Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.431
Filtrar
1.
Food Chem ; 463(Pt 1): 141042, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39241412

RESUMEN

Textured vegetable proteins (TVP) are an alternative to meet the increasing demand for non-animal food. This study aimed to develop a TVP from mixtures with 45 % pea protein isolate (PPI) enriched with amaranth (AF) and oat (OF) flours using high-moisture extrusion technology (HME) varying the moisture (50-70 %) and the temperature in the second heating zone of the extruder (110-140 °C). After extrusion, all samples demonstrated higher values of water absorption capacity (WAC) than non-extruded mixtures. Mixture of AF:OF:PPI (40:15:45 %) extruded at 60 % moisture and 135 °C showed promising functional properties with WAC and WSI values of 3.2 ± 0.2 g H2O/g and 24.89 ± 2.31 %, respectively, and oil absorption capacity (OAC) of 1.3 g oil/g. The extrusion process altered the thermal and structural properties of proteins promoting a desirable fibrous structure. This confirms the feasibility of using HME to develop TVP based on PPI, AF, and OF.

2.
Molecules ; 29(17)2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39275085

RESUMEN

Hazelnut oil cake (HOC) has the potential to be bioactive component source. Therefore, HOC was processed with a solid-state fermentation (SSF) by Aspergillus oryzae with two steps optimization: Plackett-Burman and Box-Behnken design. The variables were the initial moisture content (X1: 30-50%), incubation temperature (X2: 26-37 °C), and time (X3: 3-5 days), and the response was total peptide content (TPC). The fermented HOC (FHOC) was darker with higher protein, oil, and ash but lower carbohydrate content than HOC. The FHOC had 6.1% more essential amino acid and benzaldehyde comprised 48.8% of determined volatile compounds. Fermentation provided 14 times higher TPC (462.37 mg tryptone/g) and higher phenolic content as 3.5, 48, and 7 times in aqueous, methanolic, and 80% aqueous methanolic extract in FHOC, respectively. FHOC showed higher antioxidant as ABTS+ (75.61 µmol Trolox/g), DPPH (14.09 µmol Trolox/g), and OH (265 mg ascorbic acid/g) radical scavenging, and α-glucosidase inhibition, whereas HOC had more angiotensin converting enzyme inhibition. HOC showed better water absorption while FHOC had better oil absorption activity. Both cakes had similar foaming and emulsifying activity; however, FHOC produced more stable foams and emulsions. SSF at lab-scale yielded more bioactive component with better functionality in FHOC.


Asunto(s)
Antioxidantes , Aspergillus oryzae , Corylus , Fermentación , Aceites de Plantas , Aspergillus oryzae/metabolismo , Corylus/química , Antioxidantes/farmacología , Antioxidantes/química , Aceites de Plantas/química , Aceites de Plantas/farmacología , Fenoles/química
3.
Food Res Int ; 195: 114974, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39277240

RESUMEN

This work aimed to study the effect of defatting via the mixture of n-hexane and ethanol under different volume ratio on the changes of structural characteristics, functional properties and volatile compounds of Tenebrio molitor larvae protein (TMLP). The results showed that 1:0.6 vol ratio of n-hexane to ethanol rendered the highest defatting rate (P < 0.05), as well as led to the highest EAA/AA contents, sulfhydryl contents, surface hydrophobicity, solubility, water/oil holding capacities and emulsifying properties of TMLP (P < 0.05). However, higher volume ratio of n-hexane to ethanol led to negative impacts on functionalities of TMLP. Moreover, the contents of aldehydes and hydrocarbons which rendered off-flavour to TMLP significantly decreased with the increasing volume ratio of n-hexane to ethanol (P < 0.05), while the contents of pleasure flavour (hydrocarbons and ester compounds) were obviously enhanced. This study provides an eco-friendly defatting method on the processing of TMLP with superior quality attributes.


Asunto(s)
Etanol , Hexanos , Interacciones Hidrofóbicas e Hidrofílicas , Proteínas de Insectos , Larva , Tenebrio , Compuestos Orgánicos Volátiles , Tenebrio/química , Animales , Hexanos/química , Compuestos Orgánicos Volátiles/análisis , Etanol/química , Larva/efectos de los fármacos , Proteínas de Insectos/química , Solubilidad , Manipulación de Alimentos/métodos , Compuestos de Sulfhidrilo
4.
Food Res Int ; 195: 114970, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39277267

RESUMEN

Lupins, and other legumes, have attained international interest due to their reported remarkable health benefits. Currently, the seed coats are discarded as waste or animal feed. The research presented here summarizes the potential for incorporating the seed coats into 'whole grain' foods. We aimed to identify metabolites found in the seed coats of nine commercial Australian cultivars of lupin (Lupinus angustifolius and L. albus species), and to evaluate and compare their functional, nutritional, antioxidant, and antidiabetic properties, along with in silico exploration of mechanisms of action for selected identified secondary metabolites. The seed coats were found to contain 79 to 90% dietary fibers and substantial quantity of essential macrometals. LC-QTOF MS-based, untargeted bioactive metabolite profiling explored a total of 673 chemical entities, and identified 63 bioactive secondary metabolites including: biophenols, unsaturated fatty acids, triterpenoids, alkaloids, and dietary prebiotics (insoluble fibers). The seed coats from these nine cultivars show substantial antioxidant activity. The cultivars of L. angustifolius inhibit α-amylase and α-glucosidase significantly in vitro. Moreover, in silico docking and dynamic simulation along with ADME/T analysis suggest that quercetin 3-methyl ether and 8-C-methylquercetin 3-methyl ether as molecules, novel in lupin seed coats, are responsible for the α-amylase and α-glucosidase inhibition. The findings indicated that lupin seed coats might be beneficial food components, rather than be discarded as 'mill waste'.


Asunto(s)
Antioxidantes , Hipoglucemiantes , Lupinus , Semillas , Antioxidantes/análisis , Semillas/química , Lupinus/química , Hipoglucemiantes/análisis , Simulación por Computador , Fibras de la Dieta/análisis , Valor Nutritivo , Australia , alfa-Amilasas/metabolismo , alfa-Amilasas/antagonistas & inhibidores , Cromatografía Liquida/métodos , Extractos Vegetales/química , Extractos Vegetales/farmacología , Simulación del Acoplamiento Molecular , Inhibidores de Glicósido Hidrolasas/farmacología , Espectrometría de Masas/métodos
5.
Food Chem ; 463(Pt 1): 141102, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39278147

RESUMEN

Liquid egg products are typically exposed to a defined thermal load to achieve the required safety level, under which their functional properties can be adversely affected. In this study, manothermosonication (MTS) (132 µm, 300 kPa) was investigated as alternative preservation for liquid whole egg (LWE) compared to thermal pasteurisation (60 °C, 3.5 min), assessing results against untreated (fresh) LWE in terms of selected physico-chemical properties. Results showed that MTS resulted in improved LWE foaming properties, increasing foam capacity by a 3.2-fold factor compared to thermal treatment. Emulsion stability was also enhanced after MTS, exhibiting smaller droplet size, and a higher elasticity of gels was obtained. Regarding the protein properties, favourable protein changes (protein unfolding) were identified for MTS through direct (asymmetric flow field flow fractionation) and indirect (surface hydrophobicity and sulfhydryl group content) measurements. In addition, an increase in protein solubility of 11.4 % was observed in MTS compared to thermal treatment.

6.
J Phys Condens Matter ; 36(49)2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39222657

RESUMEN

Soft materials containing liquid inclusions have emerged as a promising class of materials. Unlike solid inclusions, liquid inclusions possess intrinsic fluidity, which allows them to retain the excellent deformation ability of soft materials. This can prevent compliance mismatches between the inclusions and the matrix, thus leading to improved performance and durability. Various liquids, including metallic, water-based, and ionic liquids, have been selected as inclusions for embedding into soft materials, resulting in unique properties and functionalities that enable a wide range of applications in soft robotics, wearable devices, and other cutting-edge fields. This review provides an overview of recent studies on the functional properties of composites with liquid inclusions and discusses theoretical models used to estimate these properties, aiming to bridge the gap between the microstructure/components and the overall properties of the composite from a theoretical perspective. Furthermore, current challenges and future opportunities for the widespread application of these composites are explored, highlighting their potential in advancing technologies.

7.
Food Chem X ; 23: 101723, 2024 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-39239531

RESUMEN

With potato starch (PS) and corn starch (CS) as the controls, the structure and physicochemical properties of grain amaranth starch (GAS) and its binding with dihydromyricetin were investigated in this study. The results indicated that GAS granules were small in size (3.21 ± 0.13 µm) and had a low amylose content (11.57 ± 0.91%). GAS exhibited low paste clarity, solubility, and swelling power, but demonstrated good freeze-thaw stability and resistance to retrogradation. Although the pasting temperature of GAS was high (75.88 ± 0.03 °C), its peak viscosity, breakdown viscosity, and setback viscosity were significantly lower than those of PS and CS. GAS was classified as A-type starch, with a high molecular weight and broad distribution (Mw, 3.96 × 107 g/mol; PDI, 2.67). For its chain length distribution, chain B1 had the highest proportion (50.09%), while chain B3 had the lowest proportion (13.50%). The complexation of GAS with dihydromyricetin effectively enhanced its ABTS and DPPH free radical scavenging capacities.

8.
Foods ; 13(17)2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39272566

RESUMEN

Berberis aristata, commonly known as Indian barberry, has been traditionally used for its medicinal properties. Despite its recognized pharmacological benefits, its potential application in the food industry remains underexplored. This study aims to investigate the proximate analysis and techno-functional properties of Berberis aristata root powder to evaluate its feasibility as a functional food ingredient. The root powder of Berberis aristata was subjected to proximate analysis to determine its moisture, ash, protein, fat, fiber, and carbohydrate content. Techno-functional properties, including water and oil absorption capacity, emulsifying and foaming properties, and bulk density, were evaluated using standardized analytical techniques. The proximate analysis revealed a high fiber content and a significant number of bioactive compounds. The root powder exhibited favorable water and oil absorption capacities, making it suitable for use as a thickening and stabilizing agent. Emulsifying and foaming properties were comparable to conventional food additives, indicating their potential in various food formulations. The findings suggest that Berberis aristata root powder possesses desirable techno-functional properties that could be leveraged in the food industry. Its high fiber content and bioactive compounds offer additional health benefits, making it a promising candidate for functional food applications. Further research on its incorporation into different food matrices and its sensory attributes is recommended to fully establish its utility.

9.
Foods ; 13(17)2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39272582

RESUMEN

The objective of this study was to explore the impacts of various ultrasonic powers (0, 300, 500, 700, and 900 W) on the structure and functional attributes of the myofibrillar protein (MP) of Tenebrio molitor. As the ultrasonic intensity escalated, the extraction efficiency and yield of the MP rose, while the particle size and turbidity decreased correspondingly. The reduction in sulfhydryl group content and the increase in carbonyl group content both suggested that ultrasonic treatment promoted the oxidation of the MP to a certain extent, which was conducive to the formation of a denser and more stable gel network structure. This was also affirmed by SEM images. Additionally, the findings of intrinsic fluorescence and FTIR indicated that high-intensity ultrasound significantly altered the secondary structure of the protein. The unfolding of the MP exposed more amino acid residues, the α-helix decreased, and the ß-helix improved, thereby resulting in a looser and more flexible conformation. Along with the structural alteration, the surface hydrophobicity and emulsification properties were also significantly enhanced. Besides that, SDS-PAGE demonstrated that the MP of T. molitor was primarily composed of myosin heavy chain (MHC), actin, myosin light chain (MLC), paramyosin, and tropomyosin. The aforementioned results confirmed that ultrasonic treatment could, to a certain extent, enhance the structure and function of mealworm MP, thereby providing a theoretical reference for the utilization of edible insect proteins in the future, deep-processing proteins produced by T. molitor, and the development of new technologies.

10.
Int J Food Sci ; 2024: 3596783, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39263237

RESUMEN

Cowpea (Vigna unguiculata) and pumpkin (Cucurbita maxima) play a pivotal role as affordable, nutritious food sources for humans. Low-income households can significantly benefit from supplementing their diet with nutritious and cost-effective locally available ingredients. The aim of this research was to develop a cost-effective soup formulation using ingredients that are readily available from a household garden and suitable for use in the kitchens of families with limited financial resources. The effect of cowpea and pumpkin powders on physicofunctional properties, total phenolic content (TPC), antioxidant activity (AA), and consumer acceptability of the soup were determined. Three composite soup mixes were prepared using various parts of cowpea and pumpkin at a ratio of 1:1. A control soup sample was developed, and the experimental soups were prepared by supplementing the control soup with 5%, 10%, or 15% of each composite soup mix, respectively. The physical properties, functional properties, TPC, AA, and consumer acceptability of soup were determined. The control soup had an appealing golden brown colour. Formulations 1 and 3 showed the highest relative viscosity (80.67-88.91 cP). All the experimental soup formulations had higher rehydration ratios (8-14.7 g/g) and water absorption capacities of 185.7-263.3 g/g compared to the control at 7.7 g/g and 65.7 g/g, respectively. The TPC of Formulation 2 (F2) (0.32-0.54 mg of gallic acid equivalent (GAE)/100 g powder) and Formulation 3 (F3) (0.54-0.63 mg GAE/100 g powder) was higher than Formulation 1 (F1) (0.25-0.32 mg GAE/100 g powder) and the control (0.44 mg GAE/100 g powder). Overall, the cowpea seed powder plus pumpkin fruit powder added at 10% in F2 appeared nearly optimal as a soup mix. It produced an attractive golden brown soup with increased swelling power (SP) and viscosity to assist in swallowing. Soup F1 and F2 scored high in appearance (7.27 and 7.0), aroma (7.1 and 6.7), taste (6.6 and 6.3), and overall acceptability (6.5 and 6.4). Despite having TPC and AA lower compared to F3, F2 containing 15% cowpea seed powder and pumpkin fruit has the potential to be further developed and commercialised due to the relatively high overall consumer acceptability and high acceptability in all sensory attributes.

11.
Food Chem X ; 23: 101741, 2024 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-39253015

RESUMEN

In this study, the structural characteristics, functional properties, and in vitro gastrointestinal digestibility of glutenin from Tiger nut seed meal (TNSMG) treated by microwave (140-700 W, 20-60 s) and water-bath heating (40-100 °C, 10-30 min) were investigated. Analysis of the surface hydrophobicity, intrinsic fluorescence spectroscopy and Fourier transform infrared spectroscopy indicated that both microwave and water-bath heating treatments caused structure changes of TNSMG. The results showed an increase in the exposure of sulfhydryl groups and the content of ß-sheet, coupled with a decrease in the content of α-helix and ß-turn. These structural changes contributed to the improved solubility, foamability, emulsification properties, and digestibility of TNSMG under proper thermal treatment conditions. TNSMG exhibited the best solubility (68.48%) and foamability (85.56%) after water-bath heating treatment for 20 min at 80 °C. Furthermore, TNSMG showed the best emulsification property (9.61 m2/g) and digestibility (78.58%) when treated by microwave treatment at 560 W for 40 s.

12.
Food Chem ; 463(Pt 2): 141154, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39270489

RESUMEN

In this study, hydrolysates were obtained from salmon milts using four proteases (neutrase, papain, trypsin and novozym 11028). The effects of protease type and enzymolysis time (30, 60, 90, and 120 min) on the structural characteristics and functional properties of the hydrolysates were assessed. The fluorescence intensity of all hydrolysates increased as the extension of enzymolysis time, accompanied by an increase in solubility, emulsifying and foaming ability. Trypsin-hydrolysates showed the highest protein recovery and degree of hydrolysis (DH). The electrophoresis indicated that papain-hydrolysates contained more aggregates (>60 kDa), which was confirmed by larger particle size and lower DH. Neutrase-hydrolysate exhibited the smallest particle size and the highest emulsifying and foaming ability, while the highest emulsifying stability appeared in papain-hydrolysates. Neutrase-hydrolysate displayed the strongest antioxidant potential while papain-hydrolysate possessed the weakest. Results demonstrated that the salmon milt protein hydrolysates can be utilized as nutraceutical and functional food ingredients.

13.
J Sci Food Agric ; 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39271480

RESUMEN

BACKGROUND: The structure of proanthocyanidins (PC) contains a large number of active phenolic hydroxyl groups, which makes it have strong antioxidant capacity. This study investigated the structural and functional properties of ovalbumin (OVA) modified by its interaction with PC. RESULTS: It was found that on increasing the concentration ratio of PC to OVA from 10:1 to 40:1, the free amino and total sulfhydryl contents of OVA decreased from 470.59 ± 38.77 and 29.81 ± 0.31 nmol mg-1 to 96.61 ± 4.55 and 21.22 ± 0.78 nmol mg-1, respectively, and the free sulfhydryl content increased from 7.65 ± 0.41 to 9.48 ± 0.58 nmol mg-1. These results indicated that CN and CS bonds were formed and PC was covalently linked with OVA. The PC content in the OVA-PC conjugates increased from 281.93 ± 12.92 to 828.81 ± 46.09 nmol mg-1 on increasing the concentration ratio of PC to OVA from 10:1 to 40:1. The contents of α-helix and ß-turn of OVA decreased, and the contents of ß-sheet and random coil increased, confirmed by circular dichroism. The tertiary structure of OVA was also altered according to the results of fluorescence and ultraviolet absorption spectra. The surface hydrophobicity of OVA-PC conjugates decreased with increasing bound polyphenol content. The conjugation of OVA to PC significantly improved its emulsification and antioxidant activity and denaturation temperature. CONCLUSION: This study may provide valuable information for improving OVA's functional properties and its PC conjugates for applications in the food industry. © 2024 Society of Chemical Industry.

14.
Food Res Int ; 194: 114914, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39232534

RESUMEN

Gastrointestinal digestibility behavior, structural and functional characteristics of bovine ß-casein (ß-CN) were studied in vitro under infant and adult conditions. This direct comparison helps reveal the effects of different physiological stages on the digestive behavior of ß-CN. Not only was the degree of hydrolysis (DH) of ß-CN analyzed, but also the changes in its digestive morphology, microstructure, and secondary structure during digestion were explored in depth. Meanwhile, we focused on the physicochemical properties of ß-CN digesta, including solubility, emulsifying and foaming properties, as well as their functional properties, such as antimicrobial and antioxidant activities. Key results showed that ß-CN underwent more extensive hydrolysis in the adult digestion model, with approximately twice the DH compared to the infant model. The adult model exhibited faster digestion kinetics, less protein flocculation, and a more loosened secondary structure, indicating a more efficient digestion process. Notably, the digesta from the adult model displayed significantly improved solubility and emulsifying properties, and also enhanced antioxidant capacities, with significantly better inhibition of two common pathogenic bacteria than the infant model, and an average increase in the diameter of the inhibition zone of approximately 2 mm. These findings underscore the differential digestive behavior and functional potential of ß-CN across physiological stages. This comprehensive assessment approach contributes to a more comprehensive insight into the digestive behavior of ß-CN. Therefore, we conclude that producing products from unmodified ß-CN may be more suitable for the adult population, and that the digesta in the adult model exhibit higher functional properties.


Asunto(s)
Antioxidantes , Caseínas , Digestión , Solubilidad , Caseínas/química , Caseínas/metabolismo , Animales , Bovinos , Humanos , Adulto , Antioxidantes/química , Lactante , Hidrólisis , Modelos Biológicos
15.
J Dairy Sci ; 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39218067

RESUMEN

This study evaluated the impact of thermal, ultrasonication, and UV treatment on the structural and functional properties of whey proteins from donkey milk (DWP). Whey proteins exhibited notable stability in non-heat-treated environments, while their structural and functional characteristics were notably impacted by excessive heat treatment. The application of high-temperature long-time thermal treatment (HTLT) resulted in a decrease in fluorescence intensity, foaming and emulsification stability, and considerable damage to the active components of the proteins. Specifically, the preservation of lysozyme activity was only 23%, and lactoferrin and immunoglobulin G exhibited a significant loss of 70% and 77%, respectively. Non-thermal treatment methods showed superior efficacy in preserving the active components in whey proteins compared with heat treatment. Ultrasonic treatment has demonstrated a notable capability in diminishing protein particle size and turbidity, and UV treatment has been observed to have the ability to oxidize internal disulfide bonds within proteins, consequently augmenting the presence of free sulfhydryl groups, which were beneficial to foaming and emulsification stability. This study not only offers a scientific basis for the processing and application of DWP but also serves as a guide to produce dairy products, aiding in the development of dairy products tailored to specific health functions.

16.
Adv Sci (Weinh) ; : e2408150, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39119828

RESUMEN

This review highlights the development of plant proteins from a wide variety of sources, as most of the research and development efforts to date have been limited to a few sources including soy, chickpea, wheat, and pea. The native structure of plant proteins during production and their impact on food colloids including emulsions, foams, and gels are considered in relation to their fundamental properties, while highlighting the recent developments in the production and processing technologies with regard to their impacts on the molecular properties and aggregation of the proteins. The ability to quantify structural, morphological, and rheological properties can provide a better understanding of the roles of plant proteins in food systems. The applications of plant proteins as dairy and meat alternatives are discussed from the perspective of food structure formation. Future directions on the processing of plant proteins and potential applications are outlined to encourage the generation of more diverse plant-based products.

17.
Int J Food Sci ; 2024: 6624083, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39105167

RESUMEN

Recently, fish consumption has been increasing; subsequently, the number of by-products has also increased. However, generated residues are frequently discarded, and an appropriate management is necessary to properly use all fish by-products. Fishery by-products are well known for their content of bioactive compounds, such as unsaturated fatty acids, amino acids, minerals, peptides, enzymes, gelatin, collagen, and chitin. Several studies have reported that fishery by-products could provide significant properties, including antioxidant, antihypertensive, antimicrobial, anti-inflammatory, and antiobesity. Consequently, fish discards are of considerable interest to different industrial sectors, including food, nutraceuticals, medical, and pharmacology. In the food industry, the interest in using fishery by-products is focused on hydrolysates as food additives, collagen and gelatin as protein sources, chitin and chitosan to form edible films to protect food during storage, and oils as a source of Omega-3 and useful as antioxidants. Although different studies reported good results with the use of these by-products, identifying new applications in the food sector, as well as industrial applications, remains necessary.

18.
Int J Food Microbiol ; 424: 110857, 2024 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-39141973

RESUMEN

Functional foods represent one of the fastest-growing, newer food category, and plant sources with functional properties are increasingly used as analogues of fermented milk-based derivatives. In this study, blended wort-rooibos beverages fermented with probiotic yeasts are proposed for the first time. Benefits of functional, non-conventional Lachancea thermotolerans (Lt101), Kazachstania unispora (Kum3-B3), Meyerozyma guilliermondii (Mg112), Meyerozyma caribbica (Mc58) and Debaryomyces hansenii (Dh36) yeast strains and the content of bioactive metabolites were evaluated. Viability tests on the probiotic yeasts confirmed previous results obtained in other matrices. The functional footprint of probiotic yeasts Lt101, Mg112 and Dh36 was confirmed by a balanced nutritional profile of the final drinks, also supported by aromatic and sensory analyses. In vitro estimated glycaemic index ranged between 77 % and 87 % without any influence on glycaemic response. Strains Dh36, Mc58, Kum3-B3 and Mg112 showed high antioxidant capacity and high total phenolic content, supporting the health promoting effect of the beverages.


Asunto(s)
Antioxidantes , Fermentación , Alimentos Fermentados , Probióticos , Levaduras , Levaduras/metabolismo , Alimentos Fermentados/microbiología , Bebidas/microbiología , Alimentos Funcionales , Microbiología de Alimentos , Humanos , Fenoles/metabolismo , Fenoles/análisis
19.
J Texture Stud ; 55(4): e12861, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39138121

RESUMEN

This study offers a comprehensive review of current developments regarding the utilization of diverse hydrocolloids in formulating fruit fillings across different fruit types, their impact on textural attributes, rheological properties, thermal stability, syneresis, and nutritional advantages of fillings and optimization of its characteristics to align with consumer preferences. The review also focuses on the various factors influencing fruit fillings, including the selection of fruits, processing methodologies, the inherent nature and concentration of hydrocolloids, and their synergistic interactions. In depth, scientific work on the impact of the parameters such as pH, total soluble solids, and sugar content within the fruit fillings was also discussed. Additionally, this article focuses on the utilization of the diverse fruit fillings developed by using hydrocolloids in bakery products including pastry, tartlet, muffins, cookies, and so forth. The review establishes that hydrocolloids offer a spectrum of techno-functional attributes conducive to strengthening both the structural and thermal stability of fruit fillings, consequently extending their shelf life. It further establishes that incorporating of hydrocolloids facilitates the development of healthier food products by mitigating the necessity of excessive sugar or various other less favorable ingredients. The incorporation of fruit fillings in bakery products significantly increases the value proposition of these baked goods, contributing to their overall enhancement of quality and sensory value.


Asunto(s)
Coloides , Manipulación de Alimentos , Frutas , Frutas/química , Manipulación de Alimentos/métodos , Reología , Humanos , Valor Nutritivo
20.
J Food Sci ; 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-39126698

RESUMEN

This review examines the potential of curcumin as a technological and functional food additive in dairy and milk-based products. The advantages of incorporating curcumin in these products include its antimicrobial properties, support for the activity of lactic acid bacteria, improvement in sensory characteristics, and shelf-life extension. Curcumin notably enhances antioxidant activity and acts as a natural preservative in cheese, cheese-like products, and butter. In ice cream and dairy desserts, curcumin contributes to attractive color formation and offers functional benefits such as antioxidant activity, photostability, and increased nutritional value. However, the use of turmeric extract, a common source of curcumin, presents challenges including low bioavailability, color instability, and the formation of insoluble precipitates. The application of specialized curcumin formulations with enhanced water dispersion, purity, and bioavailability can mitigate these issues, improve the product's technological properties, and ensure compliance with local regulations. This review highlights the importance of continued research and development to optimize the use of curcumin in dairy and milk-based products, offering valuable insights for scientists and food industry professionals.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA