Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 18(26): 16692-16700, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38952323

RESUMEN

Gas vesicles (GVs) are large cylindrical gas-filled protein assemblies found in diverse aquatic bacteria that enable their adaptation of buoyancy. GVs have already been used as ultrasound contrasting agents. Here, we investigate GVs derived from Bacillus megaterium, aiming to minimize the number of accessory Gvps within the GV gene cluster and demonstrate the use of GVs as enhancers of acoustic radiation force administered by ultrasound. Three (GvpR, GvpT, and GvpU) out of 11 genes in the cluster were found to be dispensable for functional GV formation, and their omission resulted in narrower GVs. Two essential proteins GvpJ and GvpN were absent from recently determined GV structures, but GvpJ was nevertheless found to be tightly bound to the cylindrical part of GVs in this study. Additionally, the N-terminus of GvpN was observed to play an important role in the formation of mature GVs. The binding of engineered GvpC fromAnabaena flos-aquae to HEK293 cells via integrins enhanced the acoustic force delivered by ultrasound and resulted in an increased Ca2+ influx into cells. Coupling with a synthetic Ca2+-dependent signaling pathway GVs efficiently enhanced cell stimulation by ultrasound, which expands the potentials of noninvasive sonogenetics cell stimulation.


Asunto(s)
Bacillus megaterium , Bacillus megaterium/metabolismo , Bacillus megaterium/genética , Humanos , Células HEK293 , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Ondas Ultrasónicas , Transcripción Genética , Calcio/metabolismo , Calcio/química , Regulación de la Expresión Génica , Proteínas
2.
Cell Syst ; 15(7): 597-609.e4, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38971149

RESUMEN

Here, we present a method for expressing multiple open reading frames (ORFs) from single transcripts using the leaky scanning model of translation initiation. In this approach termed "stoichiometric expression of mRNA polycistrons by eukaryotic ribosomes" (SEMPER), adjacent ORFs are translated from a single mRNA at tunable ratios determined by their order in the sequence and the strength of their translation initiation sites. We validate this approach by expressing up to three fluorescent proteins from one plasmid in two different cell lines. We then use it to encode a stoichiometrically tuned polycistronic construct encoding gas vesicle acoustic reporter genes that enables efficient formation of the multi-protein complex while minimizing cellular toxicity. We also demonstrate that SEMPER enables polycistronic expression of recombinant monoclonal antibodies from plasmid DNA and of two fluorescent proteins from single mRNAs made through in vitro transcription. Finally, we provide a probabilistic model to elucidate the mechanisms underlying SEMPER. A record of this paper's transparent peer review process is included in the supplemental information.


Asunto(s)
Sistemas de Lectura Abierta , ARN Mensajero , Ribosomas , ARN Mensajero/genética , Ribosomas/metabolismo , Ribosomas/genética , Sistemas de Lectura Abierta/genética , Humanos , Biosíntesis de Proteínas/genética , Expresión Génica/genética , Plásmidos/genética , Animales , Genes Reporteros/genética
3.
Proc Natl Acad Sci U S A ; 120(39): e2309822120, 2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37725651

RESUMEN

External control of chemical reactions in biological settings with spatial and temporal precision is a grand challenge for noninvasive diagnostic and therapeutic applications. While light is a conventional stimulus for remote chemical activation, its penetration is severely attenuated in tissues, which limits biological applicability. On the other hand, ultrasound is a biocompatible remote energy source that is highly penetrant and offers a wide range of functional tunability. Coupling ultrasound to the activation of specific chemical reactions under physiological conditions, however, remains a challenge. Here, we describe a synergistic platform that couples the selective mechanochemical activation of mechanophore-functionalized polymers with biocompatible focused ultrasound (FUS) by leveraging pressure-sensitive gas vesicles (GVs) as acousto-mechanical transducers. The power of this approach is illustrated through the mechanically triggered release of covalently bound fluorogenic and therapeutic cargo molecules from polymers containing a masked 2-furylcarbinol mechanophore. Molecular release occurs selectively in the presence of GVs upon exposure to FUS under physiological conditions. These results showcase the viability of this system for enabling remote control of specific mechanochemical reactions with spatiotemporal precision in biologically relevant settings and demonstrate the translational potential of polymer mechanochemistry.


Asunto(s)
Fuentes Generadoras de Energía , Polímeros , Transductores , Extremidad Superior
4.
Toxicon ; 232: 107205, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37406865

RESUMEN

Toxic benthic mats of cyanobacteria are associated with water quality problems and animal poisonings around the world. A strain of the filamentous cyanobacterial genus Kamptonema was isolated from a water bloom in the Baltic Sea four decades ago and later shown to produce cylindrospermopsins. However, the exact habitat of this strain remains unclear and cylindrospermopsins have not yet been reported from water blooms in the Baltic Sea. Here, we report the isolation of Kamptonema sp. UHCC 0994 from a benthic microbial mat collected in shallow water on the coast of Helsinki. We obtained draft genome sequences for the Kamptonema spp. PCC 7926 and UHCC 0994 strains that were isolated from the Baltic Sea. These genomes were 90-96% similar to previously studied Kamptonema sp. PCC 6506 and Kamptonema formosum PCC 6407, which were isolated from benthic and North American freshwater environments, respectively. The genomes of all four Kamptonema strains encode complete cylindrospermopsin biosynthetic gene clusters. We detected the production of cylindrospermopsin and 7-epi-cylindrospermopsin in the four Kamptonema strains using high-resolution liquid chromatography mass spectrometry. The four strains encode genes for producing gas vesicles distributed in two to three different regions of their genomes. Kamptonema spp. UHCC 0994 and PCC 7926 have both retained the ability to regulate their buoyancy when grown in liquid culture. Together this suggests that these toxic cyanobacteria may exhibit a tychoplanktic lifestyle in the Baltic Sea. This study suggests that microbial mats containing cyanobacteria could be a source of environmental toxins in the Baltic Sea.


Asunto(s)
Alcaloides , Cianobacterias , Animales , Cianobacterias/química , Toxinas de Cianobacterias , Ecosistema
5.
Cell ; 186(5): 975-986.e13, 2023 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-36868215

RESUMEN

Gas vesicles are gas-filled nanocompartments that allow a diverse group of bacteria and archaea to control their buoyancy. The molecular basis of their properties and assembly remains unclear. Here, we report the 3.2 Å cryo-EM structure of the gas vesicle shell made from the structural protein GvpA that self-assembles into hollow helical cylinders closed off by cone-shaped tips. Two helical half shells connect through a characteristic arrangement of GvpA monomers, suggesting a mechanism of gas vesicle biogenesis. The fold of GvpA features a corrugated wall structure typical for force-bearing thin-walled cylinders. Small pores enable gas molecules to diffuse across the shell, while the exceptionally hydrophobic interior surface effectively repels water. Comparative structural analysis confirms the evolutionary conservation of gas vesicle assemblies and demonstrates molecular features of shell reinforcement by GvpC. Our findings will further research into gas vesicle biology and facilitate molecular engineering of gas vesicles for ultrasound imaging.


Asunto(s)
Archaea , Evolución Biológica , Microscopía por Crioelectrón , Ingeniería , Refuerzo en Psicología
6.
J Nanobiotechnology ; 21(1): 108, 2023 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-36966297

RESUMEN

BACKGROUND: Various bacteria and archaea, including halophilic archaeon Halobacterium sp. NRC-1 produce gas vesicle nanoparticles (GVNPs), a unique class of stable, air-filled intracellular proteinaceous nanostructures. GVNPs are an attractive tool for biotechnological applications due to their readily production, purification, and unique physical properties. GVNPs are spindle- or cylinder-shaped, typically with a length of 100 nm to 1.5 µm and a width of 30-250 nm. Multiple monomeric subunits of GvpA and GvpC proteins form the GVNP shell, and several additional proteins are required as minor structural or assembly proteins. The haloarchaeal genetic system has been successfully used to produce and bioengineer GVNPs by fusing several foreign proteins with GvpC and has shown various applications, such as biocatalysis, diagnostics, bioimaging, drug delivery, and vaccine development. RESULTS: We demonstrated that native GvpC can be removed in a low salt buffer during the GVNP purification, leaving the GvpA-based GVNP's shell intact and stable under physiological conditions. Here, we report a genetic engineering and chemical modification approach for functionalizing the major GVNP protein, GvpA. This novel approach is based on combinatorial cysteine mutagenesis within GvpA and genetic expansion of the N-terminal and C-terminal regions. Consequently, we generated GvpA single, double, and triple cysteine variant libraries and investigated the impact of mutations on the structure and physical shape of the GVNPs formed. We used a thiol-maleimide chemistry strategy to introduce the biotechnological relevant activity by maleimide-activated streptavidin-biotin and maleimide-activated SpyTag003-SpyCatcher003 mediated functionalization of GVNPs. CONCLUSION: The merger of these genetic and chemical functionalization approaches significantly extends these novel protein nanomaterials' bioengineering and functionalization potential to assemble catalytically active proteins, biomaterials, and vaccines onto one nanoparticle in a modular fashion.


Asunto(s)
Cisteína , Nanopartículas , Proteínas , Halobacterium/genética , Halobacterium/metabolismo , Bioingeniería
7.
Biomaterials ; 293: 121974, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36566551

RESUMEN

Protein translocation is an essential process for living cells to respond to different physiological, pathological or environmental stimuli. However, its abnormal occurrence usually results in undesirable outcomes such as tumors. To date, there is still a lack of appropriate methods to detect this event in live animals in a real-time manner. Here, we identified the gradually increased cell-surface translocation of p32 protein from mitochondria during tumor progression. LyP-1-modified gas vesicles (LyP-1-GVs) were developed through conjugating LyP-1 (p32-targeting peptide) to the biosynthetic GVs to monitor the cell-surface level of p32 translocation. The resulting LyP-1-GVs have about 200 nm particle size and good tumor cell targeting performance. Upon systemic administration, LyP-1-GVs can traverse through blood vessels and bind to the tumor cells, producing strong contrast imaging signals in comparison with the non-targeted GVs. The contrast imaging signals correlate well with the cell-surface translocation level of p32 protein and tumor metastatic ability. To our knowledge, this is the first report about the in vivo detection of protein translocation to cell membrane from mitochondria by ultrasound molecular imaging. Our study provides a new strategy to explore the molecular events of protein membrane translocations for evaluation of tumor metastasis at the live animal level.


Asunto(s)
Neoplasias , Péptidos Cíclicos , Animales , Péptidos Cíclicos/química , Neoplasias/diagnóstico por imagen , Péptidos/metabolismo , Transporte de Proteínas , Imagen Molecular , Línea Celular Tumoral
8.
ACS Sens ; 7(10): 2857-2864, 2022 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-36190830

RESUMEN

Ultrasound imaging is regarded as a highly sensitive imaging modality used in routine clinical examinations. Over the last several decades, ultrasound contrast agents have been widely applied in ultrasound molecular cancer imaging to improve the detection, characterization, and quantification of tumors. To date, a few new potential preclinical and clinical applications regarding ultrasound molecular cancer imaging are being investigated. This review presents an overview of the various kinds of ultrasound contrast agents employed in ultrasound molecular imaging and advanced imaging techniques using these contrast agents. Additionally, we discuss the recent enormous development of ultrasound contrast agents in the relevant preclinical and clinical applications, highlight the recent challenges which need to be overcome to accelerate the clinical translation, and discuss the future perspective of ultrasound molecular cancer imaging using various contrast agents. As a highly promising and valuable tumor-specific imaging technique, it is believed that ultrasound molecular imaging will pave an accurate and efficient way for cancer diagnosis.


Asunto(s)
Medios de Contraste , Neoplasias , Humanos , Ultrasonografía/métodos , Imagen Molecular/métodos , Neoplasias/diagnóstico por imagen
10.
Appl Microbiol Biotechnol ; 106(5-6): 2043-2052, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35230496

RESUMEN

Gas vesicle nanoparticles (GVNPs) are hollow, buoyant prokaryotic organelles used for cell flotation. GVNPs are encoded by a large gas vesicle protein (gvp) gene cluster in the haloarchaeon, Halobacterium sp. NRC-1, including one gene, gvpC, specifying a protein bound to the surface of the nanoparticles. Genetically engineered GVNPs in the Halobacterium sp. have been produced by fusion of foreign sequences to gvpC. To improve the versatility of the GVNP platform, we developed a method for displaying exogenously produced GvpC fusion proteins on the haloarchaeal nanoparticles. The streptococcal IgG-binding protein domain was fused at or near the C-terminus of GvpC, expressed and purified from E. coli, and shown to bind to wild-type GVNPs. The two fusion proteins, GvpC3GB and GvpC4GB, without or with a highly acidic GvpC C-terminal region, were found to be able to bind nanoparticles equally well. The GVNP-bound GvpC-IgG-binding fusion protein was also capable of binding to an enzyme-linked IgG-HRP complex which retained enzyme activity, demonstrating the hybrid system capability for display and delivery of protein complexes. This is the first report demonstrating functional binding of exogenously produced GvpC fusion proteins to wild-type haloarchaeal GVNPs which significantly expands the capability of the platform to produce bioengineered nanoparticles for biomedical applications. KEY POINTS: • Haloarchaeal gas vesicle nanoparticles (GVNPs) constitute a versatile display system. • GvpC-streptococcal IgG-binding fusion proteins expressed in E. coli bind to GVNPs. • IgG-binding proteins displayed on floating GVNPs bind and display IgG-HRP complex.


Asunto(s)
Halobacterium , Nanopartículas , Proteínas Bacterianas/genética , Bioingeniería , Escherichia coli/genética , Halobacterium/genética , Halobacterium/metabolismo , Orgánulos
11.
J Bacteriol ; 204(3): e0034621, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-34606372

RESUMEN

Increasing efficiency is an important driving force behind cellular organization and often achieved through compartmentalization. Long recognized as a core principle of eukaryotic cell organization, its widespread occurrence in prokaryotes has only recently come to light. Despite the early discovery of a few microcompartments, such as gas vesicles and carboxysomes, the vast majority of these structures in prokaryotes are less than 100 nm in diameter-too small for conventional light microscopy and electron microscopic thin sectioning. Consequently, these smaller nanocompartments have been discovered serendipitously and then through bioinformatics shown to be broadly distributed. Their small uniform size, robust self-assembly, high stability, excellent biocompatibility, and large cargo capacity make them excellent candidates for biotechnology applications. This review will highlight our current knowledge of nanocompartments and the prospects for applications, as well as open questions and challenges that need to be addressed to fully understand these important structures.


Asunto(s)
Bacterias , Proteínas Bacterianas , Proteínas Bacterianas/química , Orgánulos
12.
Biotechnol J ; 16(12): e2100059, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34499423

RESUMEN

Given the potential applications of gas vesicles (GVs) in multiple fields including antigen-displaying and imaging, heterologous reconstitution of synthetic GVs is an attractive and interesting study that has translational potential. Here, we attempted to express and assemble GV proteins (GVPs) into GVs using the model eukaryotic organism Saccharomyces cerevisiae. We first selected and expressed two core structural proteins, GvpA and GvpC from cyanobacteria Anabaena flos-aquae and Planktothrix rubescens, respectively. We then optimized the protein production conditions and validated GV assembly in the context of GV shapes. We found that when two copies of anaA were integrated into the genome, the chromosomal expression of AnaA resulted in GV production regardless of GvpC expression. Next, we co-expressed chaperone-RFP with the GFP-AnaA to aid the AnaA aggregation. The co-expression of individual chaperones (Hsp42, Sis1, Hsp104, and GvpN) with AnaA led to the formation of larger inclusions and enhanced the sequestration of AnaA into the perivacuolar site. To our knowledge, this represents the first study on reconstitution of GVs in S. cerevisiae. Our results could provide insights into optimizing conditions for heterologous protein production as well as the reconstitution of other synthetic microcompartments in yeast.


Asunto(s)
Cianobacterias , Proteínas de Saccharomyces cerevisiae , Proteínas Bacterianas/genética , Cianobacterias/genética , Proteínas de Choque Térmico/genética , Proteínas de la Membrana , Proteínas , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
13.
Front Microbiol ; 12: 696181, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34211452

RESUMEN

In recent years, synthetic riboswitches have become increasingly important to construct genetic circuits in all three domains of life. In bacteria, synthetic translational riboswitches are often employed that modulate gene expression by masking the Shine-Dalgarno (SD) sequence in the absence or presence of a cognate ligand. For (halo-)archaeal translation, a SD sequence is not strictly required. The application of synthetic riboswitches in haloarchaea is therefore limited so far, also because of the molar intracellular salt concentrations found in these microbes. In this study, we applied synthetic theophylline-dependent translational riboswitches in the archaeon Haloferax volcanii. The riboswitch variants A through E and E∗ were chosen since they not only mask the SD sequence but also the AUG start codon by forming a secondary structure in the absence of the ligand theophylline. Upon addition of the ligand, the ribosomal binding site and start codon become accessible for translation initiation. Riboswitch E mediated a dose-dependent, up to threefold activation of the bgaH reporter gene expression. Raising the salt concentration of the culture media from 3 to 4 M NaCl resulted in a 12-fold increase in the switching capacity of riboswitch E, and switching activity increased up to 26-fold when the cultivating temperature was reduced from 45 to 30°C. To construct a genetic circuit, riboswitch E was applied to regulate the synthesis of the transcriptional activator GvpE allowing a dose-dependent activation of the mgfp6 reporter gene under P pA promoter control.

14.
Water Res ; 183: 116091, 2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32623244

RESUMEN

Harmful cyanobacterial blooms pose a serious environmental threat to freshwater lakes and reservoirs. Investigating the dynamics of toxic bloom-forming cyanobacterial genus Microcystis is a challenging task due to its huge spatiotemporal heterogeneity. The hydroacoustic technology allows for rapid scanning of the water column synoptically and has a significant potential for rapid, non-invasive in situ quantification of aquatic organisms. The aim of this work is to develop a reliable cost-effective method for the accurate quantification of the biomass (B) of gas-bearing cyanobacterium Microcystis in water bodies using a high-frequency scientific echosounder. First, we showed that gas-bearing Microcystis colonies are much stronger backscatterers than gas-free phytoplanktonic algae. Then, in the tank experiments, we found a strong logarithmic relationship between the volume backscattering coefficient (sv) and Microcystis B proxies, such as Microcystis-bound chlorophyll a (Chl aMicro) and particle volume concentration. The sv/B ratio remained unchanged over a wide range of B concentrations when the same source of Microcystis material was used. Our measurements in Lake Dianchi (China) also revealed strong logarithmic relationship between sv and Chl aMicro. The biomass-calibrated echosounder was used to study the diurnal variability of Microcystis B in the lake. We found a sharp increase in the cyanobacterium B and sv/Chl aMicro ratio near the water surface during the daytime and more uniform distribution of these parameters during the nighttime. We argue that the variations in B and sv/Chl aMicro ratio could be associated with temporal changes in thermal stratification and turbulent mixing. Our data suggest that the sv/Chl aMicro ratio positively correlates with (i) the percentage of larger colonies in population and/or (ii) the content of free gas in cells. The last properties allow Microcystis colonies to attain rapid floating, which enables them to concentrate at the water surface at conducive ambient conditions. The sv/Chl aMicro ratio can be a new important variable reflecting the ability of Microcystis colonies to migrate vertically. Monitoring of this ratio may help to determine the early warning threshold for Microcystis scum formation. The proposed acoustic technology for in situ quantification of Microcystis biomass can be a powerful tool for accurate monitoring and assessment of this cyanobacterium at high spatiotemporal resolution in water bodies.


Asunto(s)
Cianobacterias , Microcystis , China , Clorofila A , Monitoreo del Ambiente , Lagos
15.
BMC Microbiol ; 20(1): 110, 2020 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-32375647

RESUMEN

BACKGROUND: Bacterial gas vesicles, composed of two major gas vesicle proteins and filled with gas, are a unique class of intracellular bubble-like nanostructures. They provide buoyancy for cells, and thus play an essential role in the growth and survival of aquatic and soil microbes. Moreover, the gas vesicle could be applied to multimodal and noninvasive biological imaging as a potential nanoscale contrast agent. To date, cylinder-shaped gas vesicles have been found in several strains of cyanobacteria. However, whether the functional gas vesicles could be produced in the model filamentous cyanobacteria Anabaena sp. PCC 7120 remains controversial. RESULTS: In this study, we found that an intact gvp gene cluster indeed exists in the model filamentous cyanobacteria Anabaena sp. PCC 7120. Real-time PCR assays showed that the gvpA gene is constitutively transcribed in vivo, and its expression level is upregulated at low light intensity and/or high growth temperature. Functional expression of this intact gvp gene cluster enables the recombinant Escherichia coli to gain the capability of floatation in the liquid medium, thanks to the assembly of irregular gas vesicles. Furthermore, crystal structure of GvpF in combination with enzymatic activity assays of GvpN suggested that these two auxiliary proteins of gas vesicle are structurally and enzymatically conserved, respectively. CONCLUSIONS: Our findings show that the laboratory strain of model filamentous cyanobacteria Anabaena sp. PCC 7120 possesses an intact but partially degenerated gas vesicle gene cluster, indicating that the natural isolate might be able to produce gas vesicles under some given environmental stimuli for better floatation.


Asunto(s)
Anabaena/enzimología , Proteínas/genética , Proteínas/metabolismo , Análisis de Secuencia de ADN/métodos , Anabaena/genética , Cristalografía por Rayos X , Medios de Cultivo/química , Escherichia coli/enzimología , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Regulación Bacteriana de la Expresión Génica , Modelos Moleculares , Familia de Multigenes , Conformación Proteica , Proteínas/química
16.
Front Microbiol ; 10: 1200, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31191505

RESUMEN

The study of promoter activities in haloarchaea is carried out exclusively using enzymes as reporters. An alternative reporter is the gene encoding the Green Fluorescent Protein (GFP), a simple and fast tool for investigating promoter strengths. However, the GFP variant smRS-GFP, used to analyze protein stabilities in haloarchaea, is not suitable to quantify weak promoter activities, since the fluorescence signal is too low. We enhanced the fluorescence of smRS-GFP 3.3-fold by introducing ten amino acid substitutions, resulting in mGFP6. Using mGFP6 as reporter, we studied six haloarchaeal promoters exhibiting different promoter strengths. The strongest activity was observed with the housekeeping promoters Pfdx of the ferredoxin gene and P2 of the ribosomal 16S rRNA gene. Much lower activities were determined for the promoters of the p-vac region driving the expression of gas vesicle protein (gvp) genes in Halobacterium salinarum PHH1. The basal promoter strength dropped in the order PpA , PpO > PpF , PpD . All promoters showed a growth-dependent activity pattern. The GvpE-induced activities of PpA and PpD were high, but lower compared to the Pfdx or P2 promoter activities. The mGFP6 reporter was also used to investigate the regulatory effects of 5'-untranslated regions (5'-UTRs) of three different gvp mRNAs. A deletion of the 5'-UTR always resulted in an increased expression, implying a negative effect of the 5'-UTRs on translation. Our experiments confirmed mGFP6 as simple, fast and sensitive reporter to study gene expression in haloarchaea.

17.
Ultrason Sonochem ; 55: 232-242, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30712852

RESUMEN

Ultrasonic treatment has attracted much attention because of its physical and chemical effects that are distinct from those of chemical agents. In particularly, high-frequency ultrasound is known as an effective method because the theoretical resonance frequency of the gas vesicles in Microcystis aeruginosa is in the high frequency range (>100 kHz), which causes gas vesicles collapse and changes the settleability of the algal cells. In this work, the effects of the ultrasonic frequency, acoustic power density and duration on enhancing coagulation to remove turbidity in algae-laden water were studied. In order to explain the mechanism, the morphology of algae cells, the changes in extracellular organic substances, the zeta potential and the formation of hydroxyl radicals were analyzed systematically. Finally, Zeta potentials and flocs morphology after adding PAC were investigated to verify the mechanism. The results showed that the frequency exhibited fewer effects than power and duration on coagulation. SEM images showed that there were more severe cellular damages at 430 and 740 kHz than other frequencies. Sonication could cause the collapse of gas vesicle inside the cell, which was due to the instantaneous high pressure generated by the ultrasonic cavitation instead of the resonance. Furthermore, sonication would result in an increase in proteins in extracellular organic matter (EOM) with continuous ultrasonic irradiation, indicating that a small amount of proteins could promote coagulation and that the accumulation of proteins would inhibit coagulation. Free radical content testing showed that the production of excessive free radicals was often accompanied by a deterioration of the coagulation. The proper mechanical effects were the main mechanism of ultrasonic enhanced coagulation. Thus, it was recommended that the appropriate ultrasonic condition was the one that resulted in a small amount of protein leakage and little generation of free radicals, which occurred at 740 kHz and 0.02 W/mL in approximately 5 min, and would significantly enhance the turbidity removal rate in algae-containing water from approximately 80-90%.


Asunto(s)
Microcystis/química , Sonicación , Microbiología del Agua , Purificación del Agua/métodos , Proteínas Bacterianas/análisis , Radical Hidroxilo/química , Microcystis/aislamiento & purificación , Polisacáridos/análisis , Factores de Tiempo
18.
Front Microbiol ; 9: 1897, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30174663

RESUMEN

Several extremely halophilic archaea produce proteinaceous gas vesicles consisting of a gas-permeable protein wall constituted mainly by the gas vesicle proteins GvpA and GvpC. Eight additional accessory Gvp are involved in gas vesicle formation and might assist the assembly of this structure. Investigating interactions of halophilic proteins in vivo requires a method functioning at 2.5-5 M salt, and the split-GFP method was tested for this application. The two fragments NGFP and CGFP do not assemble a fluorescent GFP protein when produced in trans, but they assemble a fluorescent GFP when fused to interacting proteins. To adapt the method to high salt, we used the genes encoding two fragments of the salt-stable mGFP2 to construct four vector plasmids that allow an N- or C-terminal fusion to the two proteins of interest. To avoid a hindrance in the assembly of mGFP2, the fusion included a linker of 15 or 19 amino acids. The small gas vesicle accessory protein GvpM and its interaction partners GvpH, GvpJ, and GvpL were investigated by split-GFP. Eight different combinations were studied in each case, and fluorescent transformants indicative of an interaction were observed. We also determined that GvpF interacts with GvpM and uncovered the location of the interaction site of each of these proteins in GvpM. GvpL mainly interacted with the N-terminal 25-amino acid fragment of GvpM, whereas the other three proteins bound predominately to the C-terminal portion. Overall, the split-GFP method is suitable to investigate the interaction of two proteins in haloarchaeal cells. In future experiments, we will study the interactions of the remaining Gvps and determine whether some or all of these accessory Gvp proteins form (a) protein complex(es) during early stages of the assembly of the gas vesicle wall.

19.
Environ Technol ; 39(4): 433-449, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28278099

RESUMEN

In order to effectively remove the Microcystis from drinking-water sources, pre-pressure treatment was first used to make the Microcystis lose buoyancy, and then it is easily removed by coagulation and sedimentation processes. The Microcystis-containing water from Taihu Lake was taken for the pre-pressure coagulation and sedimentation treatments in this study. Both intermittent laboratory experiment and continuous-flow field experiment were conducted. Experimental results showed that the optimum pre-pressure condition was pressuring at 0.6-0.8 MPa for at least 10 s, and 60 s was the best. Comparing with the pre-oxidation, pre-pressure could obviously increase the removal efficiency of Microcystis by following coagulation and sedimentation, and would not increase the dissolved microcystins. The mechanism of pre-pressure treatment was that the pre-pressure destroys the gas vesicles in Microcystis cells and the gas diffuses out of the cells, which leads the Microcystis to lose buoyancy and make them to sink. The recovery time of gas vesicles was longer than the sludge discharge period of sedimentation tank; therefore, the sinking Microcystis would not re-float in the sedimentation tank. In the practical application of drinking water treatment plant, the continuous-flow pressure device could be chosen, with the energy consumption of about 22.9 kw·h per 10,000 m3.


Asunto(s)
Agua Dulce/química , Microcistinas/análisis , Microcystis , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos
20.
Ultrasound Med Biol ; 43(12): 2862-2870, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28889941

RESUMEN

Ultrasound imaging is a common modality in clinical examination and biomedical research, but has not played a significant role in molecular imaging for lack of an appropriate contrast agent. Recently, biogenic gas vesicles (GVs), naturally formed by cyanobacteria and haloarchaea, have exhibited great potential as an ultrasound molecular imaging probe with a much smaller size (∼100 nm) and improved imaging contrast. However, the basic acoustic and biological properties of GVs remain unclear, which hinders future application. Here, we studied the fundamental acoustic properties of a rod-shaped gas vesicle from Anabaena, a kind of cyanobacterium, including attenuation, oscillation resonance, and scattering, as well as biological behaviors (cellular internalization and cytotoxicity). We found that GVs have two resonance peaks (85 and 120 MHz). We also observed a significant non-linear effect and its pressure dependence as well. Ultrasound B-mode imaging reveals sufficient echogenicity of GVs for ultrasound imaging enhancement at high frequencies. Biological characterization also reveals endocytosis and non-toxicity.


Asunto(s)
Anabaena/fisiología , Proteínas/fisiología , Ultrasonografía/métodos , Técnicas de Cultivo de Célula
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA