Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Emerg Microbes Infect ; 12(2): 2244091, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37526446

RESUMEN

High pathogenicity avian influenza (HPAI) H5N1 is a subtype of the influenza A virus primarily found in birds. The subtype emerged in China in 1996 and has spread globally, causing significant morbidity and mortality in birds and humans. In Cambodia, a lethal case was reported in February 2023 involving an 11-year-old girl, marking the first human HPAI H5N1 infection in the country since 2014. This research examined the zoonotic potential of the human H5N1 isolate, A/Cambodia/NPH230032/2023 (KHM/23), by assessing its receptor binding, fusion pH, HA thermal stability, and antigenicity. Results showed that KHM/23 exhibits similar receptor binding and antigenicity as the early clade 2.3.2.1c HPAI H5N1 strain, and it does not bind to human-like receptors. Despite showing limited zoonotic risk, the increased thermal stability and reduced pH of fusion in KHM/23 indicate a potential threat to poultry, emphasizing the need for vigilant monitoring.


Asunto(s)
Subtipo H5N1 del Virus de la Influenza A , Virus de la Influenza A , Gripe Aviar , Gripe Humana , Animales , Femenino , Humanos , Niño , Gripe Aviar/epidemiología , Hemaglutininas , Gripe Humana/epidemiología , Cambodia/epidemiología
2.
J Gen Virol ; 100(9): 1282-1292, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31329089

RESUMEN

Influenza A viruses (IAVs) enter into cells by receptor-dependent endocytosis. Subsequently, conformational changes of haemagglutinin are triggered by low environmental pH and the N terminus of HA2 glycoprotein (gp) is inserted into the endosomal membrane, resulting in fusion pore formation and genomic vRNA release into the cytoplasm. However, the pH optimum of membrane fusion is host- and virus-specific and can have an impact on virus pathogenicity. We prepared mutants of neurotropic IAV A/WSN/33 (H1N1) with aa substitutions in HA2 gp at the site of HA1/HA2 interaction, namely T642H (HA2 numbering position 64, H1 numbering position HA407; referred to as mutant '64'), V662H ('66') (HA409); and a double mutant ('D') with two aa substitutions (T642H, V662H). These substitutions were hypothesized to influence the pH optimum of fusion. The pH optimum of fusion activity was measured by a luciferase assay and biological properties of viruses were monitored. The in vitro and in vivo replication ability and pathogenicity of mutants were comparable (64) or lower (66, D) than those of the wild-type virus. However, the HA2 mutation V662H and double mutation T642H, V662H shifted the fusion pH maximum to lower values (ranging from 5.1 to 5.3) compared to pH from 5.4 to 5.6 for the wild-type and 64 mutant. The decreased replication ability and pathogenicity of 66 and D mutants was accompanied by higher titres in late intervals post-infection in lungs, and viral RNA in brains compared to wild-type virus-infected mice. These results have implications for understanding the pathogenicity of influenza viruses.


Asunto(s)
Virus de la Influenza A/genética , Proteínas Virales/genética , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Bovinos , Línea Celular , Chlorocebus aethiops , Perros , Femenino , Ingeniería Genética , Humanos , Ratones , Ratones Endogámicos BALB C , Infecciones por Orthomyxoviridae/veterinaria , Infecciones por Orthomyxoviridae/virología , Conformación Proteica , Replicación Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA