differentiation or nutrient deprivation results in decreased gene body methylation levels, leading to increased gene body occupancy of plant homeodomain (PHD) finger protein 6 (PHF6). PHF6 binds to hypomethylated rDNA gene bodies where it recruits histone methyltransferase SUV4-20H2 to establish the repressive histone modification, H4K20me3, ultimately inhibiting rDNA transcription. These findings demonstrate that DNMT1-mediated gene body methylation safeguards rDNA transcription by preventing enrichment of repressive histone modifications, suggesting that gene body methylation serves to maintain gene expression in response to developmental and/or environmental stresses.


Asunto(s)
Metilación de ADN , ADN Ribosómico/metabolismo , Histonas/metabolismo , Proteínas Represoras/metabolismo , Transcripción Genética , ADN (Citosina-5-)-Metiltransferasa 1/genética , ADN (Citosina-5-)-Metiltransferasa 1/metabolismo , ADN Ribosómico/genética , Células HEK293 , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/genética , Humanos , Proteínas Represoras/genética
16.
Mol Ecol Resour ; 21(2): 464-477, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33058551

RESUMEN

Interrogation of chromatin modifications, such as DNA methylation, has the potential to improve forecasting and conservation of marine ecosystems. The standard method for assaying DNA methylation (whole genome bisulphite sequencing), however, is currently too costly to apply at the scales required for ecological research. Here, we evaluate different methods for measuring DNA methylation for ecological epigenetics. We compare whole genome bisulphite sequencing (WGBS) with methylated CpG binding domain sequencing (MBD-seq), and a modified version of MethylRAD we term methylation-dependent restriction site-associated DNA sequencing (mdRAD). We evaluate these three assays in measuring variation in methylation across the genome, between genotypes, and between polyp types in the reef-building coral Acropora millepora. We find that all three assays measure absolute methylation levels similarly for gene bodies (gbM), as well as exons and 1 Kb windows with a minimum Pearson correlation 0.66. Differential gbM estimates were less correlated, but still concurrent across assays. We conclude that MBD-seq and mdRAD are reliable and cost-effective alternatives to WGBS. The considerably lower sequencing effort required for mdRAD to produce comparable methylation estimates makes it particularly useful for ecological epigenetics.


Asunto(s)
Antozoos , Metilación de ADN , Animales , Antozoos/genética , Islas de CpG , Ecosistema , Secuenciación de Nucleótidos de Alto Rendimiento , Análisis de Secuencia de ADN , Secuenciación Completa del Genoma
17.
Cell Biol Int ; 45(2): 456-462, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33245176

RESUMEN

Dermatomyositis (DM) is characterized as a chronic autoimmune disorder with multiple organ involvement. Our previous study has revealed that Cathepsin G (CTSG) highly expressed in dermatomyositic in vivo is regulated by DNMT3a through DNA methylation of 5'-C-phosphate-G-3' loci at exons and introns. However, the mechanism of gene body methylation on regulating CTSG transcription remains unknown. In this study, we studied quadriceps femoris tissues of six DM patients, and observed that antisense long noncoding RNA AL136018.1 contiguous to CTSG was highly expressed in skeletal muscle tissues of DM and positively correlated with the transcription level and DNA methylation level in gene body of CTSG in vivo. Moreover, we observed that the longer transcript of AL136018.1 (AL136018.1-201) could bind to third and fourth exons and third intron of CTSG via the 3'-end. Finally, AL136018.1-201 could recruit DNMT3a towards gene body via 5'-terminal for adding DNA methylation and facilitating transcription of CTSG. Taken together, our data uncovered a novel epigenetic mechanism behind the gene body methylation for transcriptional regulation of CTSG in DM.


Asunto(s)
Catepsina G/metabolismo , Dermatomiositis , ARN Largo no Codificante/metabolismo , Línea Celular , Metilación de ADN , Dermatomiositis/genética , Dermatomiositis/metabolismo , Epigénesis Genética , Humanos
18.
Int J Mol Sci ; 21(19)2020 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-33022996

RESUMEN

Leaves of Arabidopsis develop from a shoot apical meristem grow along three (proximal-distal, adaxial-abaxial, and medial-lateral) axes and form a flat symmetric architecture. ASYMMETRIC LEAVES2 (AS2), a key regulator for leaf adaxial-abaxial partitioning, encodes a plant-specific nuclear protein and directly represses the abaxial-determining gene ETTIN/AUXIN RESPONSE FACTOR3 (ETT/ARF3). How AS2 could act as a critical regulator, however, has yet to be demonstrated, although it might play an epigenetic role. Here, we summarize the current understandings of the genetic, molecular, and cellular functions of AS2. A characteristic genetic feature of AS2 is the presence of a number of (about 60) modifier genes, mutations of which enhance the leaf abnormalities of as2. Although genes for proteins that are involved in diverse cellular processes are known as modifiers, it has recently become clear that many modifier proteins, such as NUCLEOLIN1 (NUC1) and RNA HELICASE10 (RH10), are localized in the nucleolus. Some modifiers including ribosomal proteins are also members of the small subunit processome (SSUP). In addition, AS2 forms perinucleolar bodies partially colocalizing with chromocenters that include the condensed inactive 45S ribosomal RNA genes. AS2 participates in maintaining CpG methylation in specific exons of ETT/ARF3. NUC1 and RH10 genes are also involved in maintaining the CpG methylation levels and repressing ETT/ARF3 transcript levels. AS2 and nucleolus-localizing modifiers might cooperatively repress ETT/ARF3 to develop symmetric flat leaves. These results raise the possibility of a nucleolus-related epigenetic repression system operating for developmental genes unique to plants and predict that AS2 could be a molecule with novel functions that cannot be explained by the conventional concept of transcription factors.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , ARN Helicasas DEAD-box/genética , Fosfoproteínas/genética , Proteínas de Unión al ARN/genética , Factores de Transcripción/genética , Arabidopsis/crecimiento & desarrollo , Polaridad Celular/genética , Proteínas de Unión al ADN/genética , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Proteínas Nucleares/genética , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Nucleolina
19.
Mol Biol Evol ; 37(1): 31-43, 2020 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-31504743

RESUMEN

A subset of genes in plant genomes are labeled with DNA methylation specifically at CG residues. These genes, known as gene-body methylated (gbM), have a number of associated characteristics. They tend to have longer sequences, to be enriched for intermediate expression levels, and to be associated with slower rates of molecular evolution. Most importantly, gbM genes tend to maintain their level of DNA methylation between species, suggesting that this trait is under evolutionary constraint. Given the degree of conservation in gbM, we still know surprisingly little about its function in plant genomes or whether gbM is itself a target of selection. To address these questions, we surveyed DNA methylation across eight grass (Poaceae) species that span a gradient of genome sizes. We first established that genome size correlates with genome-wide DNA methylation levels, but less so for genic levels. We then leveraged genomic data to identify a set of 2,982 putative orthologs among the eight species and examined shifts of methylation status for each ortholog in a phylogenetic context. A total of 55% of orthologs exhibited a shift in gbM, but these shifts occurred predominantly on terminal branches, indicating that shifts in gbM are rarely conveyed over time. Finally, we found that the degree of conservation of gbM across species is associated with increased gene length, reduced rates of molecular evolution, and increased gene expression level, but reduced gene expression variation across species. Overall, these observations suggest a basis for evolutionary pressure to maintain gbM status over evolutionary time.


Asunto(s)
Evolución Biológica , Metilación de ADN , Expresión Génica , Genes de Plantas , Poaceae/genética , Tamaño del Genoma
20.
Mol Cell ; 77(2): 310-323.e7, 2020 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-31732458

RESUMEN

DNA methylation and histone H1 mediate transcriptional silencing of genes and transposable elements, but how they interact is unclear. In plants and animals with mosaic genomic methylation, functionally mysterious methylation is also common within constitutively active housekeeping genes. Here, we show that H1 is enriched in methylated sequences, including genes, of Arabidopsis thaliana, yet this enrichment is independent of DNA methylation. Loss of H1 disperses heterochromatin, globally alters nucleosome organization, and activates H1-bound genes, but only weakly de-represses transposable elements. However, H1 loss strongly activates transposable elements hypomethylated through mutation of DNA methyltransferase MET1. Hypomethylation of genes also activates antisense transcription, which is modestly enhanced by H1 loss. Our results demonstrate that H1 and DNA methylation jointly maintain transcriptional homeostasis by silencing transposable elements and aberrant intragenic transcripts. Such functionality plausibly explains why DNA methylation, a well-known mutagen, has been maintained within coding sequences of crucial plant and animal genes.


Asunto(s)
Proteínas de Arabidopsis/genética , Metilación de ADN/genética , Elementos Transponibles de ADN/genética , Histonas/genética , Arabidopsis/genética , ADN (Citosina-5-)-Metiltransferasas/genética , Epigénesis Genética/genética , Regulación de la Expresión Génica de las Plantas/genética , Silenciador del Gen/fisiología , Heterocromatina/genética , Mutación/genética , Transcripción Genética/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA