Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 234
Filtrar
1.
Macromol Rapid Commun ; : e2400354, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38987906

RESUMEN

In this work, graphene oxide (GO) and epoxy-functionalized graphene oxide (GOSi) are chosen as additives and incorporated into epoxy resin (EP) for nanocomposite photo-coating films (GO/EP and GOSi/EP series). Compared to GO/EP, the GOSi/EP nanocomposite demonstrates strong binding and excellent dispersibility, highlighting covalent bonding between GOSi and the epoxy coating. Furthermore, GOSi/EP-based films demonstrated superior thermal stability and adhesion performance on galvanized steel plates. The corrosion performance of the coated galvanized steel is investigated using electrochemical impedance spectroscopy (EIS) and polarization curve analysis (Tafel). The effectiveness of corrosion protection is evaluated based on a combination of photoreactivity, crosslinking density, dispersity, and adhesion properties. Out of all the treated films, the film based on 0.1GOSi/EP exhibited the highest percentage of inhibition (98.89%) and demonstrated superior long-term anticorrosion stability. In addition, the 0.1GOSi/EP based formulation showed remarkable antibacterial activity against S. aureus, resulting in a 92% reduction. This work demonstrates the development of a facile, environmentally friendly functionalized graphene oxide/epoxy photocured film with superior dual functionalities in both anticorrosion and antibacterial properties. These advancements hold promising potential for impactful practical applications.

2.
ACS Appl Mater Interfaces ; 16(26): 34156-34166, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38902850

RESUMEN

In this paper, we successfully synthesize phosphoric acid functionalized graphene oxide (PGO) based on acid modification of graphene oxide. The composite membrane is further prepared by adding PGO into sulfonated poly(aryl ether ketone sulfone) containing carboxyl groups matrix (C-SPAEKS). The PGO as well as the composite membranes were characterized by a series of tests. The prepared composite proton exchange membranes (PEMs) have good mechanical and electrochemical properties. Compared to the C-SPAEKS membrane, the best composite membrane has a tensile strength of 40.7 MPa while exhibiting superior proton conductivity (110.17 mS cm-1 at 80 °C). In addition, the open-circuit voltage and power density of C-SPAEKS@1% PGO are 0.918 V and 792.17 mW cm-2, respectively. Compared with C-SPAEKS (0.867 V and 166 mW cm-2), it can be seen that our work has a certain effect on the improvement of the single cell performance. The above results demonstrate that the functionalized graphene oxide has greatly improved the electrochemical performance and even the overall performance of PEMs.

3.
Nanomaterials (Basel) ; 14(9)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38727329

RESUMEN

The rational design of composites based on graphene/metal oxides is one of the pillars for advancing their application in various practical fields, particularly gas sensing. In this study, a uniform distribution of ZnO nanoparticles (NPs) through the graphene layer was achieved, taking advantage of amine functionalization. The beneficial effect of amine groups on the arrangement of ZnO NPs and the efficiency of their immobilization was revealed by core-level spectroscopy, pointing out strong ionic bonding between the aminated graphene (AmG) and ZnO. The stability of the resulting Am-ZnO nanocomposite was confirmed by demonstrating that its morphology remains unchanged even after prolonged heating up to 350 °C, as observed by electron microscopy. On-chip multisensor arrays composed of both AmG and Am-ZnO were fabricated and thoroughly tested, showing almost tenfold enhancement of the chemiresistive response upon decorating the AmG layer with ZnO nanoparticles, due to the formation of p-n heterojunctions. Operating at room temperature, the fabricated multisensor chips exhibited high robustness and a detection limit of 3.6 ppm and 5.1 ppm for ammonia and ethanol, respectively. Precise identification of the studied analytes was achieved by employing the pattern recognition technique based on linear discriminant analysis to process the acquired multisensor response.

4.
Anal Bioanal Chem ; 416(18): 4173-4191, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38795215

RESUMEN

A reliable nanotechnological sensing strategy, based on an S,N-co-doped graphene quantum dot (GQD) platform, has been developed to distinctly detect two key variants of vitamin D3, specifically the free (VD3) and the nanoencapsulated form (VD3Ms). For this purpose, food-grade vitamin D3 micelles were self-assembled using a low-energy procedure (droplet size: 49.6 nm, polydispersity index: 0.34, ζ-potential: -33 mV, encapsulation efficiency: 90 %) with an innovative surfactant mixture (Tween 60 and quillaja saponin). Herein, four fluorescent nanoprobes were also synthesized and thoroughly characterized: S,N-co-doped GQDs, α-cyclodextrin-GQDs, ß-cyclodextrin-GQDs, and γ-cyclodextrin-GQDs. The goal was to achieve a selective dual sensing strategy for free VD3 and VD3Ms by exploiting their distinctive quenching behaviors. Thus, the four nanosensors allowed the individual sensing of both targets to be performed (except α-CD-GQD for VD3Ms), but S,N-GQDs were finally selected due to selectivity and sensitivity (quantum yield, QY= 0.76) criteria. This choice led to a photoinduced electron transfer (PET) mechanism associated with static quenching, where differentiation was evidenced through a displayed 13-nm hypsochromic (blue) shift when interacting with VD3Ms. The reliability of this dual approach was demonstrated through an extensive evaluation of analytical performance characteristics. The feasibility and accuracy were proven in commercial food preparations and nutritional supplements containing declared nanoencapsulated and raw VD3, whose results were validated by a paired Student's t-test comparison with a UV-Vis method. To the best of our knowledge, this represents the first non-destructive analytical approach addressing the groundbreaking foodomic trend to distinctly detect different bioactive forms of vitamin D3, while also preserving their native nanostructures as a chemical challenge, thus providing reliable information about their final stability and bioavailability.


Asunto(s)
Colecalciferol , Análisis de los Alimentos , Grafito , Micelas , Puntos Cuánticos , Puntos Cuánticos/química , Grafito/química , Colecalciferol/análisis , Análisis de los Alimentos/métodos , Transporte de Electrón , Límite de Detección , Colorantes Fluorescentes/química , Espectrometría de Fluorescencia/métodos
5.
Water Res ; 259: 121840, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38820731

RESUMEN

The widespread use of graphene family nanomaterials (GFNs) in mass production has resulted in their release into the atmosphere, soil and water environment through various processes. Among these, the water environment is particularly affected by GFN pollution. Our previous study has demonstrated the impact of graphene oxide (GO) on bacteria-phage interactions in natural systems. However, the effects of amino-functionalized GO with a positive charge on bacteria-phage interactions in aquatic environments remain unclear. In the present study, we found that amino-functionalized graphene oxide (AGO) (0.05 mg/mL) inhibited the growth of Pseudomonas aeruginosa Y12. Furthermore, treating P. aeruginosa Y12 and phage with AGO (0.05 mg/mL) led to a reduced ratio of phage to bacteria, indicating that AGO can inhibit phage infection of bacteria. Additionally, the acidic environment exacerbated this effect by promoting electrostatic adsorption between the positively charged AGO and the negatively charged phage. Finally, a field water body intervention experiment showed that the richness and diversity of bacterial communities in six water samples changed due to AGO exposure, as revealed by Illumina analysis based on the bacterial 16S rRNA gene. These findings offer valuable insights into the environmental impacts of GFNs.


Asunto(s)
Bacteriófagos , Grafito , Pseudomonas aeruginosa , Bacterias , ARN Ribosómico 16S/genética
6.
Polymers (Basel) ; 16(8)2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38674991

RESUMEN

To enhance the various properties of polyvinyl alcohol (PVA), varying concentrations of carboxy-functionalized graphene (CFG) were employed in the preparation of CFG/PVA nanocomposite films. FTIR and XRD analyses revealed that CFG, in contrast to graphene, not only possesses carboxylic acid group but also exhibits higher crystallinity. Mechanical testing indicated a notable superiority of CFG addition over graphene, with optimal mechanical properties such as tensile and yield strengths being achieved at a 3% CFG concentration. Relative to pure PVA, the tensile strength and yield strength of the composite increased by 2.07 and 2.01 times, respectively. XRD analysis showed distinct changes in the crystalline structure of PVA with the addition of CFG, highlighting the influence of CFG on the composite structure. FTIR and XPS analyses confirmed the formation of ester bonds between CFG and PVA, enhancing the overall performance of the material. TGA results also demonstrated that the presence of CFG enhanced the thermal stability of CFG/PVA nanocomposite films. However, analyses using scanning electron microscopy and transmission electron microscopy revealed that a 3% concentration of CFG was uniformly dispersed, whereas a 6% concentration of CFG caused aggregation of the nanofiller, leading to a decrease in performance. The incorporation of CFG significantly enhanced the water vapor and oxygen barrier properties of PVA, with the best performance observed at a 3% CFG concentration. Beyond this concentration, barrier properties were diminished owing to CFG aggregation. The study further demonstrated an increase in electrical conductivity and hydrophobicity of the nanocomposites with the addition of CFG. Antibacterial tests against E. coli showed that CFG/PVA nanocomposites exhibited excellent antibacterial properties, especially at higher CFG concentrations. These findings indicate that CFG/PVA nanocomposites, with an optimized CFG concentration, have significant potential for applications requiring enhanced mechanical strength, barrier properties, and antibacterial capabilities.

7.
Biosens Bioelectron ; 256: 116277, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38613934

RESUMEN

The field of biosensing would significantly benefit from a disruptive technology enabling flexible manufacturing of uniform electrodes. Inkjet printing holds promise for this, although realizing full electrode manufacturing with this technology remains challenging. We introduce a nitrogen-doped carboxylated graphene ink (NGA-ink) compatible with commercially available printing technologies. The water-based and additive-free NGA-ink was utilized to produce fully inkjet-printed electrodes (IPEs), which demonstrated successful electrochemical detection of the important neurotransmitter dopamine. The cost-effectiveness of NGA-ink combined with a total cost per electrode of $0.10 renders it a practical solution for customized electrode manufacturing. Furthermore, the high carboxyl group content of NGA-ink (13 wt%) presents opportunities for biomolecule immobilization, paving the way for the development of advanced state-of-the-art biosensors. This study highlights the potential of NGA inkjet-printed electrodes in revolutionizing sensor technology, offering an affordable, scalable alternative to conventional electrochemical systems.


Asunto(s)
Técnicas Biosensibles , Dopamina , Técnicas Electroquímicas , Grafito , Tinta , Impresión , Técnicas Biosensibles/instrumentación , Grafito/química , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Dopamina/análisis , Electrodos , Diseño de Equipo , Nitrógeno/química , Humanos
8.
Spectrochim Acta A Mol Biomol Spectrosc ; 309: 123842, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38181623

RESUMEN

Vitamin D is one of the most essential nutrients for brain development, and deficiencies during pregnancy and early childhood development might be associated with autism. Regular monitoring of serum 25-hydroxyvitamin D3 level could help in early diagnosis and therapy. Analytical measurement of serum 25-hydroxyvitamin D3 level using the traditional matrix-matched calibration technique yields inaccurate results due to absence of serum matrix free from 25-hydroxyvitamin D3. The aim of this work was to develop a validated spectrofluorimetric methodology based on the standard addition approach for quantifying 25-hydroxyvitamin D3 levels in real serum samples of autistic children. The spectrofluorimetric methodology utilizes functionalized graphene quantum dots as a fluorescent probe for selective quantification of 25-hydroxyvitamin D3 level, which is based on measuring the quenching properties of 25-hydroxyvitamin D3 on a fluorescent probe. The standard addition approach exhibits a minimal matrix interference since it identically utilizes the same matrix of each study sample for creating its own calibration curve. The method was validated using the guidelines outlined in ICH M10 draft for endogenous compounds quantification. The method was successfully applied for quantifying the serum 25-hydroxyvitamin D3 levels in autistic and healthy children, and autistic children had significantly lower serum 25-hydroxyvitamin D3 levels (with a mean ± SD of 23.80 ± 17.19) when compared to healthy children (with a mean ± SD of 50.13 ± 18.74, P < 0.001). These results suggested an association between vitamin D deficiency and autism.


Asunto(s)
Trastorno Autístico , Grafito , Puntos Cuánticos , Niño , Humanos , Preescolar , Vitamina D , Calcifediol , Colorantes Fluorescentes , Espectrometría de Fluorescencia , Vitaminas
9.
Biol Trace Elem Res ; 202(5): 2391-2401, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-37597070

RESUMEN

Alendronate-functionalized graphene quantum dots (ALEN-GQDs) with a quantum yield of 57% were synthesized via a two-step route: preparation of graphene quantum dots (GQDs) by pyrolysis method using citric acid as the carbon source and post functionalization of GQDs via a hydrothermal method with alendronate sodium. After careful characterization of the obtained ALEN-GQDs, they were successfully employed as sensing materials with superior selectivity and sensitivity for the detection of nanomolar levels of arsenic ions (As(III)). According to the mechanistic investigation, arsenic ions can quench the fluorescence intensity of ALEN-GQDs through metal-ligand interaction between the As(III) ions and the surface functional groups of the fluorescent probe. This probe provided a rapid method to monitor As(III) with a wide detection range (44 nM-1.30 µM) and a low detection limit of 13 nM. Finally, to validate the applicability, this novel fluorescent probe was successfully applied for the quantitative determination of As(III) in rice and water samples.


Asunto(s)
Arsénico , Grafito , Puntos Cuánticos , Colorantes Fluorescentes , Alendronato , Espectrometría de Fluorescencia/métodos , Iones
10.
Nanomaterials (Basel) ; 13(24)2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38133037

RESUMEN

An effective approach for the large-scale fabrication of conducting polyaniline (PANI) using in situ anodic electrochemical polymerization on nickel foam which had been coated in aryl diazonium salt (ADS)-modified graphene (ADS-G). In the present work, ADS-G was used as a high surface-area support material for the electrochemical polymerization of PANI. The electrochemical performances of the ADS-G/PANI composites exhibited better suitability as supercapacitor electrode materials than those of the PANI. The ADS-G/PANI composites achieved a specific capacitance of 528 F g-1, which was higher than that of PANI (266 F g-1) due to excellent electrode-electrolyte interaction and the synergistic effect of electrical conductivity between ADS-G and PANI in the composites. These findings suggest that the ADS-G/PANI composites are a suitable composite for potential supercapacitor applications.

11.
J Fluoresc ; 2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-37976023

RESUMEN

Cluster of differentiation (CD59), a cell surface glycoprotein, regulates the complement system to prevent immune damage. In cancer, altered CD59 expression allows tumors to evade immune surveillance, promote growth, and resist certain immunotherapies. Targeting CD59 could enhance cancer treatment strategies by boosting the immune response against tumors. Herein, we present a one-step synthesis of Polyethyleneimine (PEI) functionalized graphene quantum dots (Lf-GQDs) from weathered lemon leaf extract. The fabricated Lf-GQDs were successfully used for the quantitative detection of the cluster of CD59 antigen that is reported for its expression in different types of cancer. In this work, we utilized orientation-based attachment of CD59 antibody (Anti-CD59). Our findings reveal that, instead of using random serial addition of antigen or antibody, oriented conjugation saves accumulated concentration offering greater sensitivity and selectivity. The Anti-CD59@Lf-GQDs immunosensor was fabricated using the oriented conjugation of antibodies onto the Lf-GQDs surface. Besides, the fabricated immunosensor demonstrated detection of CD59 in the range of 0.01 to 40.0 ng mL-1 with a low detection limit of 5.3 pg mL-1. Besides, the cellular uptake potential of the synthesized Lf-GQDs was also performed in A549 cells using a bioimaging study. The present approach represents the optimal utilization of Anti-CD59 and CD59 antigen. This approach could afford a pathway for constructing oriented conjugation of antibodies on the nanomaterials-based immunosensor for different biomarkers detection.

12.
ACS Appl Mater Interfaces ; 15(41): 48246-48254, 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37797267

RESUMEN

Doped SrTiO3 is considered one of the potential thermoelectric (TE) candidates but its TE figure of merit, ZT needs to be improved for practical application of electricity generation from high-grade waste-heat. In the present work, enhanced TE performance has been realized for SrTi0.85Nb0.15O3 (STN) perovskite adopting the strategy of composite formation with Fe2O3-functionalized graphene (FGR). We have achieved a maximum electrical conductivity of 1.4 × 105 S m-1 for 1 wt % FGR added to STN, which is around 1185% larger than that of pristine STN. The presence of FGR in the STN matrix acts as a mobility booster of electrons, overcoming the effect of Anderson localization of electrons, which impedes the electron transport in STN. This is evident from the order of magnitude increase in weighted mobility of STN after FGR addition. Furthermore, the incorporation of FGR causes about a 34% decrease in the lattice thermal conductivity. The Debye-Callaway model demonstrates that the phonon-phonon Umklapp scattering is primarily responsible for reduced thermal conductivity. The presence of FGR sheets along the grain boundaries of STN, Fe2O3 nanoparticles, and lattice imperfections gives rise to the glass-like temperature-independent phonon mean-free-path, especially above Debye temperature. The maximum ZT ∼ 0.57 has been obtained at 947 K for the 1 wt % FGR sample, which is around 420% higher than that of pristine STN. Furthermore, we have fabricated a prototype of a four-legged n-type TE module, demonstrating one of the highest power outputs of 18 mW among reported oxide thermoelectrics.

13.
Nanomaterials (Basel) ; 13(18)2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37764632

RESUMEN

Graphene has been broadly studied, particularly for the fabrication of biomedical devices, owing to its physicochemical and antimicrobial properties. In this study, the antibiofilm efficacy of graphene nanoplatelet (GNP)-based composites as coatings for urinary catheters (UCs) was investigated. GNPs were functionalized with nitrogen (N-GNP) and incorporated into a polydimethylsiloxane (PDMS) matrix. The resulting materials were characterized, and the N-GNP/PDMS composite was evaluated against single- and multi-species biofilms of Staphylococcus aureus, Pseudomonas aeruginosa, and Klebsiella pneumoniae. Both biofilm cell composition and structure were analyzed. Furthermore, the antibacterial mechanisms of action of N-GNP were explored. The N-GNP/PDMS composite showed increased hydrophobicity and roughness compared to PDMS. In single-species biofilms, this composite significantly reduced the number of S. aureus, P. aeruginosa, and K. pneumoniae cells (by 64, 41, and 29%, respectively), and decreased S. aureus biofilm culturability (by 50%). In tri-species biofilms, a 41% reduction in total cells was observed. These results are aligned with the outcomes of the biofilm structure analysis. Moreover, N-GNP caused changes in membrane permeability and triggered reactive oxygen species (ROS) synthesis in S. aureus, whereas in Gram-negative bacteria, it only induced changes in cell metabolism. Overall, the N-GNP/PDMS composite inhibited biofilm development, showing the potential of these carbon materials as coatings for UCs.

14.
Anal Biochem ; 681: 115334, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37774996

RESUMEN

This work reports the profit of using a MOF compound for developing a sensitive electrochemical sensor to free chlorine detection in an aqueous solution. Co-MOF and FGO composites were synthesized and combined with the carbon paste (CP) to prepare an efficient electrochemical sensor with high sensing ability. The fabricated Co-MOF and FGO composites were characterized by SEM, EDX, FT-IR, and XRD techniques. Meanwhile, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were utilized to assess the electrochemical performance of the Co-MOF-FGO/CP modified electrode. Under the optimized condition, the amperometric detection showed that the reduction current of free chlorine increased linearly with a coefficient determination of 0.995 during its wide concentration range of 0.1-700 ppm. Also the detection limit (LOD) (S/N = 3) was 0.01 ppm. The selectivity of the sensor was tested with possible interferences, and satisfactory results were obtained. The proposed sensor was successfully used to determine the free chlorine in tap water and swimming pool water real samples. The results suggested that this proposed sensor could pave the way for developing the electrochemical sensor of free chlorine in aqueous media with MOFs.

15.
Chemosphere ; 340: 139936, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37619755

RESUMEN

Seawater pollution from various sources such as industrial effluents, ship washing at sea, and oil spills harm humans and the marine environment. Therefore, finding ways to eliminate this pollution is crucial. This study successfully modified a polyurethane sponge through a simple dip-coating method with functionalized graphene oxide incorporating octadecylamine and oleic acid, resulting in a hydrophobic sponge capable of absorbing crude oil and various organic solvents. Characterization analyses confirmed the synthesis. The absorption capacity of the modified sponges was examined, for example, the PU sponge has absorbed 4 g/g engine oil, while the modified GO-ODA-PU sponge has increased its absorption to 36 g/g. The GO-ODA-PU sponge demonstrated great reusability compared to the GO-OA-PU sponge owing to the strong covalent bond formed between GO and ODA, which is superior to the weak hydrogen bond formed between GO and OA. The absorption capacity of the GO-OA-PU sponge decreased by 30%. The contact angle test showed that GO-ODA-PU and GO-OA-PU sponges had contact angles of 131° and 115°, respectively. Additionally, the GO-ODA-PU sponge performed optimally for semi-polar solvents in the solubility parameter range of 18-19, with its absorption capacity reaching its maximum value. The amount of oil recycling is even possible up to 98%.


Asunto(s)
Contaminación Ambiental , Petróleo , Humanos , Solubilidad , Enlace de Hidrógeno , Industrias
16.
ACS Appl Mater Interfaces ; 15(32): 38833-38845, 2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37537952

RESUMEN

The design of neural electrodes has changed in the past decade, driven mainly by the development of new materials that open the possibility of manufacturing electrodes with adaptable mechanical properties and promising electrical properties. In this paper, we report on the mechanical and electrochemical properties of a polydimethylsiloxane (PDMS) composite with edge-functionalized graphene (EFG) and demonstrate its potential for use in neural implants with the fabrication of a novel neural cuff electrode. We have shown that a 200 µm thick 1:1 EFG/PDMS composite film has a stretchability of up to 20%, a Young's modulus of 2.52 MPa, and a lifetime of more than 10000 mechanical cycles, making it highly suitable for interfacing with soft tissue. Electrochemical characterization of the EFG/PDMS composite film showed that the capacitance of the composite increased up to 35 times after electrochemical reduction, widening the electrochemical water window and remaining stable after soaking for 5 weeks in phosphate buffered saline. The electrochemically activated EFG/PDMS electrode had a 3 times increase in the charge injection capacity, which is more than double that of a commercial platinum-based neural cuff. Electrochemical and spectrochemical investigations supported the conclusion that this effect originated from the stable chemisorption of hydrogen on the graphene surface. The biocompatibility of the composite was confirmed with an in vitro cell culture study using mouse spinal cord cells. Finally, the potential of the EFG/PDMS composite was demonstrated with the fabrication of a novel neural cuff electrode, whose double-layered and open structured design increased the cuff stretchability up to 140%, well beyond that required for an operational neural cuff. In addition, the cuff design offers better integration with neural tissue and simpler nerve fiber installation and locking.


Asunto(s)
Grafito , Tejido Nervioso , Ratones , Animales , Electrodos , Dimetilpolisiloxanos/química
17.
Membranes (Basel) ; 13(7)2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37505044

RESUMEN

Porous low-pressure membranes have been used as active membranes in water treatment and as support for thin-film composite membranes used in water desalination and gas separation applications. In this article, microfiltration polysulfone (PSf)mixed-matrix membranes (MMM) containing amine-functionalized graphene oxide (GO-NH2) were fabricated via a phase inversion process and characterized using XPS, SEM, AFM, DMA, XRD, and contact angle measurements. The effect of GO-NH2 concentration on membrane morphology, hydrophilicity, mechanical properties, and oil-water separation performance was analyzed. Significant enhancements in membrane hydrophilicity, porosity, mechanical properties, permeability, and selectivity were achieved at very low GO-NH2 concentrations (0.05-0.2 wt.%). In particular, the water permeability of the membrane containing 0.2 wt.% GO-NH2 was 92% higher than the pure PSf membrane, and the oil rejection reached 95.6% compared to 91.7% for the pure PSf membrane. The membrane stiffness was also increased by 98% compared to the pure PSf membrane. Importantly, the antifouling characteristics of the PSf-GO-NH2 MMMs were significantly improved. When filtering 100 ppm bovine serum albumin (BSA) solution, the PSf-GO-NH2 MMMs demonstrated a slower flux decline and an impressive flux recovery after washing. Notably, the control membrane showed a flux recovery of only 69%, while the membrane with 0.2 wt.% GO-NH2 demonstrated an exceptional flux recovery of 88%. Furthermore, the membranes exhibited enhanced humidity removal performance, with a permeance increase from 13,710 to 16,408. These results indicate that the PSf-GO-NH2 MMM is an excellent candidate for reliable oil-water separation and humidity control applications, with notable improvements in antifouling performance.

18.
Nanomaterials (Basel) ; 13(14)2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37513054

RESUMEN

The continuous production of high-quality, few-layer graphene nanosheets (GNSs) functionalized with nitrogen-containing groups was achieved via a two-stage reaction method. The initial stage produces few-layer GNSs by utilizing our recently developed glycine-bisulfate ionic complex-assisted electrochemical exfoliation of graphite. The second stage, developed here, uses a radical initiator and nitrogen precursor (azobisisobutyronitrile) under microwave conditions in an aqueous solution for the efficient nitrogen functionalization of the initially formed GNSs. These nitrile radical reactions have great advantages in green chemistry and soft processing. Raman spectra confirm the insertion of nitrogen functional groups into nitrogen-functionalized graphene (N-FG), whose disorder is higher than that of GNSs. X-ray photoelectron spectra confirm the insertion of edge/surface nitrogen functional groups. The insertion of nitrogen functional groups is further confirmed by the enhanced dispersibility of N-FG in dimethyl formamide, ethylene glycol, acetonitrile, and water. Indeed, after the synthesis of N-FG in solution, it is possible to disperse N-FG in these liquid dispersants just by a simple washing-centrifugation separation-dispersion sequence. Therefore, without any drying, milling, and redispersion into liquid again, we can produce N-FG ink with only solution processing. Thus, the present work demonstrates the 'continuous solution processing' of N-FG inks without complicated post-processing conditions. Furthermore, the formation mechanism of N-FG is presented.

19.
Membranes (Basel) ; 13(6)2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-37367813

RESUMEN

The present study is an attempt to improve thermal, mechanical and electrical properties of poly (methyl methacrylate) (PMMA). For this purpose, vinyltriethoxysilane (VTES) was grafted covalently on the surface of graphene oxide (GO). This VTES functionalized graphene oxide (VGO) was dispersed in the PMMA matrix using the solution casting method. The morphology of the resultant PMMA/VGO nanocomposites was analyzed by SEM indicating well-dispersed VGO in the PMMA matrix. Thermal stability, tensile strength and thermal conductivity increased by 90%, 91% and 75%, respectively, whereas volume electrical resistivity and surface electrical resistivity reduced to 9.45 × 105 Ω/cm and 5.45 × 107 Ω/cm2, respectively.

20.
J Mol Model ; 29(7): 220, 2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37389699

RESUMEN

CONTEXT: Graphene has been used as reinforcement of polymeric nanocomposites to increase mechanical and electrical properties. Recently, graphene suspensions have been used for the development of nanofluids in automotive applications, where improvements in convection heat transfer coefficients and pressure drops have been reported. However, dispersions of graphene sheets in a polymeric matrix as well as in a solvent medium are difficult to achieve; that is because Van der Waals, [Formula: see text] and Coulombic interactions cause agglomerations. Surface chemical modifications have been considered as viable options to improve the graphene integration. In this work, we studied the colloidal stability of aqueous solutions of graphene sheets functionalized with (i) carboxylic groups, (ii) 3-amino-propyl tri-ethoxy silane (amphiphilic behavior), (iii) graphene oxide, and (iv) pristine graphene. Results show that the lower sedimentation velocity corresponds to the graphene functionalized with carboxylic groups, which presents the higher colloidal stability. However, the amphiphilic group enhances the interaction energy between graphene and the solvent; we believe that there is a threshold percentage of functionalization that improves the colloidal stability of graphene. METHOD: Transport properties of graphene solutions were estimated by using Non-Equilibrium Molecular Dynamics simulations to generate Poiseuille flow in an NVT ensemble. Simulations were developed in the LAMMPS code. The COMPASS Force Field was used for the graphene systems and the TIP3P for the water molecules. Bonds and angles of hydrogen atoms were kept rigid by using the shake algorithm. The molecular models were built through MedeA and visualized with the Ovito software.


Asunto(s)
Grafito , Simulación de Dinámica Molecular , Agua , Solventes , Algoritmos , Polímeros
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA