Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 380
Filtrar
1.
Cureus ; 16(7): e65799, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39219961

RESUMEN

Miller Fisher syndrome (MFS) typically presents with acute development of ataxia, ophthalmoplegia, and areflexia. Bilateral vocal cord palsy (BVCP) is a rare manifestation of MFS. We present a case of a 66-year-old male diagnosed with MFS complicated by an unusually delayed onset of BVCP while undergoing inpatient rehabilitation. We also describe the inpatient rehabilitation course, including the use of a patient-guided suspension system (PGSS) as a therapeutic adjunct to aid gait training, resulting in significant functional improvement in ambulation and activities of daily living. Given the rarity of BVCP in MFS, this case highlights the importance of healthcare professionals being aware of this phenomenon so that prompt treatment can be initiated to reduce significant morbidity. Innovative treatment approaches such as the use of a PGSS may also prove beneficial in the rehabilitation of patients with MFS with significant ataxia.

2.
J Phys Ther Sci ; 36(9): 583-587, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39239406

RESUMEN

[Purpose] This study aims to investigate the effects of robotic exoskeleton-assisted gait training on a pediatric patient with peripheral polyneuropathy. [Participant and Methods] A 10-year-old boy with lower extremity weakness attributed to peripheral polyneuropathy underwent a two-week program comprising 10 rehabilitation sessions of powered robotic exoskeleton-assisted gait training (REGT). He was evaluated before and after treatment using the 10-meter walk test, 6-minute walk test, Berg Balance Scale, the Timed Up and Go Test, the Functional Reach Test, the Modified Functional Reach Test, hip and knee flexion/extension angles, and cardiopulmonary exercise testing. [Results] The patient demonstrated improved gait speed, balance, joint mobility, cadence, the maximum oxygen consumption and metabolic equivalents after the REGT. [Conclusion] Robotic exoskeleton devices could provide additional benefits to pediatric patients with peripheral polyneuropathy, pending larger studies to confirm the significance of treatment.

3.
Front Physiol ; 15: 1384313, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39165280

RESUMEN

The effect of gait feedback training for older people remains unclear, and such training methods have not been adapted in clinical settings. This study aimed to examine whether inertial measurement unit (IMU)-based real-time feedback gait for older inpatients immediately changes gait parameters. Seven older inpatients (mean age: 76.0 years) performed three types of 60-s gait trials with real-time feedback in each of the following categories: walking spontaneously (no feedback trial); focused on increasing the ankle plantarflexion angle during late stance (ankle trial); and focused on increasing the leg extension angle, which is defined by the location of the ankle joint relative to the hip joint in the sagittal plane, during late stance (leg trial). Tilt angles and accelerations of the pelvis and lower limb segments were measured using seven IMUs in pre- and post-feedback trials. To examine the immediate effects of IMU-based real-time feedback gait, multiple comparisons of the change in gait parameters were conducted. Real-time feedback increased gait speed, but it did not significantly differ in the control (p = 0.176), ankle (p = 0.237), and leg trials (p = 0.398). Step length was significantly increased after the ankle trial (p = 0.043, r = 0.77: large effect size). Regarding changes in gait kinematics, the leg trial increased leg extension angle compared to the no feedback trial (p = 0.048, r = 0.77: large effect size). IMU-based real-time feedback gait changed gait kinematics immediately, and this suggests the feasibility of a clinical application for overground gait training in older people.

4.
Cureus ; 16(7): e63882, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39100052

RESUMEN

Patients with Guillain-Barré syndrome (GBS) occasionally have residual gait disturbance one year after disease onset. We hypothesized that providing hip joint movement assistance can improve gait in patients with GBS and residual gait disturbance. A 78-year-old man with GBS showed improvement in gait following conventional rehabilitation and gait training using GAIT TRAINER HWA-01 (HWA-01; Honda Motor Co., Ltd., Tokyo, Japan), which is a hip-wearable exoskeleton robot. Initially, he presented with gastrointestinal symptoms, subsequently flaccid quadriplegia, and respiratory muscle paralysis. He was diagnosed with acute motor axonal neuropathy and was transferred to our hospital on day 185 after the disease onset. Seven months after rehabilitation, his walking ability plateaued. On day 382, a single-case study with ABABA design intervention, with conventional gait training in phase A and gait training using HWA-01 in phase B, was conducted. The primary outcomes included a comfortable walking speed, stride length, and cadence. Comfortable walking speed, stride length, and cadence statistically improved after gait training using HWA-01. Furthermore, improvement in exercise capacity and activities of daily living exceeded the minimal clinically important difference for the intervention. The use of the HWA-01 gait trainer potentially improves gait in patients with GBS who have residual gait disturbance.

5.
J Clin Med ; 13(16)2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39200980

RESUMEN

Background: Patients with lower extremity burn injuries have decreased gait function. Gait dysfunctions are compensated by activation of executive areas such as the prefrontal cortex (PFC). Although robot-assisted gait training (RAGT) can improve gait function, the training mechanisms of RAGT are unknown. We aimed to determine the clinical effects of RAGT in patients with burns and investigate their underlying mechanisms. Methods: This single-blind, randomized controlled trial involved 54 patients with lower extremity burns. The RAGT group underwent RAGT using SUBAR® and conventional training. The control (CON) group underwent only conventional training. The primary outcome was cortical activity measured using a functional near-infrared spectroscopy device before and after 8 weeks of training to confirm the compensatory effect of gait dysfunction. The secondary outcomes were the functional ambulation category (FAC) to evaluate gait performance, 6-min walking test (6 MWT) distance to measure gait speed, isometric force and range of motion (ROM) of lower extremities to evaluate physical function, and the visual analog scale (VAS) score to evaluate subjective pain during gait. Results: PFC activation during the gait phase in the RAGT group decreased significantly compared with that of the CON. The VAS score decreased and FAC score improved after 8 weeks of training in both groups. The 6 MWT scores, isometric strengths (the left knee flexor and bilateral ankle plantar flexors), and the ROMs (the extensions of bilateral hip and bilateral knee) of the RAGT group were significantly improved compared with those of the CON. RAGT improved gait speed, lower extremity ROMs, and lower extremity muscles strengths in patients with burns. Conclusions: The improvement in gait speed and cerebral blood flow evaluation results suggests that the automatization of gait is related to the treatment mechanism during RAGT.

6.
Healthcare (Basel) ; 12(16)2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39201194

RESUMEN

Gait dysfunction (GD) is a common impairment of Parkinson's disease (PD), which negatively impacts patients' quality of life. Among the most recent rehabilitation technologies, a lower-limb powered exoskeleton (LLEXO) arises as a useful instrument for gait training in several neurological conditions, including PD. However, some questions relating to methods of use, achievable results, and usefulness compared to traditional rehabilitation methodologies still require clear answers. Therefore, in this review, we aim to summarise and analyse all the studies that have applied an LLEXO to train gait in PD patients. Literature research on PubMed and Scopus retrieved five articles, comprising 46 PD participants stable on medications (age: 71.7 ± 3.7 years, 24 males, Hoehn and Yahr: 2.1 ± 0.6). Compared to traditional rehabilitation, low-profile lower-limb exoskeleton (lp-LLEXO) training brought major improvements towards walking capacity and gait speed, while there are no clear major benefits regarding the dual-task gait cost index and freezing of gait symptoms. Importantly, the results suggest that lp-LLEXO training is more beneficial for patients with an intermediate-to-severe level of disease severity (Hoehn and Yahr > 2.5). This review could provide a novel framework for implementing LLEXO in clinical practise, highlighting its benefits and limitations towards gait training.

7.
Front Neurosci ; 18: 1398459, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39145294

RESUMEN

Background: Early phase research suggests that physiotherapy paired with use of robotic walking aids provides a novel opportunity for children with severe mobility challenges to experience active walking. The Trexo Plus is a pediatric lower limb exoskeleton mounted on a wheeled walker frame, and is adjustable to fit a child's positional and gait requirements. It guides and powers the child's leg movements in a way that is individualized to their movement potential and upright support needs, and can provide progressive challenges for walking within a physiotherapy-based motor learning treatment paradigm. Methods: This protocol outlines a single group mixed-methods study that assesses the feasibility of physiotherapy-assisted overground Trexo use in school and outpatient settings during a 6-week physiotherapy block. Children ages 3-6 years (n = 10; cerebral palsy or related disorder, Gross Motor Function Classification System level IV) will be recruited by circle of care invitations to participate. Study indicators/outcomes will focus on evaluation of: (i) clinical feasibility, safety, and acceptability of intervention; (ii) pre-post intervention motor/functional outcomes; (iii) pre-post intervention brain structure characterization and resting state brain connectivity; (iv) muscle activity characterization during Trexo-assisted gait and natural assisted gait; (v) heart rate during Trexo-assisted gait and natural assisted gait; and (vi) user experience and perceptions of physiotherapists, children, and parents. Discussion: This will be the first study to investigate feasibility indicators, outcomes, and experiences of Trexo-based physiotherapy in a school and outpatient context with children who have mobility challenges. It will explore the possibility of experience-dependent neuroplasticity in the context of gait rehabilitation, as well as associated functional and muscular outcomes. Finally, the study will address important questions about clinical utility and future adoption of the device from the physiotherapists' perspective, comfort and engagement from the children's perspective, and the impressions of parents about the value of introducing this technology as an early intervention. Clinical trial registration: https://clinicaltrials.gov, identifier NCT05463211.

8.
Brain Sci ; 14(8)2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39199525

RESUMEN

OBJECTIVE: This study aimed to investigate the effects of overground robot exoskeleton gait training on gait outcomes, balance, and motor function in patients with stroke. METHODS: Following the PRISMA guidelines, literature searches were performed in the PubMed, EMBASE, Cochrane Central Register of Controlled Trials, SCOPUS, Ovid-LWW, and RISS databases. A total of 504 articles were identified, of which 19 were included for analysis after application of the inclusion and exclusion criteria. The included literature was qualitatively evaluated using the PEDro scale, while the Egger's regression, funnel plot, and trim-and-fill methods were applied to assess and adjust for publication bias. RESULTS: The averaged PEDro score was 6.21 points, indicating a high level of methodological quality. In the analysis based on dependent variables, higher effect sizes were observed in the following ascending order: gait speed (g = 0.26), motor function (g = 0.21), gait ability (g = 0.18), Timed Up and Go Test (g = -0.15), gait endurance (g = 0.11), and Berg Balance Scale (g = 0.05). Subgroup analyses further revealed significant differences in Asian populations (g = 0.26), sessions lasting longer than 30 min (g = 0.37), training frequency of three times per week or less (g = 0.38), and training duration of four weeks or less (g = 0.25). Overall, the results of this study indicate that overground robot exoskeleton gait training is effective at improving gait speed in patients with stroke, particularly when the sessions exceed 30 min, are conducted three times or less per week, and last for four weeks or less. CONCLUSION: our results suggest that training is an effective intervention for patients with stroke, provided that appropriate goal-setting and intensity and overground robot exoskeleton gait are applied.

9.
J Biomech ; 175: 112282, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39182263

RESUMEN

Individuals with diminished walking performance caused by neuromuscular impairments often lack plantar flexion muscle activity. Robotic devices have been developed to address these issues and increase walking performance. While these devices have shown promise in their ability to increase musculature engagement of the lower limbs when used on a treadmill, most have not been developed or validated for overground walking and community use. Overground walking may limit the effectiveness of robotic devices due to differences in gait characteristics between walking terrains and reduced user engagement. The purpose of this study was to validate our multimodal robotic gait training system for overground walking in individuals with neuromuscular gait impairments. This untethered wearable robotic device can provide an ankle resistive torque proportional to the users' biological ankle torque. The device can also provide audio biofeedback based on users' plantar pressure intending to increase ankle power and muscle activity of the plantar flexors. Seven individuals with cerebral palsy participated. Participants walked overground and on a treadmill with our robotic gait training system in a single testing session. Results showed all seven participants to increase peak plantar flexor muscle activity, 10.3% on average, when walking with the gait trainer overground compared to treadmill. When compared to typical baseline overground walking, overground gait trainer use caused individuals to have slightly less knee joint excursion (3°) and moderately more ankle joint excursion (7°). This work supports our vision of using the wearable robotic device as a gait aid and rehabilitation tool in the home and community settings.


Asunto(s)
Robótica , Caminata , Humanos , Masculino , Caminata/fisiología , Femenino , Robótica/instrumentación , Robótica/métodos , Biorretroalimentación Psicológica/métodos , Biorretroalimentación Psicológica/instrumentación , Adulto , Articulación del Tobillo/fisiología , Articulación del Tobillo/fisiopatología , Marcha/fisiología , Parálisis Cerebral/fisiopatología , Parálisis Cerebral/rehabilitación , Músculo Esquelético/fisiología , Músculo Esquelético/fisiopatología , Tobillo/fisiología , Adolescente , Trastornos Neurológicos de la Marcha/rehabilitación , Trastornos Neurológicos de la Marcha/fisiopatología , Adulto Joven , Fenómenos Biomecánicos , Prueba de Esfuerzo/métodos
10.
Cureus ; 16(7): e64193, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39130963

RESUMEN

This case report describes a woman in her fifties who experienced a left-sided atherothrombotic cerebral infarction with lesions in the left corona radiata. The patient exhibited motor paralysis of the right upper and lower limbs. After a 10-day acute hospital stay, she was admitted to a rehabilitation facility for an intensive program of physical, occupational, and speech therapy. By day 17 of the onset, she had achieved independence by walking with a cane. This case was documented to study the effects of gait training with non-paretic knee immobilization on muscle activity and trunk kinematics in post-stroke hemiplegia. Traditional physical therapy was used initially, followed by an intervention phase in which gait training was performed with the non-paretic knee immobilized. This approach was hypothesized to induce beneficial kinematic and muscle activity changes in the paretic limb. The results showed increased muscle activity in the paretic lateral gastrocnemius without compromising trunk stability, suggesting that this method may improve rehabilitation outcomes in similar cases.

11.
J Athl Train ; 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39136092

RESUMEN

OBJECTIVE: This review aimed to determine if gait training interventions influence lower extremity biomechanics during walking in individuals with chronic ankle instability (CAI). METHODS: A literature search was conducted in PubMed, CINAHL, SPORTDiscus, and MEDLINE to identify English-language studies from inception through September 2022. Eligible studies included randomized control trials, repeated measures design, and descriptive laboratory studies measuring the effects during or following a gait training intervention on biomechanical outcomes (kinematics, kinetics, electromyography) during walking in individuals with CAI. Gait training interventions were broadly categorized into devices (destabilization devices, novel gait training device) and biofeedback (visual, auditory, and haptic delivery modes). Meta-analyses were conducted when appropriate using random-effects to compare pre-and post- gait training intervention mean differences and standard deviations. RESULTS: Thirteen studies were included. Meta-analyses were conducted for single session gait training studies only. Eleven studies reported kinetic outcomes. Our meta-analyses showed location of center of pressure (COP) was shifted medially from 0-90% (Effect Size [ES] range=0.35-0.82) of stance, contact time was decreased in medial forefoot (ES=0.43), peak pressure was decreased for lateral midfoot (ES=1.18) and increased for hallux (ES=0.59), pressure time integral was decreased for lateral heel (ES=0.33) and lateral midfoot (ES=1.22) and increased for hallux (ES=0.63). Three studies reported kinematic outcomes. Seven studies reported electromyography outcomes. Our meta-analyses revealed increased activity following initial contact (IC) for fibularis longus (ES=0.83). CONCLUSIONS: Gait training protocols improved some lower extremity biomechanical outcomes in individuals with CAI. Plantar pressure outcome measures seem to be most impacted by gait training programs with improvements in decreasing lateral pressure associated with increased risk for lateral ankle sprains. Gait training increased EMG activity post-IC for the fibularis longus. Few studies have assessed the impact of multi-session gait training on biomechanical outcome measures. Targeted gait trainning should be considered when treating patients with CAI.

12.
World J Clin Cases ; 12(24): 5523-5533, 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39188596

RESUMEN

BACKGROUND: The results of existing lower extremity robotics studies are conflicting, and few relevant clinical trials have examined short-term efficacy. In addition, most of the outcome indicators in existing studies are scales, which are not objective enough. We used the combination of objective instrument measurement and scale to explore the short-term efficacy of the lower limb A3 robot, to provide a clinical reference. AIM: To investigate the improvement of lower limb walking ability and balance in stroke treated by A3 lower limb robot. METHODS: Sixty stroke patients were recruited prospectively in a hospital and randomized into the A3 group and the control group. They received 30 min of A3 robotics training and 30 min of floor walking training in addition to 30 min of regular rehabilitation training. The training was performed five times a week, once a day, for 2 wk. The t-test or non-parametric test was used to compare the three-dimensional gait parameters and balance between the two groups before and after treatment. RESULTS: The scores of basic activities of daily living, Stroke-Specific Quality of Life Scale, FM balance meter, Fugl-Meyer Assessment scores, Rivermead Mobility Index, Stride speed, Stride length, and Time Up and Go test in the two groups were significantly better than before treatment (19.29 ± 12.15 vs 3.52 ± 4.34; 22.57 ± 17.99 vs 4.07 ± 2.51; 1.21 ± 0.83 vs 0.18 ± 0.40; 3.50 ± 3.80 vs 0.96 ± 2.08; 2.07 ± 1.21 vs 0.41 ± 0.57; 0.89 ± 0.63 vs 0.11 ± 0.32; 12.38 ± 9.00 vs 2.80 ± 3.43; 18.84 ± 11.24 vs 3.80 ± 10.83; 45.12 ± 69.41 vs 8.41 ± 10.20; 29.45 ± 16.62 vs 8.68 ± 10.74; P < 0.05). All outcome indicators were significantly better in the A3 group than in the control group, except the area of the balance parameter. CONCLUSION: For the short-term treatment of patients with subacute stroke, the addition of A3 robotic walking training to conventional physiotherapy appears to be more effective than the addition of ground-based walking training.

13.
Medicina (Kaunas) ; 60(8)2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39202490

RESUMEN

We present a case of a 75-year-old Asian woman with Guillain-Barré syndrome (GBS) who underwent a 1-month comprehensive rehabilitation training program supplemented by robot-assisted gait training (RAGT). GBS can lead to fatigue and prolonged bed rest, thereby further debilitating older patients. Although exercise intervention is recommended for GBS, a consensus regarding the appropriate intensity has yet to be established. Individualized strategies are required because older patients experience varying levels of fatigue and frailty. We used a technological adjunct to support comprehensive rehabilitation for GBS reconditioning in an older patient. To the best of our knowledge, research involving the use of an exoskeleton robotic device in the geriatric population with GBS is limited. Our case demonstrates the feasibility and safety of RAGT for improving lower limb muscle power and scores on the Barthel Index, Clinical Frailty Scale, and Instrumental Activities of Daily Living Scale at discharge from a geriatric ward.


Asunto(s)
Síndrome de Guillain-Barré , Robótica , Humanos , Anciano , Femenino , Síndrome de Guillain-Barré/rehabilitación , Síndrome de Guillain-Barré/complicaciones , Robótica/métodos , Marcha/fisiología , Terapia por Ejercicio/métodos , Caminata/fisiología
14.
J Neuroeng Rehabil ; 21(1): 127, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39080666

RESUMEN

OBJECTIVE: The objective of this study was to analyze the safety and efficacy of using a robotic hip exoskeleton designed by Samsung Electronics Co., Ltd., Korea, called the Gait Enhancing and Motivating System-Hip (GEMS-H), in assistance mode only with the poststroke population in an outpatient-rehabilitation setting. METHODS: Forty-one participants with an average age of 60 and average stroke latency of 6.5 years completed this prospective, single arm, interventional, longitudinal study during the COVID-19 pandemic. Significant modifications to the traditional outpatient clinical environment were made to adhere to organizational physical distancing policies as well as guidelines from the Centers for Disease Control. All participants received gait training with the GEMS-H in assistance mode for 18 training sessions over the course of 6-8 weeks. Performance-based and self-reported clinical outcomes were assessed at four time points: baseline, midpoint (after 9 training sessions), post (after 18 training sessions), and 1-month follow up. Daily step count was also collected throughout the duration of the study using an ankle-worn actigraphy device. Additionally, corticomotor excitability was measured at baseline and post for 4 bilateral lower limb muscles using transcranial magnetic stimulation. RESULTS: By the end of the training program, the primary outcome, walking speed, improved by 0.13 m/s (p < 0.001). Secondary outcomes of walking endurance, balance, and functional gait also improved as measured by the 6-Minute Walk Test (47 m, p < 0.001), Berg Balance Scale (2.93 points, p < 0.001), and Functional Gait Assessment (1.80 points, p < 0.001). Daily step count significantly improved with and average increase of 1,750 steps per day (p < 0.001). There was a 35% increase in detectable lower limb motor evoked potentials and a significant decrease in the active motor threshold in the medial gastrocnemius (-5.7, p < 0.05) after training with the device. CONCLUSIONS: Gait training with the GEMS-H exoskeleton showed significant improvements in walking speed, walking endurance, and balance in persons with chronic stroke. Day-to-day activity also improved as evidenced by increased daily step count. Additionally, corticomotor excitability changes suggest that training with this device may help correct interhemispheric imbalance typically seen after stroke. TRIAL REGISTRATION: This study is registered with ClinicalTrials.gov (NCT04285060).


Asunto(s)
Dispositivo Exoesqueleto , Rehabilitación de Accidente Cerebrovascular , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Marcha/fisiología , Cadera , Estudios Longitudinales , Pacientes Ambulatorios , Estudios Prospectivos , Accidente Cerebrovascular , Rehabilitación de Accidente Cerebrovascular/instrumentación , Rehabilitación de Accidente Cerebrovascular/métodos , Estimulación Magnética Transcraneal/instrumentación , Resultado del Tratamiento
15.
Brain Res ; 1842: 149113, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-38972627

RESUMEN

OBJECTIVES: To investigate alterations of whole-brain network after stroke and therapeutic mechanisms of robot-assisted gait training (RAGT). METHODS: 21 stroke patients and 20 healthy subjects were enrolled, with the stroke patients randomized to either control group (n = 11) or robot group (n = 10), and resting-state functional magnetic resonance imaging data were collected. The global network metrics were obtained using graph theory analysis and compared between stroke patients and healthy subjects, and the effect of the RAGT on the whole-brain networks was explored. RESULTS: Compared to healthy subjects, area under the curve (AUC) for small-worldness (σ), clustering coefficient (Cp), global efficiency (Eg) and mean local efficiency (Eloc) were significantly lower in stroke patients, whereas AUC for characteristic path length (Lp) were significantly higher. Compared with the control group, patients in robot group showed significant improvement in lower limb motor function, balance function and walking function after intervention, with a significant reduction in the AUC of Cp. Moreover, the improvement of walking function was positively correlated with the changes of AUC of σ and Eg, and negatively correlated with the changes of AUC of Cp. CONCLUSIONS: Small-worldness and network efficiency were significantly reduced after stroke, whereas RAGT decreased characteristic path length and promoted normalization of the whole-brain network, and this change was associated with improvement in walking function. Our findings reveal the mechanism by which RAGT regulates network reorganization and neuroplasticity after stroke.


Asunto(s)
Marcha , Imagen por Resonancia Magnética , Plasticidad Neuronal , Robótica , Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular , Humanos , Masculino , Femenino , Imagen por Resonancia Magnética/métodos , Persona de Mediana Edad , Plasticidad Neuronal/fisiología , Rehabilitación de Accidente Cerebrovascular/métodos , Accidente Cerebrovascular/fisiopatología , Accidente Cerebrovascular/diagnóstico por imagen , Proyectos Piloto , Marcha/fisiología , Anciano , Encéfalo/fisiopatología , Encéfalo/diagnóstico por imagen , Adulto , Caminata/fisiología
16.
NeuroRehabilitation ; 55(1): 1-10, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39031394

RESUMEN

BACKGROUND: Despite the promising effects of robot-assisted gait training (RAGT) on balance and gait in post-stroke rehabilitation, the optimal predictors of fall-related balance and effective RAGT attributes remain unclear in post-stroke patients at a high risk of fall. OBJECTIVE: We aimed to determine the most accurate clinical machine learning (ML) algorithm for predicting fall-related balance factors and identifying RAGT attributes. METHODS: We applied five ML algorithms- logistic regression, random forest, decision tree, support vector machine (SVM), and extreme gradient boosting (XGboost)- to a dataset of 105 post-stroke patients undergoing RAGT. The variables included the Berg Balance Scale score, walking speed, steps, hip and knee active torques, functional ambulation categories, Fugl- Meyer assessment (FMA), the Korean version of the Modified Barthel Index, and fall history. RESULTS: The random forest algorithm excelled (receiver operating characteristic area under the curve; AUC = 0.91) in predicting balance improvement, outperforming the SVM (AUC = 0.76) and XGboost (AUC = 0.71). Key determinants identified were knee active torque, age, step count, number of RAGT sessions, FMA, and hip torque. CONCLUSION: The random forest algorithm was the best prediction model for identifying fall-related balance and RAGT determinants, highlighting the importance of key factors for successful RAGT outcome performance in fall-related balance improvement.


Asunto(s)
Accidentes por Caídas , Aprendizaje Automático , Equilibrio Postural , Robótica , Rehabilitación de Accidente Cerebrovascular , Humanos , Rehabilitación de Accidente Cerebrovascular/métodos , Masculino , Femenino , Persona de Mediana Edad , Anciano , Equilibrio Postural/fisiología , Accidentes por Caídas/prevención & control , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/fisiopatología , Marcha/fisiología , Trastornos Neurológicos de la Marcha/rehabilitación , Trastornos Neurológicos de la Marcha/etiología , Terapia por Ejercicio/métodos , Adulto
17.
Artículo en Inglés | MEDLINE | ID: mdl-38969255

RESUMEN

OBJECTIVES: To evaluate if acute intermittent hypoxia (AIH) coupled with transcutaneous spinal cord stimulation (tSCS) enhances task-specific training and leads to superior and more sustained gait improvements as compared with each of these strategies used in isolation in persons with chronic, incomplete spinal cord injury. DESIGN: Proof of concept, randomized crossover trial. SETTING: Outpatient, rehabilitation hospital. INTERVENTIONS: Ten participants completed 3 intervention arms: (1) AIH, tSCS, and gait training (AIH + tSCS); (2) tSCS plus gait training (SHAM AIH + tSCS); and (3) gait training alone (SHAM + SHAM). Each arm consisted of 5 consecutive days of intervention with a minimum of a 4-week washout between arms. The order of arms was randomized. The study took place from December 3, 2020, to January 4, 2023. MAIN OUTCOME MEASURES: 10-meter walk test at self-selected velocity (SSV) and fast velocity, 6-minute walk test, timed Up and Go (TUG) and secondary outcome measures included isometric ankle plantarflexion and dorsiflexion torque RESULTS: TUG improvements were 3.44 seconds (95% CI: 1.24-5.65) significantly greater in the AIH + tSCS arm than the SHAM AIH + tSCS arm at post-intervention (POST), and 3.31 seconds (95% CI: 1.03-5.58) greater than the SHAM + SHAM arm at 1-week follow up (1WK). SSV was 0.08 m/s (95% CI: 0.02-0.14) significantly greater following the AIH + tSCS arm than the SHAM AIH + tSCS at POST. Although not significant, the AIH + tSCS arm also demonstrated the greatest average improvements compared with the other 2 arms at POST and 1WK for the 6-minute walk test, fast velocity, and ankle plantarflexion torque. CONCLUSIONS: This pilot study is the first to demonstrate that combining these 3 neuromodulation strategies leads to superior improvements in the TUG and SSV for individuals with chronic incomplete spinal cord injury and warrants further investigation.

18.
BMC Neurol ; 24(1): 233, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965499

RESUMEN

BACKGROUND: Body weight unloaded treadmill training has shown limited efficacy in further improving functional capacity after subacute rehabilitation of ischemic stroke patients. Dynamic robot assisted bodyweight unloading is a novel technology that may provide superior training stimuli and continued functional improvements in individuals with residual impairments in the chronic phase after the ischemic insult. The aim of the present study is to investigate the effect of dynamic robot-assisted versus standard training, initiated 6 months post-stroke, on motor function, physical function, fatigue, and quality of life in stroke-affected individuals still suffering from moderate-to-severe disabilities after subacute rehabilitation. METHODS: Stroke-affected individuals with moderate to severe disabilities will be recruited into a prospective cohort with measurements at 3-, 6-, 12- and 18-months post-stroke. A randomised controlled trial (RCT) will be nested in the prospective cohort with measurements pre-intervention (Pre), post-intervention (Post) and at follow-up 6 months following post-intervention testing. The present RCT will be conducted as a multicentre parallel-group superiority of intervention study with assessor-blinding and a stratified block randomisation design. Following pre-intervention testing, participants in the RCT study will be randomised into robot-assisted training (intervention) or standard training (active control). Participants in both groups will train 1:1 with a physiotherapist two times a week for 6 months (groups are matched for time allocated to training). The primary outcome is the between-group difference in change score of Fugl-Meyer Lower Extremity Assessment from pre-post intervention on the intention-to-treat population. A per-protocol analysis will be conducted analysing the differences in change scores of the participants demonstrating acceptable adherence. A priori sample size calculation allowing the detection of the minimally clinically important between-group difference of 6 points in the primary outcome (standard deviation 6 point, α = 5% and ß = 80%) resulted in 34 study participants. Allowing for dropout the study will include 40 participants in total. DISCUSSION: For stroke-affected individuals still suffering from moderate to severe disabilities following subacute standard rehabilitation, training interventions based on dynamic robot-assisted body weight unloading may facilitate an appropriate intensity, volume and task-specificity in training leading to superior functional recovery compared to training without the use of body weight unloading. TRIAL REGISTRATION: ClinicalTrials.gov. NCT06273475. TRIAL STATUS: Recruiting. Trial identifier: NCT06273475. Registry name: ClinicalTrials.gov. Date of registration on ClinicalTrials.gov: 22/02/2024.


Asunto(s)
Accidente Cerebrovascular Isquémico , Robótica , Rehabilitación de Accidente Cerebrovascular , Humanos , Robótica/métodos , Robótica/instrumentación , Rehabilitación de Accidente Cerebrovascular/métodos , Rehabilitación de Accidente Cerebrovascular/instrumentación , Accidente Cerebrovascular Isquémico/rehabilitación , Accidente Cerebrovascular Isquémico/fisiopatología , Estudios Prospectivos , Terapia por Ejercicio/métodos , Terapia por Ejercicio/instrumentación , Recuperación de la Función/fisiología , Masculino , Femenino , Persona de Mediana Edad , Resultado del Tratamiento , Estudios de Cohortes , Adulto , Actividad Motora/fisiología
19.
Cureus ; 16(6): e63086, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39055434

RESUMEN

INTRODUCTION: This study aimed to clarify the relationship between the number of days of early gait training and frailty in in-hospital patients undergoing transcatheter aortic valve implantation (TAVI) for aortic stenosis, focusing on the Clinical Frailty Scale (CFS) and clinical laboratory data. METHODS AND RESULTS: Sixty-nine patients admitted to the Ichinomiya West Hospital from November 1, 2019 to November 30, 2023 were included in the study. Of the 69 patients, those who started gait training on postoperative day 0 or 1 were defined as the early gait training group and those who started gait training later than postoperative day 1 were defined as the delayed gait training group. There was a significant difference in the number of days to gait training initiation, which was 3.9 days in the delayed gait training group and 0.9 days in the early gait training group. The early gait training group started early mobilization and had a significantly shorter postoperative hospital stay than the delayed gait training group. Clinical laboratory data showed that walking speed was significantly faster and grip strength was significantly higher in the early group. The number of days to gait training initiation was an independent predictor of changes in CFS scores. CONCLUSION: Early gait training in patients after TAVI may predict early improvements in physical function and movement, shorter hospital stay, and frailty at discharge.

20.
Dev Neurorehabil ; 27(5-6): 155-160, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38867662

RESUMEN

OBJECTIVE: To evaluate the impact of combining botulinum toxin-A (BoNT-A) injection with robot-assisted gait training (RAGT) on lower limb spasticity and motor function in children with cerebral palsy. METHODS: A prospective study was conducted from January 2020 to January 2023, including 68 patients. Twenty patients received the combination of BoNT-A injection and RAGT, while 48 received BoNT-A injection alone. Assessments were performed before the intervention and at 1, 3, and 6 months post-injection using the Modified Tardieu Scale (MTS), sections D and E of the Gross Motor Function Measure-88 (GMFM-88), 6-minute walk test (6MWT), and 10-meter walk test (10MWT). RESULTS: Compared to the control group receiving BoNT-A alone, the combination of BoNT-A and RAGT did not significantly improve spasticity-related outcomes, including MTS scores, R1, and R2 angles (p > .05). However, the combination group demonstrated significantly improved gross motor function, particularly in walking, running (GMFM-E), short-term walking endurance (6MWT), and walking speed (10MWT) in children with cerebral palsy after the intervention (p < .05). CONCLUSION: While the addition of RAGT did not enhance the anti-spasticity effects of BoNT-A, it significantly improved gross motor function and walking abilities in children with cerebral palsy.


Asunto(s)
Toxinas Botulínicas Tipo A , Parálisis Cerebral , Espasticidad Muscular , Fármacos Neuromusculares , Robótica , Humanos , Parálisis Cerebral/rehabilitación , Parálisis Cerebral/fisiopatología , Parálisis Cerebral/tratamiento farmacológico , Masculino , Niño , Femenino , Espasticidad Muscular/tratamiento farmacológico , Espasticidad Muscular/rehabilitación , Espasticidad Muscular/fisiopatología , Toxinas Botulínicas Tipo A/administración & dosificación , Toxinas Botulínicas Tipo A/uso terapéutico , Fármacos Neuromusculares/administración & dosificación , Estudios Prospectivos , Preescolar , Terapia por Ejercicio/métodos , Marcha/fisiología , Terapia Combinada
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA