Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Microb Pathog ; 192: 106713, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38810765

RESUMEN

Newcastle disease virus (NDV) is the pathogen of a zoonosis that is primarily transmitted by poultry and has severe infectivity and a high fatality rate. Many studies have focused on the role of the NDV fusion (F) protein in the cell-cell membrane fusion process. However, little attention has been given to the heptad repeat region, HR4, which is located in the NDV F2 subunit. Here, site-directed mutants were constructed to study the function of the NDV F protein HR4 region and identify the key amino acids in this region. Nine conserved amino acids were substituted with alanine or the corresponding amino acid of other aligned paramyxoviruses. The desired mutants were examined for changes in fusogenic activity through three kinds of membrane fusion assays and expression and proteolysis through IFA, FACS and WB. The results showed that when conserved amino acids (L81, Y84, L88, L91, L92, P94, L95 and I99) were replaced with alanine, the fusogenic activity of the F protein was abolished, possibly because of failed protein expression not only on the cell surface but also inside cells. These data indicated that the conserved amino acids above in NDV F HR4 are critical for normal protein synthesis and expression, possibly for the stability of the F protein monomer, formation of trimer and conformational changes.


Asunto(s)
Mutagénesis Sitio-Dirigida , Virus de la Enfermedad de Newcastle , Proteínas Virales de Fusión , Internalización del Virus , Virus de la Enfermedad de Newcastle/genética , Virus de la Enfermedad de Newcastle/metabolismo , Proteínas Virales de Fusión/genética , Proteínas Virales de Fusión/metabolismo , Animales , Sustitución de Aminoácidos , Línea Celular , Mutación , Proteolisis , Fusión de Membrana
2.
Mol Pain ; 17: 17448069211052171, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34904858

RESUMEN

Acute pain that is associated with herpes zoster (HZ) can become long-lasting neuropathic pain, known as chronic post-herpetic neuralgia (PHN), especially in the elderly. HZ is caused by the reactivation of latent varicella-zoster virus (VZV), whereas PHN is not attributed to ongoing viral replication. Although VZV infection reportedly induces neuronal cell fusion in humans, the pathogenesis of PHN is not fully understood. A genome-wide association study (GWAS) revealed significant associations between PHN and the rs12596324 single-nucleotide polymorphism (SNP) of the heparan sulfate 3-O-sulfotransferase 4 (HS3ST4) gene in a previous study. To further examine whether this SNP is associated with both PHN and VZV reactivation, associations between rs12596324 and a history of HZ were statistically analyzed using GWAS data. HZ was significantly associated with the rs12596324 SNP of HS3ST4, indicating that HS3ST4 is related to viral replication. We investigated the influence of HS3ST4 expression on VZV infection in cultured cells. Fusogenic activity after VZV infection was enhanced in cells with HS3ST4 expression by microscopy. To quantitatively evaluate the fusogenic activity, we applied cytotoxicity assay and revealed that HS3ST4 expression enhanced cytotoxicity after VZV infection. Expression of the VZV glycoproteins gB, gH, and gL significantly increased cytotoxicity in cells with HS3ST4 expression by cytotoxicity assay, consistent with the fusogenic activity as visualized by fluorescence microscopy. HS3ST4 had little influence on viral genome replication, revealed by quantitative real-time polymerase chain reaction. These results suggest that HS3ST4 enhances cytotoxicity including fusogenic activity in the presence of VZV glycoproteins without enhancing viral genome replication.


Asunto(s)
Herpes Zóster , Neuralgia Posherpética , Sulfotransferasas/genética , Estudio de Asociación del Genoma Completo , Herpes Zóster/genética , Herpesvirus Humano 3/genética , Humanos
3.
J Microbiol ; 59(5): 513-521, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33779959

RESUMEN

Newcastle disease, designated a class A disease of poultry by the Office international des epizooties (OIE), is an acute infection caused by Newcastle disease virus (NDV). The merging of the envelope of NDV with the membrane of a target host cell is the key step in the infection pathway, which is driven by the concerted action of two glycoproteins: haemagglutinin-neuraminidase (HN) and fusion (F) protein. When the HN protein binds to the host cell surface receptor, the F protein is activated to mediate fusion. The three-dimensional structure of the F protein has been reported to have low electron density between the DIII domain and the HRB domain, and this electron-poor region is defined as the HRB linker. To clarify the contributing role of the HRB linker in the NDV F protein-mediated fusion process, 6 single amino acid mutants were obtained by site-directed mutagenesis of the HRB linker. The expression of the mutants and their abilities to mediate fusion were analysed, and the key amino acids in the HRB linker were identified as L436, E439, I450, and S453, as they can modulate the fusion ability or expression of the active form to a certain extent. The data shed light on the crucial role of the F protein HRB linker in the acquisition of a normal fusogenic phenotype.


Asunto(s)
Virus de la Enfermedad de Newcastle/genética , Virus de la Enfermedad de Newcastle/metabolismo , Proteínas Virales de Fusión/genética , Proteínas Virales de Fusión/metabolismo , Animales , Línea Celular , Glicoproteínas , Proteína HN , Mutagénesis Sitio-Dirigida , Proteínas Recombinantes , Proteínas Virales de Fusión/química
4.
Front Microbiol ; 12: 607451, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33603723

RESUMEN

Newcastle disease virus (NDV) causes an infectious disease that poses a major threat to poultry health. Our previous study identified a chicken brain-specific caspase recruitment domain-containing protein 11 (CARD11) that was upregulated in chicken neurons and inhibited NDV replication. This raises the question of whether CARD11 plays a role in inhibiting viruses in non-neural cells. Here, chicken fibroblasts were used as a non-neural cell model to investigate the role. CARD11 expression was not significantly upregulated by either velogenic or lentogenic NDV infection in chicken fibroblasts. Viral replication was decreased in DF-1 cells stably overexpressing CARD11, while viral growth was significantly increased in the CARD11-knockdown DF-1 cell line. Moreover, CARD11 colocalized with the viral P protein and aggregated around the fibroblast nucleus, suggesting that an interaction existed between CARD11 and the viral P protein; this interaction was further examined by suppressing viral RNA polymerase activity by using a minigenome assay. Viral replication was inhibited by CARD11 in fibroblasts, and this result was consistent with our previous report in chicken neurons. Importantly, CARD11 was observed to reduce the syncytia induced by either velogenic virus infection or viral haemagglutinin-neuraminidase (HN) and F cotransfection in fibroblasts. We found that CARD11 inhibited the expression of the host protease furin, which is essential for cleavage of the viral F protein to trigger fusogenic activity. Furthermore, the CARD11-Bcl10-MALT1 (CBM) signalosome was found to suppress furin expression, which resulted in a reduction in the cleavage efficiency of the viral F protein to further inhibit viral syncytia. Taken together, our findings mainly demonstrated a novel CARD11 inhibitory mechanism for viral fusogenic activity in chicken fibroblasts, and this mechanism explains the antiviral roles of this molecule in NDV pathogenesis.

5.
J Gen Virol ; 101(5): 467-472, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32100701

RESUMEN

The paramyxoviruses Hendra virus (HeV) and parainfluenza virus 5 (PIV5) require the fusion (F) protein to efficiently infect cells. For fusion to occur, F undergoes dramatic, essentially irreversible conformational changes to merge the viral and cell membranes into a continuous bilayer. Recently, a transmembrane (TM) domain leucine/isoleucine (L/I) zipper was shown to be critical in maintaining the expression, stability and pre-fusion conformation of HeV F, allowing for fine-tuned timing of membrane fusion. To analyse the effect of the TM domain L/I zipper in another paramyxovirus, we created alanine mutations to the TM domain of PIV5 F, a paramyxovirus model system. Our data show that while the PIV5 F TM L/I zipper does not significantly affect total expression and only modestly affects surface expression and pre-fusion stability, it is critical for fusogenic activity. These results suggest that the roles of TM L/I zipper motifs differ among members of the family Paramyxoviridae.


Asunto(s)
Membrana Celular/genética , Isoleucina/genética , Leucina/genética , Mutación/genética , Virus de la Parainfluenza 5/genética , Dominios Proteicos/genética , Proteínas Virales de Fusión/genética , Secuencia de Aminoácidos , Animales , Línea Celular , Chlorocebus aethiops , Fusión de Membrana/genética , Paramyxovirinae/genética , Células Vero
6.
J Control Release ; 212: 10-8, 2015 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-26074149

RESUMEN

Bio-nanocapsules (BNCs) are a hollow nanoparticle consisting of about 100-nm liposome (LP) embedding about 110 molecules of hepatitis B virus (HBV) surface antigen (HBsAg) L protein as a transmembrane protein. Owing to the human hepatocyte-recognizing domains on the N-terminal region (pre-S1 region), BNCs have recently been shown to attach and enter into human hepatic cells using the early infection mechanism of HBV. Since BNCs could form a complex with an LP containing various drugs and genes, BNC-LP complexes have been used as a human hepatic cell-specific drug and gene-delivery system in vitro and in vivo. However, the role of BNCs in cell entry and intracellular trafficking of payloads in BNC-LP complexes has not been fully elucidated. In this study, we demonstrate that low pH-dependent fusogenic activity resides in the N-terminal part of pre-S1 region (NPLGFFPDHQLDPAFG), of which the first FF residues are essential for the activity, and which facilitates membrane fusion between LPs in vitro. Moreover, BNC-LP complexes can bind human hepatic cells specifically, enter into the cells via clathrin-mediated endocytosis, and release their payloads mostly into the cytoplasm. Taken together, the BNC portion of BNC-LP complexes can induce membrane fusion between LPs and endosomal membranes under low pH conditions, and thereby facilitate the endosomal escape of payloads. Furthermore, the fusogenic domain of the pre-S1 region of HBsAg L protein may play a pivotal role in the intracellular trafficking of not only BNC-LP complexes but also of HBV.


Asunto(s)
Nanocápsulas/administración & dosificación , Saccharomyces cerevisiae , Proteínas del Envoltorio Viral/química , Animales , Células COS , Línea Celular Tumoral , Chlorocebus aethiops , Endocitosis , Humanos , Liposomas , Ratones
7.
Proc Natl Acad Sci U S A ; 112(5): E487-96, 2015 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-25605903

RESUMEN

Syncytins are genes of retroviral origin captured by eutherian mammals, with a role in placentation. Here we show that some marsupials-which are the closest living relatives to eutherian mammals, although they diverged from the latter ∼190 Mya-also possess a syncytin gene. The gene identified in the South American marsupial opossum and dubbed syncytin-Opo1 has all of the characteristic features of a bona fide syncytin gene: It is fusogenic in an ex vivo cell-cell fusion assay; it is specifically expressed in the short-lived placenta at the level of the syncytial feto-maternal interface; and it is conserved in a functional state in a series of Monodelphis species. We further identify a nonfusogenic retroviral envelope gene that has been conserved for >80 My of evolution among all marsupials (including the opossum and the Australian tammar wallaby), with evidence for purifying selection and conservation of a canonical immunosuppressive domain, but with only limited expression in the placenta. This unusual captured gene, together with a third class of envelope genes from recently endogenized retroviruses-displaying strong expression in the uterine glands where retroviral particles can be detected-plausibly correspond to the different evolutionary statuses of a captured retroviral envelope gene, with only syncytin-Opo1 being the present-day bona fide syncytin active in the opossum and related species. This study would accordingly recapitulate the natural history of syncytin exaptation and evolution in a single species, and definitely extends the presence of such genes to all major placental mammalian clades.


Asunto(s)
Productos del Gen env/genética , Marsupiales/genética , Placenta/fisiología , Proteínas Gestacionales/genética , Retroviridae/fisiología , Proteínas del Envoltorio Viral/genética , Animales , Femenino , Perfilación de la Expresión Génica , Genes env , Hibridación in Situ , Marsupiales/clasificación , Datos de Secuencia Molecular , Filogenia , Embarazo , Transcripción Genética
8.
J Biochem ; 153(6): 523-33, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23426438

RESUMEN

This study investigated the effect of oxidized phosphatidylcholine (oxPC) and cholesterol (Chol) on Naja naja atra cardiotoxin-like basic protein (CLBP)-induced fusion and leakage in sphingomyelin (SM) vesicles. Compared with those on PC/SM/Chol vesicles, CLBP showed a lower activity to induce membrane permeability but a higher fusogenicity on oxPC/SM/Chol vesicles. A reduction in inner-leaflet fusion elucidated that CLBP fusogenicity was not in parallel to its membrane-leakage activity on oxPC/SM/Chol vesicles. The lipid domain formed by Chol and SM supported CLBP fusogenicity on oxPC/SM/Chol vesicles, while oxPC altered the interacted mode of CLBP with oxPC/SM/Chol vesicles as evidenced by Fourier transform infrared spectra analyses and colorimetric phospholipid/polydiacetylene membrane assay. Although CLBP showed similar binding affinity with PC/SM/Chol and oxPC/SM/Chol vesicles, the binding capability of CLBP with PC/SM/Chol and oxPC/SM/Chol vesicles was affected differently by NaCl. This emphasized that CLBP adopted different membrane interaction modes upon binding with PC/SM/Chol and oxPC/SM/Chol vesicles. CLBP induced fusion in vesicles containing oxPC bearing the aldehyde group, and aldehyde scavenger methoxyamine abrogated the CLBP ability to induce oxPC/SM/Chol fusion. Taken together, our data indicate that Chol and oxPC bearing aldehyde group alter the CLBP membrane-binding mode, leading to fusogenicity promotion while reducing the membrane-damaging activity of CLBP.


Asunto(s)
Colesterol/química , Proteínas Cardiotóxicas de Elápidos/metabolismo , Elapidae/metabolismo , Fosfatidilcolinas/química , Vesículas Secretoras/metabolismo , Esfingomielinas/metabolismo , Animales , Permeabilidad de la Membrana Celular/efectos de los fármacos , Proteínas Cardiotóxicas de Elápidos/química , Proteínas Cardiotóxicas de Elápidos/farmacología , Membrana Eritrocítica/efectos de los fármacos , Membrana Eritrocítica/metabolismo , Humanos , Liposomas/química , Fusión de Membrana , Oxidación-Reducción , Esfingomielinas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA