Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 17(15)2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39124544

RESUMEN

Improvement of wear, corrosion, and heat-resistant properties of coatings to expand the operational capabilities of metals and alloys is an urgent problem for modern enterprises. Diffusion titanium, chromium, and aluminum-based coatings are widely used to solve this challenge. The article aims to obtain the corrosion-electrochemical properties and increase the microhardness of the obtained coatings compared with the initial Ti-6Al-4V alloy. For this purpose, corrosion resistance, massometric tests, and microstructural analysis were applied, considering various aggressive environments (acids, sodium carbonate, and hydrogen peroxide) at different concentrations, treatment temperatures, and saturation times. As a result, corrosion rates, polarization curves, and X-ray microstructures of the uncoated and coated Ti-6Al-4V titanium alloy samples were obtained. Histograms of corrosion inhibition ratio for the chromium-aluminum coatings in various environments were discussed. Overall, the microhardness of the obtained coatings was increased 2.3 times compared with the initial Ti-6Al-4V alloy. The corrosion-resistant chromaluminizing alloy in aqueous solutions of organic acids and hydrogen peroxide was recommended for practical application in conditions of exposure to titanium products.

2.
Materials (Basel) ; 17(13)2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38998340

RESUMEN

For Ni-YSZ anode-supported solid oxide fuel cells (SOFCs), the main drawback is that they are susceptible to reducing and oxidizing atmosphere changes because of the Ni/NiO volume variation. The anode expansion upon oxidation can cause significant stresses in the cell, eventually leading to failure. In order to improve the redox stability, an analytical model is developed to study the effect of anode structure on redox stability. Compared with the SOFC without AFL, the tensile stresses in the electrolyte and cathode of SOFC with an anode functional layer (AFL) after anode oxidation are increased by 27.07% and 20.77%, respectively. The thickness of the anode structure has a great influence on the structure's stability. Therefore, the influence of anode thickness and AFL thickness on the stress in these two structures after oxidation is also discussed. The thickness of the anode substrate plays a more important role in the SOFC without AFL than in the SOFC with AFL. By increasing the thickness of the anode substrate, the stresses in the electrolyte and cathode decrease. This method provides a theoretical basis for the design of a reliable SOFC in the redox condition and will be more reliable with more experimental proofs in the future.

3.
Polymers (Basel) ; 16(6)2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38543449

RESUMEN

In fabricating functional layers, including thin-film transistors and conductive electrodes, using roll-to-roll (R2R) processing on polymer-based PET film, the instability of the slot-die coating meniscus under a high-speed web impedes functional layer formation with the desired thickness and width. The thickness profiles of the functional layers significantly impact the performance of the final products. In this study, we introduce an electrohydrodynamic (EHD)-based voltage application module to a slot-die coater to ensure the uniformity of the cross-machine direction (CMD) thickness profile within the functional layer and enable a stable, high-speed R2R process. The module can effectively control the spreadability of the meniscus by utilizing variations in the surface tension of the ink. The effectiveness of the EHD module was experimentally verified by applying a high voltage to a slot-die coater while keeping other process variables constant. As the applied voltage increases, the CMD thickness deviation reduces by 64.5%, and the production rate significantly increases (up to 300%), owing to the formation of a stable coated layer. The introduction of the EHD-based application module to the slot-die coater effectively controlled the spreadability of the meniscus, producing large-area functional layers.

4.
Small ; : e2306653, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38534177

RESUMEN

Increasing densities of reaction sites for gaseous reactants in solid oxide electrochemical reactors (SOERs), is a key strategy for achieving enhanced performance in either fuel cell or electrolysis modes. Fabrication of 3D structured components in SOERs can enhance those densities of reaction sites, which is achieved by 3D inkjet printing with high reproducibility, having developed inks with appropriate properties. First, the effects of pillar geometries on SOER performances are predicted through numerical simulations, enabling subsequent 3D printing to focus on the more effective geometries. Herein, the study reports the results of experimental validation of those predictions by evaluating the electrochemical performances of cells with various heights of 3D inkjet-printed Ni(O)- yttria stabilized zirconia (YSZ) pillars and YSZ pillars. Those measurements prove that increasing pillar heights generally increases SOER peak power densities in fuel cell mode and increased current densities at the thermoneutral potential (1.285 V) in steam electrolysis mode, as predicted by simulations. With increasing pillar heights, more limitations in performance enhancement are found with YSZ electrolyte pillars than with Ni-YSZ pillars, again as predicted by simulations. The subsequent microstructural analysis of Ni-YSZ pillars proves the suitability of the Ni(O)-YSZ composite particle ink formulation and the reliability of 3D printing.

5.
Chemphyschem ; 25(10): e202300993, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38369607

RESUMEN

We investigated electrochemical nitrogen reduction reaction (eNRR) on MXenes consisting of the vacancy defects in the functional layer using density functional theory calculations. We considered Mo2C, W2C, Mo2N, and W2N MXenes with F, N, and O functionalization and investigated distal and alternative associative pathways. We analyzed these MXenes for eNRR based on N2 adsorption energy, NH3 desorption energy, NRR selectivity, and electrochemical limiting potential. While we find that most of the considered MXenes surfaces are more favorable for eNRR compared to hydrogen evolution, these surfaces also have strong NH3 binding (>-1.0 eV) and thus will be covered with NH3 during operating conditions. Amongst all considered MXenes, only W2NF2 is found to have a low NH3 desorption energy along with low eNRR overpotential and selectivity towards eNRR. The obtained eNRR overpotential and NH3 desorption energy on W2NF2 are superior to those reported for pristine W2N3 as well as functionalized MXenes.

6.
J Colloid Interface Sci ; 652(Pt A): 727-736, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37453874

RESUMEN

Rechargeable aqueous zinc-ion hybrid supercapacitors (ZHSs) are drawing extensive attention because of their cost-effectiveness and diminished safety hazards. Nevertheless, large-scale application of ZHSs has been hindered by the severe side reactions and rampant dendrites growth on the surface of Zn metal anodes. Herein, we propose a three-dimensional organic-inorganic composite frame material as an artificial bi-functional layer coated on the zinc foil, featuring nitrogenous functional groups with zincophilicity (abbreviated as NCFM@Zn). The nitrogen (N) site's strong adsorption capacity and synergistic effect of the sub-nanopore size promote rapid desolvation of zinc ions and reduce side reactions, while also prolonging galvanized nucleation's Sand's time and allowing for even nucleation. Moreover, the uniform distribution of N on the layer results in homogeneous zinc ions flux and supports consistent zinc plating while inhibiting dendrites generation. As a result of this unique artificial bi-functional layer, symmetric Zn cells can survive 2500 h at 2.5 mA cm-2. High-areal-capacity zinc||activated carbon hybrid supercapacitors also demonstrate 20,000 cycles at high Coulombic efficiency, thus highlighting the utter convenience and potential of this strategy for modifying rechargeable metal hybrid supercapacitor surfaces.

7.
ACS Appl Mater Interfaces ; 15(29): 34964-34972, 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37454393

RESUMEN

Aluminum-doped zinc oxide (AZO) is considered as a promising candidate as transparent conductive oxide (TCO) for silicon heterojunction solar cells due to its high carrier density, nontoxic nature, and low cost. Herein, it is presented that the transparency of the AZO film can be optimized through co-sputtering of AZO and molybdenum oxide (MoOx). Furthermore, aluminum and molybdenum co-doped zinc oxide (MAZO) can be used as both the TCO layer and electron-selective contact (ESC) for silicon heterojunction solar cells. The surface morphology, cation oxidation state, and optical and electrical properties of all MAZO films are characterized. It is found that the transmittance of all MAZO films is significantly increased at a wavelength of 450-800 nm due to MAZO with a stronger Zn-O bond and a wider band gap. The conductivity of MAZO films is approximate to AZO films at a low MoOx target deposit power (50 W), and the sheet resistance of MAZO films increases significantly by increasing the deposition power up to 100 W. Finally, the optimized MAZO films are used as TCO and ESC for silicon heterojunction solar cells, showing a power conversion efficiency of 19.58%. The results show an effective stage to improve the optical properties of AZO through co-doping and the possibility of applying MAZO as a dual-functional layer for silicon solar cells.

8.
J Chromatogr A ; 1706: 464218, 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37523909

RESUMEN

Novel grafted anion exchangers with covalently bonded hyperbranched functional layers were prepared and evaluated for the separation of monovalent standard inorganic anions and oxyhalides. Preparation of base coating included grafting highly polar N-vinylformamide to the ethylvinylbenzene-divinylbenzene (EVB-DVB) substrate surface in highly polar solvent (methanol) with subsequent hydrolysis of grafted amide polymer in basic media, which resulted in preparation of polymer chains with multiple primary amino groups. Those amino groups were used as attachment points for forming hyperbranched anion-exchange layers using 1,4-butanediol diglycidyl ether and primary mono- or diamine (methylamine or 1,3-diaminopropane, respectively). The effects of hyperbranching reaction cycles number on selectivity were evaluated which revealed that selectivity and capacity can be controlled independently for the covalently bonded stationary phases in contrast to electrostatically bonded phases. It was demonstrated that unlike for electrostatically bonded phases, the intentional increase of crosslink by using primary diamine instead of primary monoamine doesn't cause the shift of selectivity coefficients. It was also shown that crosslink distribution throughout the hyperbranched layer is an important factor determining selectivity of hyperbranched anion exchangers.


Asunto(s)
Cromatografía por Intercambio Iónico , Cromatografía por Intercambio Iónico/instrumentación , Cromatografía por Intercambio Iónico/métodos , Aniones/química , Aminas/química
9.
ACS Appl Mater Interfaces ; 15(28): 33858-33867, 2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37428508

RESUMEN

Here, we propose phase and interfacial engineering by inserting a functional WO3 layer and selenized it to achieve a 2D-layered WSe2/WO3 heterolayer structure by a plasma-assisted selenization process. The 2D-layered WSe2/WO3 heterolayer was coupled with an Al2O3 film as a resistive switching (RS) layer to form a hybrid structure, with which Pt and W films were used as the top and bottom electrodes, respectively. The device with good uniformity in SET/RESET voltage and high low-/high-resistance window can be obtained by controlling a conversion ratio from a WO3 film to a 2D-layered WSe2 thin film. The Pt/Al2O3/(2D-layered WSe2/WO3)/W structure shows remarkable improvement to the pristine Pt/Al2O3/W and Pt/Al2O3/2D-layered WO3/W in terms of low SET/RESET voltage variability (-20/20)%, multilevel characteristics (uniform LRS/HRS distribution), high on/off ratio (104-105), and retention (∼105 s). The thickness of the obtained WSe2 was tuned at different gas ratios to optimize different 2D-layered WSe2/WO3 (%) ratios, showing a distinctive trend of reduced and uniform SET/RESET voltage variability as 2D-layered WSe2/WO3 (%) changes from 90/10 (%) to 45/55 (%), respectively. The electrical measurements confirm the superior ability of the metallic 1T phase of the 2D-layered WSe2 over the semiconducting 2H phase. Through systemic studies of RS behaviors on the effect of 1T/2H phases and 2D-layered WSe2/WO3 ratios, the low-temperature plasma-assisted selenization offers compatibility with the temperature-limited 3D integration process and also provides much better thickness control over a large area.

10.
Angew Chem Int Ed Engl ; 62(22): e202219024, 2023 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-36935352

RESUMEN

We report on a controllable and specific functionalisation route for graphene field-effect transistors (GFETs) for the recognition of small physiologically active molecules. Key element is the noncovalent functionalisation of the graphene surface with perylene bisimide (PBI) molecules directly on the growth substrate. This Functional Layer Transfer enables the homogeneous self-assembly of PBI molecules on graphene, onto which antibodies are subsequently immobilised. The sensor surface was characterised by atomic force microscopy, Raman spectroscopy and electrical measurements, showing superior performance over conventional functionalisation after transfer. Specific sensing of small molecules was realised by monitoring the electrical property changes of functionalised GFET devices upon the application of methamphetamine and cortisol. The concentration dependent electrical response of our sensors was determined down to a concentration of 300 ng ml-1 for methamphetamine.


Asunto(s)
Grafito , Grafito/química , Transistores Electrónicos , Biomarcadores , Anticuerpos , Microscopía de Fuerza Atómica
11.
Molecules ; 28(3)2023 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-36770955

RESUMEN

The advantages of IR spectroscopy include relatively fast analysis and sensitivity, which facilitate its wide application in the pharmaceutical, chemical and polymer sectors. Thus, IR spectroscopy provides an excellent opportunity to monitor the degradation and concomitant evolution of the molecular structure within a perovskite layer. As is well-known, one of the main limitations preventing the industrialization of perovskite solar cells is the relatively low resistance to various degradation factors. The aim of this work was to study the degradation of the surface of a perovskite thin film CH3NH3PbI3-xClx caused by atmosphere and light. To study the surface of CH3NH3PbI3-xClx, a scanning electron microscope, infrared (IR) spectroscopy and optical absorption were used. It is shown that the degradation of the functional layer of perovskite proceeds differently depending on the acting factor present in the surrounding atmosphere, whilst the chemical bonds are maintained within the perovskite crystal structure under nitrogen. However, when exposed to an ambient atmosphere, an expansion of the NH3+ band is observed, which is accompanied by a shift in the N-H stretching mode toward higher frequencies; this can be explained by the degradation of the perovskite surface due to hydration. This paper shows that the dissociation of H2O molecules under the influence of sunlight can adversely affect the efficiency and stability of the absorbing layer. This work presents an approach to the study of perovskite structural stability with the aim of developing alternative concepts to the fabrication of stable and sustainable perovskite solar cells.

12.
ACS Appl Mater Interfaces ; 14(42): 47605-47615, 2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36227800

RESUMEN

The development of high-voltage Mg metal batteries is hampered by the incompatibility between a Mg metal anode and conventional electrolyte, leading to a high overpotential for Mg plating/stripping processes. In this work, we tailored a hybrid functional layer consisting of Bi/MgCl2/polytetrahydrofuran (PTHF) by an in situ THF polyreaction during the reaction of the Mg anode with BiCl3 solution. The introduction of PTHF inhibits the growth of Bi particles and fills the layer interstice with MgCl2-containing PTHF, improving the structural integrity of the functional layer and insulation between the electrolyte and Mg anode. As a result, compared to a simply modified Bi/MgCl2 layer, the Bi/MgCl2/PTHF functional layer exhibits a lower polarization voltage of 0.25 V and longer cycling life of more than 2000 h at 0.1 mA cm-2. Mechanism analysis shows that Mg is plated on the surface of Bi particles within the layer. The Mo6S8/Mg full battery with the hybrid functional layer achieved a low voltage hysteresis of ∼0.25 V and long cycling life over 500 cycles at 50 mA g-1. This work provides a facile and effective hybrid functional layer strategy to realize Mg metal batteries in conventional electrolytes.

13.
Materials (Basel) ; 15(17)2022 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-36079386

RESUMEN

Selective laser sintering of nanoparticles enables the direct and rapid formation of a functional layer even on heat-sensitive flexible and stretchable substrates, and is rising as a pioneering fabrication technology for future-oriented applications. To date, laser sintering has been successfully applied to various target nanomaterials including a wide range of metal and metal-oxide nanoparticles, and extensive investigation of relevant experimental schemes have not only reduced the minimum feature size but also have further expanded the scalability of the process. In the beginning, the selective laser sintering process was regarded as an alternative method to conventional manufacturing processes, but recent studies have shown that the unique characteristics of the laser-sintered layer may improve device performance or even enable novel functionalities which were not achievable using conventional fabrication techniques. In this regard, we summarize the current developmental status of the selective laser sintering technique for nanoparticles, affording special attention to recent emerging applications that adopt the laser sintering scheme.

14.
Micromachines (Basel) ; 14(1)2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36677064

RESUMEN

In this paper, NiO, La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) and (CeO2)0.8(Sm2O3)0.2 (SDC) nanopowders with different microstructures were obtained using hydrothermal and glycol-citrate methods. The microstructural features of the powders were examined using scanning electron microscopy (SEM). The obtained oxide powders were used to form functional inks for the sequential microextrusion printing of NiO-SDC, SDC and LSCF-SDC coatings with resulting three-layer structures of (NiO-SDC)/SDC/(LSCF-SDC) composition. The crystal structures of these layers were studied using an X-ray diffraction analysis, and the microstructures were studied using atomic force microscopy. Scanning capacitance microscopy was employed to build maps of capacitance gradient distribution over the surface of the oxide layers, and Kelvin probe force microscopy was utilized to map surface potential distribution and to estimate the work function values of the studied oxide layers. Using SEM and an energy-dispersive X-ray microanalysis, the cross-sectional area of the formed three-layer structure was analyzed-the interfacial boundary and the chemical element distribution over the surface of the cross-section were investigated. Using impedance spectroscopy, the temperature dependence of the electrical conductivity was also determined for the printed three-layer nanostructure.

15.
J Clin Med ; 10(19)2021 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-34640460

RESUMEN

(1) Background: Ulipristal acetate (UPA) is a selective progesterone receptor modulator (SPRM) widely used for emergency contraception and mid- to long-term leiomyoma treatment. The aim of this study was to identify modifications of miRNA expression in superficial and basal layers of the human endometrium at the end of the UPA treatment for at least 3 months. (2) Methods: Microarray miRNA analysis of formalin-fixed, paraffin-embedded hysterectomy tissue samples was conducted, followed by an Ingenuity Pathway Analysis. Samples were divided into three groups: women having had 3 months of UPA treatment (n = 7); and two control groups of UPA-naïve women in the proliferative (n = 8) or secretory (n = 6) phase. (3) Results: The UPA modified the expression of 59 miRNAs involved in the processes of cell cycle, carcinogenesis, and inflammation. Their expression profiles were different in the basal and superficial layers. Most of the processes influenced by the UPA in the basal layer were connected to the cell cycle and immune regulation. (4) Conclusion: Specific changes were observed in both layers of the endometrium in the UPA group. However, the miRNA expression in the basal layer was not consistent with that in the superficial layer. Other large studies analysing the long-term impact of SPRM on endometrial miRNA expression are necessary.

16.
J Chromatogr A ; 1642: 462010, 2021 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-33652368

RESUMEN

Evaluation of the chromatographic properties of covalently bonded hyperbranched stationary phase based on poly(styrene-divinylbenzene) (PS-DVB) and containing zwitterionic fragments in the structure of functional layer was conducted in suppressed ion chromatography (IC), reversed phase high performance liquid chromatography (RP HPLC), and hydrophilic interaction liquid chromatography (HILIC) modes. Besides the possibility of resolving 20 inorganic anions and organic acids using KOH eluent in suppressed IC, prepared resin provided the separation of alkylbenzenes in RP HPLC, water-soluble vitamins, amino acids, and sugars in HILIC mode. Trends in the retention of hydrophobic and polar analytes on the prepared stationary phase indicated the dominating effect of analyte nature on the retention mechanism and proved satisfactory hydrophilization of PS-DVB surface with hyperbranched functional layer for retaining polar compounds. The obtained results revealed good prospects of using hydrophobic PS-DVB substrate for preparing stationary phases for mixed-mode chromatography.


Asunto(s)
Cromatografía/métodos , Poliestirenos/química , Aminoácidos/aislamiento & purificación , Cromatografía de Fase Inversa , Interacciones Hidrofóbicas e Hidrofílicas , Azúcares/aislamiento & purificación , Vitaminas/aislamiento & purificación
17.
J Chromatogr A ; 1634: 461648, 2020 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-33207292

RESUMEN

Novel anion exchangers with mono- and dialkanolamines in the external part of covalently-bonded hyperbranched functional layer were synthesized. Comparison of the chromatographic properties of the prepared stationary phases in suppressed ion chromatography (IC) mode using hydroxide eluent allowed us to evaluate the effect of the number of substituents at nitrogen atom in alkanolamine on selectivity of anion exchangers toward organic acids. Obtained anion exchangers were also examined together with previously described hyperbranched stationary phases with different mono- and diamines in the external part of the layer for evaluating the influence of various parameters on their selectivity. Effects of hydrophilicity, functionality of amine, and the number of substituents at nitrogen atom of amine used in the last modification cycle were established independently from each other, which provided the possibility to tailor selectivity toward organic acids when preparing anion exchanger for solving particular analytical task. Predominance of hydrophilicity as a key factor affecting the separation of weakly retained organic acids over other studied parameters was demonstrated.


Asunto(s)
Ácidos/química , Algoritmos , Cromatografía por Intercambio Iónico/métodos , Aminas/química , Diaminas/química , Interacciones Hidrofóbicas e Hidrofílicas , Hidróxidos/química
18.
J Chromatogr A ; 1602: 310-316, 2019 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-31182306

RESUMEN

The chromatographic properties of three hyperbranched anion exchangers having various diamines in the external part of the functional layer are studied in order to reveal diamine influence on selectivity toward mono- and divalent organic acids. The obtained stationary phases have the same structure of the internal part of the functional layer formed by repeating 4 modification cycles including alkylation with 1,4-butanediol diglycidyl ether (1,4-BDDGE) and amination with methylamine (MA) and differ by the structure of diamine used in the 5th modification cycle. For the first time several diamines (ethylenediamine, (2-aminoethyl)aminoethanol, and N,N'-bis(2-hydroxyethyl)ethylenediamine) are used for completing the last modification cycle in hyperbranching. The performance of three prepared anion exchangers is investigated using KOH and NaHCO3 as eluents and discussed with respect to the differences in hydrophilicity of the external part of the functional layer showing its effect on the separation of organic acids.


Asunto(s)
Ácidos/química , Diaminas/química , Compuestos Orgánicos/química , Alquilación , Aniones , Cromatografía por Intercambio Iónico/métodos , Interacciones Hidrofóbicas e Hidrofílicas , Metilaminas , Temperatura
19.
ACS Appl Mater Interfaces ; 11(19): 17617-17628, 2019 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-31013424

RESUMEN

In the capacitive deionization (CDI) process, the degradation of desalting performance is predominantly due to the co-ion expulsion effect and electrode oxidation. To overcome these complications, carbon nanotubes grafted with amine and sulfonic functional groups respectively were prepared and used as the CDI electrodes. The structural characterizations and performance tests confirmed that a uniform functional layer was formed on the surface of the modified electrodes and it enhanced the ion selectivity and wettability of the electrode surface. Moreover, the effects of the functional layer on the electrode stability were investigated by circulating CV tests and desalination tests. The positive shift value of the potential of zero charge (PZC) for the as-prepared electrodes was tested as a quantitative indication for their possible surface oxidation during cyclic tests. Analysis of the PZC variation and desalting performance demonstrated that the excellent desalting stability was achieved by the Cell N-S assembled with the ammoniated CNTs electrode as anode and sulfonated CNTs electrode as cathode. Because the functional layer could preserve the pores system on the modified electrodes and diminish the parasitic reactions that exacerbate the electrode oxidation. This work provides an effective strategy for promoting the electrode performance and prolonging the life of the electrode.

20.
J Chromatogr A ; 1596: 117-123, 2019 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-30904170

RESUMEN

Four covalently-bonded hyperbranched anion exchangers based on poly(styrene-divinylbenzene) (PS-DVB) substrate with different structure of the functional layer were prepared using mono- and dianionic amino acids such as glycine, ß-alanine, aspartic acid, and glutamic acid in the internal part of the functional layer. Selectivity of all anion exchangers toward weakly retained organic acids was investigated at different temperatures in order to evaluate the effect of the number of carboxylic groups in the functional layer and its hydrophilicity on the separation. It was found that dianionic amino acids used in the first modification cycle of hyperbranching provide the best resolution for mono- and divalent organic acids, which makes the number of carboxylic groups in the structure of amino acid a key factor in the separation of such analytes with covalently-bonded hyperbranched anion exchangers, while the role of amino acid hydrophilicity is not that significant. Stationary phases prepared using aspartic and glutamic acids provided baseline resolution for quinic, glycolic, acetic, lactic, formic, and galacturonic acids, which are not resolved to baseline with modern commercially available anion exchangers; the increase of temperature was found to be favorable for improving the resolution even further.


Asunto(s)
Aminoácidos Dicarboxílicos/química , Aminoácidos/química , Resinas de Intercambio Aniónico/química , Aminoácidos/aislamiento & purificación , Cromatografía por Intercambio Iónico , Interacciones Hidrofóbicas e Hidrofílicas , Compuestos Orgánicos/química , Poliestirenos/química , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA