Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros











Intervalo de año de publicación
1.
Glob Chang Biol ; 30(8): e17445, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39166455

RESUMEN

Due to various human activities, including intensive agriculture, traffic, and the burning of fossil fuels, in many parts of the world, current levels of reactive nitrogen emissions strongly exceed pre-industrial levels. Previous studies have shown that the atmospheric deposition of these excess nitrogen compounds onto semi-natural terrestrial environments has negative consequences for plant diversity. However, these previous studies mostly investigated biodiversity loss at local spatial scales, that is, at the scales of plots of typically a few square meters. Whether increased atmospheric nitrogen deposition also affects plant diversity at larger spatial scales remains unknown. Here, using grassland plant community data collected in 765 plots, across 153 different sites and 9 countries in northwestern Europe, we investigate whether relationships between atmospheric nitrogen deposition and plant biodiversity are scale-dependent. We found that high levels of atmospheric nitrogen deposition were associated with low levels of plant species richness at the plot scale but also at the scale of sites and regions. The presence of 39% of plant species was negatively associated with increasing levels of nitrogen deposition at large (site) scales, while only 1.5% of the species became more common with increasing nitrogen deposition, indicating that large-scale biodiversity changes were mostly driven by "loser" species, while "winner" species profiting from high N deposition were rare. Some of the "loser" species whose site presence was negatively associated with atmospheric nitrogen deposition are listed as "threatened" in at least some EU member states, suggesting that nitrogen deposition may be a key contributor to their threat status. Hence, reductions in reactive nitrogen emissions will likely benefit plant diversity not only at local but also at larger spatial scales.


Asunto(s)
Atmósfera , Biodiversidad , Nitrógeno , Plantas , Nitrógeno/análisis , Nitrógeno/metabolismo , Plantas/metabolismo , Europa (Continente) , Atmósfera/química , Pradera
2.
PeerJ ; 12: e17713, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39006017

RESUMEN

Background: Biodiversity, crucial for understanding ecosystems, encompasses species richness, composition, and distribution. Ecological and environmental factors, such as habitat type, resource availability, and climate conditions, play pivotal roles in shaping species diversity within and among communities, categorized into alpha (within habitat), beta (between habitats), and gamma (total regional) diversity. Hummingbird communities are influenced by habitat, elevation, and seasonality, making them an ideal system for studying these diversities, shedding light on mutualistic community dynamics and conservation strategies. Methods: Over a year-long period, monthly surveys were conducted to record hummingbird species and their visited flowering plants across four habitat types (oak forest, juniper forest, pine forest, and xerophytic shrubland) in Tlaxcala, Mexico. Three locations per habitat type were selected based on conservation status and distance from urban areas. True diversity measures were used to assess alpha, beta, and gamma diversity of hummingbirds and their floral resources. Environmental factors such as altitude and bioclimatic variables were explored for their influence on beta diversity. Results: For flowering plants, gamma diversity encompassed 34 species, with oak forests exhibiting the highest richness, while xerophytic shrublands had the highest alpha diversity. In contrast, for hummingbirds, 11 species comprised the gamma diversity, with xerophytic shrublands having the highest richness and alpha diversity. Our data reveal high heterogeneity in species abundance among habitats. Notably, certain floral resources like Loeselia mexicana and Bouvardia ternifolia emerge as key species in multiple habitats, while hummingbirds such as Basilinna leucotis, Selasphorus platycercus, and Calothorax lucifer exhibit varying levels of abundance and habitat preferences. Beta diversity analyses unveil habitat-specific patterns, with species turnover predominantly driving dissimilarity in composition. Moreover, our study explores the relationships between these diversity components and environmental factors such as altitude and climate variables. Climate variables, in particular, emerge as significant contributors to dissimilarity in floral resource and hummingbird communities, highlighting the influence of environmental conditions on species distribution. Conclusions: Our results shed light on the complex dynamics of hummingbird-flower mutualistic communities within diverse habitats and underscore the importance of understanding how habitat-driven shifts impact alpha, beta, and gamma diversity. Such insights are crucial for conservation strategies aimed at preserving the delicate ecological relationships that underpin biodiversity in these communities.


Asunto(s)
Biodiversidad , Aves , Ecosistema , Aves/fisiología , Animales , México , Flores
3.
FEMS Microbiol Lett ; 3712024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38419294

RESUMEN

Autism spectrum disorder (ASD) is estimated to influence as many as 1% children worldwide, but its etiology is still unclear. It has been suggested that gut microbiomes play an important role in regulating abnormal behaviors associated with ASD. A de facto standard analysis on the microbiome-associated diseases has been diversity analysis, and nevertheless, existing studies on ASD-microbiome relationship have not produced a consensus. Here, we perform a comprehensive analysis of the diversity changes associated with ASD involving alpha-, beta-, and gamma-diversity metrics, based on 8 published data sets consisting of 898 ASD samples and 467 healthy controls (HC) from 16S-rRNA sequencing. Our findings include: (i) In terms of alpha-diversity, in approximately 1/3 of the studies cases, ASD patients exhibited significantly higher alpha-diversity than the HC, which seems to be consistent with the "1/3 conjecture" of diversity-disease relationship (DDR). (ii) In terms of beta-diversity, the AKP (Anna Karenina principle) that predict all healthy microbiomes should be similar, and every diseased microbiome should be dissimilar in its own way seems to be true in approximately 1/2 to 3/4 studies cases. (iii) In terms of gamma-diversity, the DAR (diversity-area relationship) modeling suggests that ASD patients seem to have large diversity-area scaling parameter than the HC, which is consistent with the AKP results. However, the MAD (maximum accrual diversity) and RIP (ratio of individual to population diversity) parameters did not suggest significant differences between ASD patients and HC. Throughout the study, we adopted Hill numbers to measure diversity, which stratified the diversity measures in terms of the rarity-commonness-dominance spectrum. It appears that the differences between ASD patients and HC are more propounding on rare-species side than on dominant-species side. Finally, we discuss the apparent inconsistent diversity-ASD relationships among different case studies and postulate that the relationships are not monotonic.


Asunto(s)
Trastorno del Espectro Autista , Microbioma Gastrointestinal , Microbiota , Niño , Humanos , Microbioma Gastrointestinal/genética
4.
Ecol Evol ; 13(4): e10015, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37091575

RESUMEN

Studies have shown negative impacts of increased human pressures on biodiversity at local (alpha-diversity) and regional (gamma-diversity) scales. However, the diversity between local sites (beta-diversity) has received less attention. This is an important shortcoming since beta-diversity acts as a linkage between the local and regional scales. Decreased beta-diversity means that local sites lose their distinctiveness, becoming more similar to each other. This process is known as biotic homogenization. However, the mechanisms causing biotic homogenization have not been fully studied nor its impacts on different facets of biodiversity. We examined if land-use change due to human actions causes biotic homogenization of taxonomic, functional, and phylogenetic diversity in bird communities of forested habitats in the state of Minnesota, USA. We address if forest loss and increased human domination in a region were associated with decreased beta-diversity. Our results showed that elevated human pressure was not related to increased biotic homogenization in this study region. Effects of landscape change were incongruent among taxonomic, functional, and phylogenetic diversity. At all spatial scales, taxonomic diversity was unrelated to forest loss or human domination. Interestingly, increased human domination appeared to increase the functional beta-diversity of bird communities. This association was driven by a decrease in local diversity. Forest habitat loss was associated with decreasing functional and phylogenetic diversity in local communities (alpha-diversity) and in regional species pool (gamma-diversity), but not in beta-diversity. We highlight the importance of considering multiple facets of biodiversity as their responses to human land-use is varied. Conservation significance of beta-diversity hinges on local and regional diversity responses to human land-use intensification, and organization of biodiversity should therefore be analyzed at multiple spatial scales.

5.
J Nematol ; 54(1): 20220025, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36060475

RESUMEN

Plant-parasitic nematodes (PPN) are harmful pests that have become a severe threat to crop production worldwide. Diversity of PPN at horizontal and spatial scales influence the effectiveness of control strategies. This study evaluated the vertical distribution of PPN genera at 0 cm to 30 cm and 30 cm to 60 cm in sweet potato fields in Central, Manyatta, and Nembure regions of Embu County, Kenya. A significant region × depth interaction was observed for Tylenchus. For all the other nematode genera, there were no significant variations in the abundance at 0 cm to 30 cm and 30 cm to 60 cm depths. However, Helicotylenchus, Meloidogyne, and Scutellonema occurred in greater numbers at both depths in all regions. Shannon and Simpson diversity indices were higher at 0 cm to 30 cm depth while Pielou's evenness was similar at both depths in the three regions. Diversity partitioning of genus richness, Shannon, and Simpson diversities across all regions at 0 cm to 30 cm, indicated that ß component contributed 61.9%, 35.6%, and 22.6% of γ diversity, respectively. Coinertia analysis indicated a significant covariation between nematode genera and soil properties. The results show that management of PPN in sweet potato fields should be targeted at soil depths that are not less than 60 cm.

6.
Trends Ecol Evol ; 37(9): 777-788, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35660115

RESUMEN

Extensive evidence shows that regional (gamma) diversity is often lower across restored landscapes than in reference landscapes, in part due to common restoration practices that favor widespread species through selection of easily-grown species with high survival and propagation practices that reduce genetic diversity. We discuss approaches to counteract biotic homogenization, such as reintroducing species that are adapted to localized habitat conditions and are unlikely to colonize naturally; periodically reintroducing propagules from remnant populations to increase genetic diversity; and reintroducing higher trophic level fauna to restore interaction networks and processes that promote habitat heterogeneity. Several policy changes would also increase regional diversity; these include regional coordination amongst restoration groups, financial incentives to organizations producing conservation-valued species, and experimental designations for rare species introductions.


Asunto(s)
Biodiversidad , Conservación de los Recursos Naturales , Ecosistema
7.
Biodivers Data J ; 10: e90281, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36761646

RESUMEN

Plant species diversity of black alder-dominated forests was studied in three biogeographical regions (Alpine, Continental and Pannonian) of Central Europe. They were represented by regions of the Polish Plain (Continental), the High Western Carpathians and Matricum of the Western Carpathians (Alpine) and the Pannonian lowland (Pannonian). We analysed 35 plots per region in order to identify: i) local alpha (α) diversity defined as the counted number of plant taxa occurring in a single sampling plot, ii) amongst-site beta (ß) diversity, iii) regional (γ) diversity defined as the total species richness of all sampling plots and iv) zeta diversity (ζ) as a generalisation of beta diversity. We recorded a total of 432 vascular plant taxa in all bioregions; more than 13% were alien plants. Statistically significant differences in species richness (α) of both native and alien plants were found between assemblages of the regions. The High Western Carpathians showed the highest native and the lowest alien plant species richness. Total ß-diversity was high in all regions, but significantly differed amongst regions only for alien plant species. Cumulative native and alien species richness (γ) was the highest and lowest in the High Western Carpathians and Matricum of Western Carpathians, respectively. Our results identified the High Western Carpathians as a hotspot for diversity of native plants in Central European black alder-dominated forests.

8.
Ecol Evol ; 11(21): 14715-14732, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34765136

RESUMEN

AIM: Drastic changes in fire regimes are altering plant communities, inspiring ecologists to better understand the relationship between fire and plant species diversity. We examined the impact of a 90,000-ha wildfire on woody plant species diversity in an arid mountain range in southern Arizona, USA. We tested recent fire-diversity hypotheses by addressing the impacts on diversity of fire severity, fire variability, historical fire regimes, and topography. LOCATION: Chiricahua National Monument, Chiricahua Mountains, Arizona, USA, part of the Sky Islands of the US-Mexico borderlands. TAXON: Woody plant species. METHODS: We sampled woody plant diversity in 138 plots before (2002-2003) and after (2017-2018) the 2011 Horseshoe Two Fire in three vegetation types and across fire severity and topographic gradients. We calculated gamma, alpha, and beta diversity and examined changes over time in burned versus unburned plots and the shapes of the relationships of diversity with fire severity and topography. RESULTS: Alpha species richness declined, and beta and gamma diversity increased in burned but not unburned plots. Fire-induced enhancement of gamma diversity was confined to low fire severity plots. Alpha diversity did not exhibit a clear continuous relationship with fire severity. Beta diversity was enhanced by variation in fire severity among plots and increased with fire severity up to very high severity, where it declined slightly. MAIN CONCLUSIONS: The results reject the intermediate disturbance hypothesis for alpha diversity but weakly support it for gamma diversity. Spatial variation in fire severity promoted variation among plant assemblages, supporting the pyrodiversity hypothesis. Long-term drought probably amplified fire-driven diversity changes. Despite the apparent benign impact of the fire on diversity, the replacement of two large conifer species with a suite of drought-tolerant shrubs signals the potential loss of functional diversity, a pattern that may warrant restoration efforts to retain these important compositional elements.

9.
Ecol Evol ; 11(20): 13912-13919, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34707827

RESUMEN

Measuring commonness and rarity is pivotal to ecology and conservation. Zeta diversity, the average number of species shared by multiple sets of assemblages, and Dark diversity, the number of species that could occur in an assemblage but are missing, have been recently proposed to capture two aspects of the commonness-rarity spectrum. Despite a shared focus on commonness and rarity, thus far, Zeta and Dark diversities have been assessed separately. Here, we review these two frameworks and suggest their integration into a unified paradigm of the "rarity facets of biodiversity." This can be achieved by partitioning Alpha and Beta diversities into five components (the Zeta, Eta, Theta, Iota, and Kappa rarity facets) defined based on the commonness and rarity of species. Each facet is assessed in traditional and multiassemblage fashions to bridge conceptual differences between Dark diversity and Zeta diversity. We discuss applications of the rarity facets including comparing the taxonomic, functional, and phylogenetic diversity of rare and common species, or measuring species' prevalence in different facets as a metric of species rarity. The rarity facets integrate two emergent paradigms in biodiversity science to better understand the ecology of commonness and rarity, an important endeavor in a time of widespread changes in biodiversity across the Earth.

10.
Mol Ecol ; 30(18): 4353-4367, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34216497

RESUMEN

Genetic diversity shapes the evolutionary potential of plant populations. For outcrossing plants, genetic diversity is influenced by effective population size and by dispersal, first of paternal gametes through pollen, and then of paternal and maternal gametes through seeds. Forest loss often reduces genetic diversity, but the degree to which it differentially impacts the paternal and maternal contributions to genetic diversity and the spatial scale at which these impacts are most pronounced are poorly understood. To address these questions, we genotyped 504 seedlings of the animal-dispersed palm Oenocarpus bataua collected from 29 widely distributed sites across Ecuador and decomposed the contribution of paternal and maternal gametes to overall genetic diversity. The amount of forest cover at a landscape scale (>10 km radius) had an equally significant positive association with both male and female gametic diversity. In addition, there was a significant positive association between forest cover and effective population size. Stronger fine-scale spatial genetic structure for female versus male gametes was observed at sites with low forest cover, but this did not scale up to differences in male versus female gametic diversity. These findings show that reductions in forest cover at spatial scales much larger than those typically evaluated in ecological studies lead to significant, and equivalent, decreases of diversity in both male and female gametes, and that this association between landscape level forest loss and genetic diversity may be driven directly by reductions in effective population size of O. bataua, rather than by indirect disruptions to local dispersal processes.


Asunto(s)
Arecaceae , Plantones , Animales , Arecaceae/genética , Bosques , Variación Genética , Polen/genética , Plantones/genética , Semillas/genética
11.
Proc Biol Sci ; 288(1948): 20203045, 2021 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-33849320

RESUMEN

The decline in species richness at higher latitudes is among the most fundamental patterns in ecology. Whether changes in species composition across space (beta-diversity) contribute to this gradient of overall species richness (gamma-diversity) remains hotly debated. Previous studies that failed to resolve the issue suffered from a well-known tendency for small samples in areas with high gamma-diversity to have inflated measures of beta-diversity. Here, we provide a novel analytical test, using beta-diversity metrics that correct the gamma-diversity and sampling biases, to compare beta-diversity and species packing across a latitudinal gradient in tree species richness of 21 large forest plots along a large environmental gradient in East Asia. We demonstrate that after accounting for topography and correcting the gamma-diversity bias, tropical forests still have higher beta-diversity than temperate analogues. This suggests that beta-diversity contributes to the latitudinal species richness gradient as a component of gamma-diversity. Moreover, both niche specialization and niche marginality (a measure of niche spacing along an environmental gradient) also increase towards the equator, after controlling for the effect of topographical heterogeneity. This supports the joint importance of tighter species packing and larger niche space in tropical forests while also demonstrating the importance of local processes in controlling beta-diversity.


Asunto(s)
Biodiversidad , Árboles , Ecología , Asia Oriental
12.
Ecol Evol ; 10(14): 7551-7559, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32760548

RESUMEN

The island species-area relationship (ISAR) describes how the number of species increases with increasing size of an island (or island-like habitat), and is of fundamental importance in island biogeography and conservation. Here, we use a framework based on individual-based rarefaction to infer whether ISARs result from passive sampling, or whether some processes are acting beyond sampling (e.g., disproportionate effects and/or habitat heterogeneity). Using data on total and relative abundances of four taxa (birds, butterflies, amphibians, and reptiles) from multiple islands in the Andaman and Nicobar archipelago, we examine how different metrics of biodiversity (total species richness, rarefied species richness, and abundance-weighted effective numbers of species emphasizing common species) vary with island area. Total species richness increased for all taxa, as did rarefied species richness controlling for a given sampling effort. This indicates that the ISAR did not result because of passive sampling, but that instead, some species were disproportionately favored on larger islands. For birds, frogs, and lizards, this disproportionate effect was only associated with species that were rarer in the samples, but for butterflies, both more common and rarer species were affected. Furthermore, for the two taxa for which we had plot-level data (reptiles and amphibians), within-island ß-diversity did not increase with island size, suggesting that within-island compositional effects were unlikely to be driving these ISARs. Overall, our results indicate that the ISARs of these taxa are most likely driven by disproportionate effects, that is, where larger islands are important sources of biodiversity beyond a simple sampling expectation, especially through their influence on rarer species, thus emphasizing their role in the preservation and conservation of species.

13.
Ecology ; 101(7): e03028, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32112402

RESUMEN

The species composition of local communities varies in space, and its similarity generally decreases with increasing geographic distance between communities, a phenomenon known as distance decay of similarity. It is, however, not known how changes in local species composition affect ecological processes, that is, whether they lead to differences in the local composition of species' functional roles. We studied eight seed-dispersal networks along the South American Andes and compared them with regard to their species composition and their composition of functional roles. We tested (1) if changes in bird species composition lead to changes in the composition of bird functional roles, and (2) if the similarity in species composition and functional-role composition decreased with increasing geographic distance between the networks. We also used cluster analysis to (3) identify bird species with similar roles across all networks based on the similarity in the plants they consume, (i) considering only the species identity of the plants and (ii) considering the functional traits of the plants. Despite strong changes in species composition, the networks along the Andes showed similar composition of functional roles. (1) Changes in species composition generally did not lead to changes in the composition of functional roles. (2) Similarity in species composition, but not functional-role composition, decreased with increasing geographic distance between the networks. (3) The cluster analysis considering the functional traits of plants identified bird species with similar functional roles across all networks. The similarity in functional roles despite the high species turnover suggests that the ecological process of seed dispersal is organized similarly along the Andes, with similar functional roles fulfilled locally by different sets of species. The high species turnover, relative to functional turnover, also indicates that a large number of bird species are needed to maintain the seed-dispersal process along the Andes.


Asunto(s)
Dispersión de Semillas , Animales , Aves , Ecosistema , Frutas , Plantas , Semillas
14.
Ecol Lett ; 23(2): 370-380, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31773839

RESUMEN

Plant spectral diversity - how plants differentially interact with solar radiation - is an integrator of plant chemical, structural, and taxonomic diversity that can be remotely sensed. We propose to measure spectral diversity as spectral variance, which allows the partitioning of the spectral diversity of a region, called spectral gamma (γ) diversity, into additive alpha (α; within communities) and beta (ß; among communities) components. Our method calculates the contributions of individual bands or spectral features to spectral γ-, ß-, and α-diversity, as well as the contributions of individual plant communities to spectral diversity. We present two case studies illustrating how our approach can identify 'hotspots' of spectral α-diversity within a region, and discover spectrally unique areas that contribute strongly to ß-diversity. Partitioning spectral diversity and mapping its spatial components has many applications for conservation since high local diversity and distinctiveness in composition are two key criteria used to determine the ecological value of ecosystems.


Asunto(s)
Biodiversidad , Ecosistema , Ecología , Plantas
15.
Ann Epidemiol ; 39: 63-68, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31635933

RESUMEN

PURPOSE: Community-level interventions in cluster randomized controlled trials may alter the gut microbiome of individuals. The current method of estimating community diversities uses microbiome data obtained from multiple individual's specimens. Here we propose randomly pooling a number of microbiome samples from the same community into one sample before sequencing to estimate community-level microbiome diversity. METHODS: We design and analyze an experiment to compare community microbiome diversity (gamma-diversity) estimates derived from 16S rRNA gene sequencing of 1) individually sequenced specimens vs. 2) pooled specimens collected from a community. Pool sizes of 10, 20, and 40 are considered. We then compare the gamma-estimates using Pearson's correlation as well as using Bland and Altman agreement analysis for three established diversity indices including richness, Simpson's and Shannon's. RESULTS: The gamma-diversity estimates are highly correlated, with most being statistically significant. All correlations between all three diversity estimates are significant in the 10-pooled data. Pools comprising 40 specimens are closest to the line of agreement, but all pooled samples and individual samples fall within the 95% limits of agreement. CONCLUSIONS: Pooling microbiome samples before DNA amplification and metagenomics sequencing to estimate community-level diversity is a viable measure to consider in population-level association research studies.


Asunto(s)
Antibacterianos/administración & dosificación , Azitromicina/administración & dosificación , Bacterias/efectos de los fármacos , Microbioma Gastrointestinal/efectos de los fármacos , Tracto Gastrointestinal/microbiología , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Metagenómica/métodos , Microbiota/genética , ARN Ribosómico 16S/genética , Administración Oral , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Biodiversidad , Preescolar , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Niger , Placebos/administración & dosificación , Análisis de Secuencia de ADN
16.
Biol Conserv ; 236: 79-91, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31496538

RESUMEN

Knowledge gaps in spatiotemporal changes in mangrove diversity and composition have obstructed mangrove conservation programs across the tropics, but particularly in the Sundarbans (10,017 km2), the world's largest remaining natural mangrove ecosystem. Using mangrove tree data collected from Earth's largest permanent sample plot network at four historical time points (1986, 1994, 1999 and 2014), this study establishes spatially explicit baseline biodiversity information for the Sundarbans. We determined the spatial and temporal differences in alpha, beta, and gamma diversity in three ecological zones (hypo-, meso-, and hypersaline) and also uncovered changes in the mangroves' overall geographic range and abundances therein. Spatially, the hyposaline mangrove communities were the most diverse and heterogeneous in species composition while the hypersaline communities were the least diverse and most homogeneous at all historical time points. Since 1986, we detect an increasing trend of compositional homogeneity (between-site similarity in species composition) and a significant spatial contraction of distinct and diverse areas over the entire ecosystem. Temporally, the western and southern hypersaline communities have undergone radical shifts in species composition due to population increase and range expansion of the native invasive species Ceriops decandra and local extinction or range contraction of specialists including the globally endangered Heritiera fomes. The surviving biodiversity hotspots are distributed outside the legislated protected area network. In addition to suggesting the immediate coverage of these hotspots under protected area management, our novel biodiversity insights and spatial maps can form the basis for spatial conservation planning, biodiversity monitoring and protection initiatives for the Sundarbans.

17.
Glob Ecol Biogeogr ; 28(5): 548-556, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-31217748

RESUMEN

ISSUE: Geodiversity (i.e., the variation in Earth's abiotic processes and features) has strong effects on biodiversity patterns. However, major gaps remain in our understanding of how relationships between biodiversity and geodiversity vary over space and time. Biodiversity data are globally sparse and concentrated in particular regions. In contrast, many forms of geodiversity can be measured continuously across the globe with satellite remote sensing. Satellite remote sensing directly measures environmental variables with grain sizes as small as tens of metres and can therefore elucidate biodiversity-geodiversity relationships across scales. EVIDENCE: We show how one important geodiversity variable, elevation, relates to alpha, beta and gamma taxonomic diversity of trees across spatial scales. We use elevation from NASA's Shuttle Radar Topography Mission (SRTM) and c. 16,000 Forest Inventory and Analysis plots to quantify spatial scaling relationships between biodiversity and geodiversity with generalized linear models (for alpha and gamma diversity) and beta regression (for beta diversity) across five spatial grains ranging from 5 to 100 km. We illustrate different relationships depending on the form of diversity; beta and gamma diversity show the strongest relationship with variation in elevation. CONCLUSION: With the onset of climate change, it is more important than ever to examine geodiversity for its potential to foster biodiversity. Widely available satellite remotely sensed geodiversity data offer an important and expanding suite of measurements for understanding and predicting changes in different forms of biodiversity across scales. Interdisciplinary research teams spanning biodiversity, geoscience and remote sensing are well poised to advance understanding of biodiversity-geodiversity relationships across scales and guide the conservation of nature.

18.
Mol Ecol ; 27(15): 3055-3069, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29900620

RESUMEN

Habitat loss and fragmentation often reduce gene flow and genetic diversity in plants by disrupting the movement of pollen and seed. However, direct comparisons of the contributions of pollen vs. seed dispersal to genetic variation in fragmented landscapes are lacking. To address this knowledge gap, we partitioned the genetic diversity contributed by male gametes from pollen sources and female gametes from seed sources within established seedlings of the palm Oenocarpus bataua in forest fragments and continuous forest in northwest Ecuador. This approach allowed us to quantify the separate contributions of each of these two dispersal processes to genetic variation. Compared to continuous forest, fragments had stronger spatial genetic structure, especially among female gametes, and reduced effective population sizes. We found that within and among fragments, allelic diversity was lower and genetic structure higher for female gametes than for male gametes. Moreover, female gametic allelic diversity in fragments decreased with decreasing surrounding forest cover, while male gametic allelic diversity did not. These results indicate that limited seed dispersal within and among fragments restricts genetic diversity and strengthens genetic structure in this system. Although pollen movement may also be impacted by habitat loss and fragmentation, it nonetheless serves to promote gene flow and diversity within and among fragments. Pollen and seed dispersal play distinctive roles in determining patterns of genetic variation in fragmented landscapes, and maintaining the integrity of both dispersal processes will be critical to managing and conserving genetic variation in the face of continuing habitat loss and fragmentation in tropical landscapes.


Asunto(s)
Arecaceae/fisiología , Ecosistema , Flujo Génico/genética , Alelos , Arecaceae/genética , Genética de Población , Dispersión de Semillas/genética , Dispersión de Semillas/fisiología
19.
Rev. bras. entomol ; 62(1): 29-35, Jan.-Mar. 2018. tab, graf
Artículo en Inglés | LILACS | ID: biblio-1045484

RESUMEN

ABSTRACT Several studies on the potential use of drosophilid assemblages as bioindicator systems have been carried out in the last years. Nevertheless, the successful application of these organisms in these systems requires adequate filling of several knowledge gaps. In this sense, little is known about drosophilid assemblages in wetlands and flooded areas. The present study provides the first survey of drosophilid species inhabiting such environments in the extreme South of Brazil and compares general beta-diversity patterns between assemblages of flooded versus nonflooded areas. The specimens were collected with banana-baited traps, and the assemblages recovered in eight wetlands of the southernmost coast of Brazil were compared to those recovered from seven nonflooded areas of the Pampa and Atlantic Forest biomes. A total of 5028 and 2571 individuals encompassing 27 and 37 species were collected in the flooded and nonflooded areas, respectively. The differential species composition patterns presented between these areas was statistically supported, which seems to be related to the lower beta-diversity presented by swamps, especially in regard to dominance patterns. So, the open and climatically harsher environment provided by wetlands possibly constitutes a hostile environment for the entry and, mainly, for the persistence of several native Drosophilidae species, in contrast to some exotic and more plastic species (as Drosophila simulans and Zaprionus indianus). Since the diversity gradient of flooded areas does not seem to be related to the conservation status of the swamp, our results question the use of Drosophilidae species as bioindicators of environmental disturbance and antropic influence in wetlands.

20.
Ecol Evol ; 7(16): 6444-6454, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28861247

RESUMEN

We present a framework for biodiversity metrics that organizes the growing panoply of metrics. Our framework distinguishes metrics based on the type of information-abundance, phylogeny, function-and two common properties-magnitude and variability. Our new metrics of phylogenetic diversity are based on a partition of the total branch lengths of a cladogram into the proportional share of each species, including: a measure of divergence which standardizes the amount of evolutionary divergence by species richness and time depth of the cladogram; a measure of regularity which is maximal when the tree is perfectly symmetrical so that all species have the same proportional branch lengths; a measure that combines information on the magnitude and variability of abundance with phylogenetic variability, and a measure of phylogenetically weighted effective mean abundance; and indicate how those metrics can be decomposed into α and ß components. We illustrate the utility of these new metrics using empirical data on the bat fauna of Manu, Peru. Divergence was greatest in lowland rainforest and at the transition between cloud and elfin forests, and least in upper elfin forests and in cloud forests. In contrast, regularity was greatest in lowland rainforest, dipping to its smallest values in mid-elevation cloud forests, and then increasing in high elevation elfin forests. These patterns indicate that the first species to drop out with increasing elevation are ones that are closely related to other species in the metacommunity. Measures of the effective number of phylogenetically independent or distinct species decreased very rapidly with elevation, and ß-diversity was larger. In contrast, a comparison of feeding guilds shows a different effect of phylogenetic patterning. Along the elevational gradient, each guild generally loses some species from each clade-rather than entire clades-explaining the maintenance of functional diversity as phylogenetic diversity decreases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA