Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Eco Environ Health ; 3(3): 271-280, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39252856

RESUMEN

Freshwater salinization is receiving increasing global attention due to its profound influence on nitrogen cycling in aquatic ecosystems and the accessibility of water resources. However, a comprehensive understanding of the changes in river salinization and the impacts of salinity on nitrogen cycling in arid and semi-arid regions of China is currently lacking. A meta-analysis was first conducted based on previous investigations and found an intensification in river salinization that altered hydrochemical characteristics. To further analyze the impact of salinity on nitrogen metabolism processes, we evaluated rivers with long-term salinity gradients based on in situ observations. The genes and enzymes that were inhibited generally by salinity, especially those involved in nitrogen fixation and nitrification, showed low abundances in three salinity levels. The abundance of genes and enzymes with denitrification and dissimilatory nitrate reduction to ammonium functions still maintained a high proportion, especially for denitrification genes/enzymes that were enriched under medium salinity. Denitrifying bacteria exhibited various relationships with salinity, while dissimilatory nitrate reduction to ammonium bacterium (such as Hydrogenophaga and Curvibacter carrying nirB) were more inhibited by salinity, indicating that diverse denitrifying bacteria could be used to regulate nitrogen concentration. Most genera exhibited symbiotic and mutual relationships, and the highest proportion of significant positive correlations of abundant genera was found under medium salinity. This study emphasizes the role of river salinity on environment characteristics and nitrogen transformation rules, and our results are useful for improving the availability of river water resources in arid and semi-arid regions.

2.
Water Res ; 267: 122472, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39305525

RESUMEN

This study examined the influence of water periods on river nitrogen cycling by analysing nitrogen functional genes and bacterial communities in the Qingshui River, an upstream tributary of the Yellow River in China. Nitrate nitrogen predominated as inorganic nitrogen during the low-flow seasons, whereas salinity was highest during the high-flow seasons. Overall, the functional gene abundance increased with decreasing water volume, and nitrogen concentrations were determined by various specific gene groups. The relative abundance of bacteria carrying these genes varied significantly across water periods. The abundance of Pseudomona, Hydrogenophaga (carrying narGHI and nirB genes), and Flavobacterium (carrying nirK, norBC, and nosZ genes) significantly increased during the low-flow seasons. Nitrogen transformation bacteria exhibited both symbiotic and mutualistic relationships. Microbial network nodes and sizes decreased with decreasing water volume, whereas modularity increased. Additionally, the water period affected the functional microbial community structure by influencing specific environmental factors. Among them, SO42- primarily determined the denitrification, dissimilatory nitrate reduction to ammonium, and assimilatory nitrate reduction to ammonium communities, whereas NO2--N and Mg2+ were the main driving factors for the nitrogen-fixing and nitrifying communities, respectively. These findings have substantial implications for better understanding the reduction in river nitrogen loads in arid and semi-arid regions during different water periods.

3.
J Hazard Mater ; 478: 135492, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-39141938

RESUMEN

Effectively treating phenolic substances is a crucial task in environmental protection. This study aims to determine whether bacterial-algae biofilm reactors offer superior treatment efficacy compared to traditional activated sludge and biofilm reactors. The average degradation ratios of 2,4-dimethylphenol (40, 70, 150, 300, and 230 mg/L) were found to be 98 %, 99 %, 92.1 %, 84.7 %, and 63.7 % respectively. The bacterial-algae biofilm demonstrates a higher tolerance to toxicity, assimilation ability, and efficacy recovery ability. The cell membrane of Chlorella in the bacteria-algae biofilm is not easily compromised, thus ensuring a stable pH environment. High concentrations of tightly bound extracellular polymers (TB-EPS) enhance the efficacy in treating toxic pollutants, promote the stable structure. Intact Chlorella, bacilli, and EPS were observed in bacterial-algal biofilm. The structural integrity of bacteria-algae consistently enhances its resistance to the inhibitory effects of high concentrations of phenolic compounds. Cloacibacterium, Comamonas, and Dyella were the main functional bacterial genera that facilitate the formation of bacterial-algal biofilms and the degradation of phenolic compounds. The dominant microalgal families include Aspergillaceae, Chlorellales, Chlorellaceae, and Scenedesmaceae have certain treatment effects on phenolic substances. Chlorellales and Chlorellaceae have the ability to convert NH4+-N. The Aspergillaceae is also capable of generating synergistic effects with Chlorellales, Chlorellaceae, and Scenedesmaceae, thereby establishing a stable bacterial-algal biofilm system.


Asunto(s)
Bacterias , Biodegradación Ambiental , Biopelículas , Reactores Biológicos , Contaminantes Químicos del Agua , Biopelículas/efectos de los fármacos , Contaminantes Químicos del Agua/metabolismo , Contaminantes Químicos del Agua/química , Bacterias/metabolismo , Bacterias/efectos de los fármacos , Microalgas/metabolismo , Fenoles/metabolismo , Fenoles/química , Chlorella/metabolismo , Chlorella/efectos de los fármacos
4.
Front Microbiol ; 15: 1416734, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39035444

RESUMEN

Tobacco, a crop of significant economic importance, was greatly influenced in leaf quality by protein content. However, current processing parameters fail to adequately meet the requirements for protein degradation. Microorganisms possess potential advantages for degrading proteins and enhancing the quality of tobacco leaves, and hold substantial potential in the process of curing. To effectively reduce the protein content in tobacco leaves, thereby improving the quality and safety of the tobacco leaves. In this study, tobacco leaf were used as experimental material. From these, the BSP1 strain capable of effectively degrading proteins was isolated and identified as Bacillus subtilis by 16S rDNA analysis. Furthermore, the mechanisms were analyzed by integrating microbiome, transcriptome, and metabolome. Before curing, BSP1 was applied to the surface of tobacco leaves. The results indicated that BSP1 effectively improves the activity of key enzymes and the content of related substances, thereby enhancing protein degradation. Additionally, protein degradation was achieved by regulating the diversity of the microbial community on the surface of the tobacco leaves and the ubiquitin-proteasome pathway. This study provided new strategies for extracting and utilizing functional strains from tobacco leaves, opening new avenues for enhancing the quality of tobacco leaves.

5.
Bioresour Technol ; 406: 131008, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38897547

RESUMEN

This study investigated the nutrient removal and microbial community succession in moving bed biofilm reactor under stable and three levels of influent carbon/nitrogen (C/N) ratio fluctuation (± 10%, ± 20%, and ± 30%). Under the conditions of influent C/N ratio fluctuation, the removal efficiency of COD and PO43--P decreased 4.7-6.4% and 3.7-12.9%, respectively, while the nitrogen removal was almost unaffected. A sharp decrease in the content of culturable functional bacteria related to nitrogen and phosphorus removal including nitrite-oxidizing bacteria (NOB), aerobic denitrifying bacteria (DNB), and polyphosphate-accumulating organisms (PAOs) from the carrier biofilm was observed. Sequencing analysis revealed that the abundance of Candidatus Competibacter increased 10.3-25.9% and became the dominant genus responsible for denitrification, potentially indicating that nitrate was removed via endogenous denitrification under the influent C/N ratio fluctuation. The above results will provide basic data for the nutrient removal in decentralized wastewater treatment under highly variable influent conditions.


Asunto(s)
Bacterias , Biopelículas , Reactores Biológicos , Carbono , Nitrógeno , Nitrógeno/metabolismo , Reactores Biológicos/microbiología , Carbono/metabolismo , Bacterias/metabolismo , Bacterias/genética , Desnitrificación , Fósforo , Purificación del Agua/métodos , Nutrientes/metabolismo , Análisis de la Demanda Biológica de Oxígeno , Aguas Residuales/microbiología
6.
Food Chem ; 454: 139658, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38810451

RESUMEN

The distinct quality of Qingzhuan tea is greatly influenced by the bacterial community but was poorly characterized. Therefore, this study investigated the Co-occurrence network and functional profiling of the bacterial community, with special attention paid to core functional bacteria in the industrial pile fermentation. Microbiomics analysis indicated that Klebsiella and Pantoea dominated raw tea leaves, and were rapidly replaced by Pseudomonas in pile fermentation, but substituted mainly by Burkholderia and Saccharopolyspora in final fermented tea. Bacterial taxa were grouped into 7 modules with the dominant in module I, III, and IV, which were involved in flavor formation and biocontrol production. Functional profiling revealed that "penicillin and cephalosporin biosynthesis" increased in pile fermentation. Twelve bacterial genera were identified as core functional bacteria, in which Klebsiella, Pantoea, and Pseudomonas also dominated the pile fermentation. This work would provide theoretical basis for its chemical biofortification and quality improvement by controlling bacterial communities.


Asunto(s)
Bacterias , Camellia sinensis , Fermentación , , Bacterias/metabolismo , Bacterias/clasificación , Bacterias/aislamiento & purificación , Bacterias/genética , Camellia sinensis/microbiología , Camellia sinensis/metabolismo , Camellia sinensis/química , Té/microbiología , Té/química , Té/metabolismo , Microbiota , Hojas de la Planta/microbiología , Hojas de la Planta/química , Hojas de la Planta/metabolismo
7.
Front Bioeng Biotechnol ; 12: 1332113, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38567082

RESUMEN

Tobacco, a vital economic crop, had its quality post-curing significantly influenced by starch content. Nonetheless, the existing process parameters during curing were inadequate to satisfy the starch degradation requirements. Microorganisms exhibit inherent advantages in starch degradation, offering significant potential in the tobacco curing process. Our study concentrated on the microbial populations on the surface of tobacco leaves and in the rhizosphere soil. A strain capable of starch degradation, designated as BS3, was successfully isolated and identified as Bacillus subtilis by phylogenetic tree analysis based on 16SrDNA sequence. The application of BS3 on tobacco significantly enhanced enzyme activity and accelerated starch degradation during the curing process. Furthermore, analyses of the metagenome, transcriptome, and metabolome indicated that the BS3 strain facilitated starch degradation by regulating surface microbiota composition and affecting genes related to starch hydrolyzed protein and key metabolites in tobacco leaves. This study offered new strategies for efficiently improving the quality of tobacco leaves.

8.
Bioresour Technol ; 394: 130275, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38176597

RESUMEN

The anaerobic co-fermentation of iron bound phosphorus (P) compounds (FePs)-bearing sludge with corn gluten meal (CGM) and the underlying mechanisms associated with P release and volatile fatty acids (VFAs) production were investigated. The optimal CGM dosage for P release was 0.6 g chemical oxygen demand (COD)/g total suspended solid (TSS), which resulted in an increase in efficiency from 7 % (control sample) to 39 %. However, the optimal CGM dosage for VFAs production was 0.4 g COD/g TSS, and the yield increased from 37.4 (control sample) to 331.7 mg COD/g volatile suspended solid. The addition of CGM enhanced hydrolysis and acidogenesis by supplying abundant organic substrates to promote the growth of hydrolytic and acidogenic bacteria. A higher VFAs/ammonium-nitrogen ratio resulted in a lower pH, which promoted greater FePs dissolution and P release from the sludge. This study provides novel insights into the effects of CGM on P release and VFAs production.


Asunto(s)
Aguas del Alcantarillado , Zea mays , Fermentación , Aguas del Alcantarillado/microbiología , Anaerobiosis , Glútenes , Fósforo , Concentración de Iones de Hidrógeno , Ácidos Grasos Volátiles
9.
Environ Res ; 243: 117847, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38065393

RESUMEN

This study investigated the influence of wetland types (vertical and tidal flow constructed wetlands [CWs] [VFCW and TFCW, respectively]) and concentrations of triclosan (TCS) on the removal of pollutants (TCS and nitrogen) and microbial characteristics. The efficiency of TCS removal was significantly higher with 5 µg/L TCS (Phase B) than with 30 µg/L (Phase C) in the two CWs. The efficiencies of removal of NH4+-N and NO3--N were significantly inhibited in Phase C. Compared with the VFCW, the TFCW removed more NH4+-N at the same concentration of TCS, whereas less NO3--N was removed, and it even accumulated. Saccharimondales, an important functional genus with the highest abundance and more node connections with other genera, had a sharp decrease in relative abundance as the increasing concentrations of TCS of the two CWs conformed with its relative abundance and significantly negatively correlated with the concentration of TCS. Differentiated Roseobacter_Clade_CHAB-I-5_Lineage and Sphaerotilus were enriched in the VFCW and TFCW, respectively. The abundance of enzymes that catalyzed nitritation was significantly inhibited by TCS, whereas nitrate reductase (EC 1.7.99.4) catalyzed both denitrification and dissimilatory nitrate reduction to ammonium (DNRA), and nitrite reductase (NADH) (EC 1.7.1.15) that catalyzed DNRA comprised a larger proportion in the two CWs. Simultaneously, the abundances of two enzymes were higher in the TFCW than in the VFCW. The network analysis indicated that the main genera were promoted more by TCS in the VFCW, while inhibited in the TFCW. Moreover, the concentrations of nitrogen (NH4+-N, NO3--N, and TN) significantly positively correlated with TCS-resistant bacteria, and negatively correlated with most nitrogen-transforming bacteria with species that varied between the VFCW and TFCW. The results of this study provide a reference for the molecular biological mechanism of the simultaneous removal of nitrogen and TCS in the CWs.


Asunto(s)
Desnitrificación , Triclosán , Humedales , Nitrógeno , Nitratos , Bacterias , Eliminación de Residuos Líquidos/métodos
10.
Environ Sci Technol ; 58(1): 510-521, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38100654

RESUMEN

Fluorinated liquid crystal monomers (FLCMs) have been suggested as emerging contaminants, raising global concern due to their frequent occurrence, potential toxic effects, and endurance capacity in the environment. However, the environmental fate of the FLCMs remains unknown. To fill this knowledge gap, we investigated the aerobic microbial transformation mechanisms of an important FLCM, 4-[difluoro(3,4,5-trifluorophenoxy)methyl]-3, 5-difluoro-4'-propylbiphenyl (DTMDPB), using an enrichment culture termed as BG1. Our findings revealed that 67.5 ± 2.1% of the initially added DTMDPB was transformed in 10 days under optimal conditions. A total of 14 microbial transformation products obtained due to a series of reactions (e.g., reductive defluorination, ether bond cleavage, demethylation, oxidative hydroxylation and aromatic ring opening, sulfonation, glucuronidation, O-methylation, and thiolation) were identified. Consortium BG1 harbored essential genes that could transform DTMDPB, such as dehalogenation-related genes [e.g., glutathione S-transferase gene (GST), 2-haloacid dehalogenase gene (2-HAD), nrdB, nuoC, and nuoD]; hydroxylating-related genes hcaC, ubiH, and COQ7; aromatic ring opening-related genes ligB and catE; and methyltransferase genes ubiE and ubiG. Two DTMDPB-degrading strains were isolated, which are affiliated with the genus Sphingopyxis and Agromyces. This study provides a novel insight into the microbial transformation of FLCMs. The findings of this study have important implications for the development of bioremediation strategies aimed at addressing sites contaminated with FLCMs.


Asunto(s)
Cristales Líquidos , Biodegradación Ambiental , Hidroxilación
11.
Environ Sci Technol ; 57(50): 21156-21167, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38064275

RESUMEN

Microbial nitrate reduction can drive Fe(II) oxidation in anoxic environments, affecting the nitrous oxide emission and ammonium availability. The nitrate-reducing Fe(II) oxidation usually causes severe cell encrustation via chemodenitrification and potentially inhibits bacterial activity due to the blocking effect of secondary minerals. However, it remains unclear how Fe(II) oxidation and subsequent cell encrustation affect the functional genes and bacteria for denitrification and dissimilatory nitrate reduction to ammonium (DNRA). Here, bacteria were enriched from different paddy soils with and without Fe(II) under nitrate-reducing conditions. Fe(II) addition decelerated nitrate reduction and increased NO2- accumulation, due to the rapid Fe(II) oxidation and cell encrustation in the periplasm and on the cell surface. The N2O accumulation was lower in the treatment with Fe(II) and nitrate than that in the treatment with nitrate only, although the proportions of N2O and NH4+ to the reduced NO3- were low (3.25% ∼ 6.51%) at the end of incubation regardless of Fe(II) addition. The dominant bacteria varied from soils under nitrate-reducing conditions, while Fe(II) addition shaped a similar microbial community, including Dechloromonas, Azospira, and Pseudomonas. Fe(II) addition increased the relative abundance of napAB, nirS, norBC, nosZ, and nirBD genes but decreased that of narG and nrfA, suggesting that Fe(II) oxidation favored denitrification in the periplasm and NO2--to-NH4+ reduction in the cytoplasm. Dechloromonas dominated the NO2--to-N2O reduction, while Thauera mediated the periplasmic nitrate reduction and cytoplasmic NO2--to-NH4+ during Fe(II) oxidation. However, Thauera showed much lower abundance than the dominant genera, resulting in slow nitrate reduction and limited NH4+ production. These findings provide new insights into the response of denitrification and DNRA bacteria to Fe(II) oxidation and cell encrustation in anoxic environments.


Asunto(s)
Compuestos de Amonio , Nitratos , Nitratos/metabolismo , Compuestos de Amonio/metabolismo , Nitritos/metabolismo , Suelo , Desnitrificación , Dióxido de Nitrógeno , Bacterias/genética , Bacterias/metabolismo , Oxidación-Reducción , Compuestos Ferrosos/metabolismo , Nitrógeno/metabolismo
12.
Front Microbiol ; 14: 1285922, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38143862

RESUMEN

Introduction: The impact of groundwater table depth (GTD) on bacterial communities and soil nutrition in revegetated areas remains unclear. Methods: We investigated the impacts of plant growth and soil physicochemical factors on rhizosphere bacterial communities under different GTD. Results: The four plant growth indices (Pielou, Margalef, Simpson, and Shannon-Wiener indices) and soil water content (SWC) at the Artem and Salix sites all showed a decreasing trend with increasing GTD. Salix had a higher nutrient content than Artem. The response of plant rhizosphere bacterial communities to GTD changes were as follows. Rhizosphere bacteria at the Artem and Salix sites exhibited higher relative abundance and alpha diversity in SW (GTD < 5 m) compared than in DW (GTD > 5 m). Functional microbial predictions indicated that the rhizosphere bacterial communities of Artem and Salix promoted carbon metabolism in the SW. In contrast, Artem facilitated nitrogen cycling, whereas Salix enhanced both nitrogen cycling and phototrophic metabolism in the DW. Discussion: Mantel test analysis revealed that in the SW of Artem sites, SWC primarily governed the diversity of rhizosphere and functional bacteria involved in the nitrogen cycle by affecting plant growth. In DW, functional bacteria increase soil organic carbon (SOC) to meet nutrient demands. However, higher carbon and nitrogen availability in the rhizosphere soil was observed in the SW of the Salix sites, whereas in DW, carbon nutrient availability correlated with keystone bacteria, and changes in nitrogen content could be attributed to nitrogen mineralization. This indicates that fluctuations in the groundwater table play a role in regulating microbes and the distribution of soil carbon and nitrogen nutrients in arid environments.

13.
Bioresour Technol ; 390: 129879, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37866769

RESUMEN

Microbial electrosynthesis (MES) is facing a series of problems including low energy utilization and production efficiency of high value-added products, which seriously hinder its practical application. In this study, a more practical direct current power source was used and the anaerobic activated sludge from wastewater treatment plants was inoculated to construct the acetic acid-producing MES. The operating conditions of acetic acid production were further optimized and the specific mechanisms involving the substance utilization and microbial response were revealed. The optimum conditions were the potential of 3.0 V and pH 6.0. Under these conditions, highly electroactive biofilms formed and all kinds of substances were effectively utilized. In addition, dominant bacteria (Acetobacterium, Desulfovibrio, Sulfuricurvum, Sulfurospirillum, and Fusibacter) had high abundances. Under optimal conditions, acetic acid-forming characteristic genera (Acetobacterium) had the highest relative abundance (Biocathode-25.82 % and Suspension-17.24 %). This study provided references for the optimal operating conditions of MES and revealed the corresponding mechanisms.


Asunto(s)
Acetobacterium , Dióxido de Carbono , Dióxido de Carbono/química , Electrodos , Electricidad , Bacterias , Ácido Acético
14.
Int J Gen Med ; 16: 3889-3906, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37662503

RESUMEN

Purpose: This study aimed to explore inflammatory biomarkers, stool's functional bacterial groups and their possible link to portal vein thrombosis (PVT) in patients with liver cirrhosis (LC). Materials and Methods: An observational study of 300 participants: 200 inhospital cirrhotic patients, who met inclusion criteria, equally assigned into two groups, based on the presence or absence of PVT and 100 healthy controls was carried out. Results: The PVT group displayed significant differences related to older age, cigarettes smoking history, emergency admission, higher Child-Pugh score, metabolic related disorders and nonalcoholic fatty liver disease, as well as non-obstructive aspects, with chronic thrombi. The PVT group exhibited significant differences related to biomarkers such as tumor necrosis factor (TNF)-alpha, C-reactive protein (CRP), D-dimers (D-D), as well as gut overall dysbiosis (DB) and alteration of different functional bacterial groups of the gut microbiota. Strong positive correlations were observed between PVT severity, and TNF-alpha, CRP, D-D as well as lipopolysaccharide (LPS) positive bacteria. Esophageal varices, age and abdominal pain were independent predictors for PVT severity as well as CRP, TNF-alpha and D-D. Conclusion: Patients with LC and PVT displayed elevation of TNF-alpha, CRP, D-D alterations of the functional gut microbiota, as well as several morphological and clinical particularities. Although the LPS positive gut microbiota was linked to inflammatory biomarkers and PVT severity, it was not proven to be an independent predictor of the PVT severity like CRP, TNF-alpha and D-D.

15.
Microbiol Spectr ; : e0118423, 2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37698408

RESUMEN

Sugarcane is highly sensitive to changes in moisture, and increased drought severely restricts its growth and productivity. Recent studies have shown that plant growth-promoting microorganisms are essential to reduce the adverse effects of environmental stresses, especially drought. However, our knowledge about the dynamics of rhizosphere microbial community structure in sugarcane under varying degrees of drought stress is limited. We analyzed the effects of different degrees of drought stress on the rhizosphere microbial communities of Zhongzhe 1(ZZ1) and Zhongzhe 6(ZZ6) with differences in drought resistance, by combining soil enzyme activity, nutrient content, and physiological and morphological characteristics of sugarcane roots. The results showed that rhizosphere bacterial community began to change at a field capacity of 50%, enriching the sugarcane rhizosphere with drought-resistant bacteria. The core strains of ZZ1 and ZZ6 rhizosphere enrichment were mainly Streptomycetales, Sphingomonadales, and Rhizobiales. However, compared to ZZ1, the changes in rhizosphere bacterial abundance in ZZ6 were primarily associated with the abundance of Streptomycetales as drought levels increased. Rhizobiales and Streptomycetales, enriched in the rhizosphere of ZZ6 under drought, were positively correlated with root tip number and total root length (TRL), increasing the distribution area of roots and, thus, improving water and nutrient uptake by the roots thereby enhancing the resistance of sugarcane to drought stress. This research enhances our understanding of the composition of the rhizosphere microbial community in sugarcane under different levels of drought stress and its interaction with the roots, thereby providing valuable insights for enhancing drought resistance in sugarcane. IMPORTANCE Drought stress is expected to further increase in intensity, frequency, and duration, causing substantial losses in sugarcane yields. Here, we exposed sugarcane to varying degrees of drought treatment during growth and quantified the eventual composition of the resulting sugarcane rhizosphere bacterial community groups. We found that sugarcane rhizosphere under mild drought began to recruit specific bacterial communities to resist drought stress and used the interactions of root tip number, total root length, and drought-resistant strains to improve sugarcane survival under drought. This research provides a theoretical basis for the rhizosphere microbiome to help sugarcane improve its resistance under different levels of drought stress.

16.
Ecotoxicol Environ Saf ; 263: 115234, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37418946

RESUMEN

Functional bacterial communities (FBC) have members of different taxonomic biochemical groups, such as N2-fixation, nitrification and denitrification. This study explored the mechanism of the FBC from an upflow three-dimensional biofilm electrode reactor on enhancing the nitrogen removal efficiencies in a Sesuvium potulacastum (S. potulacastum) constructed wetland. There were high abundances of denitrifying bacteria detected in the FBC, and they had potential metabolic processes for nitrogen reduction. In the constructed wetland, cellular nitrogen compounds of S. potulacastum were enriched by overexpressed differentially expressed genes (DEGs), and the napA, narG, nirK, nirS, qnorB, and NosZ genes related to the denitrification process had more copies under FBC treatment. Nitrogen metabolism in root bacterial communities (RBCs) was activated in the FBC group compared with the control group without FBC. Finally, these FBCs improved the removal efficiencies of DTN (dissolved total nitrogen), NO3¯-N, NO2¯-N, and NH4+-N by 84.37 %, 87.42 %, 67.51 %, and 92.57 %, respectively, and their final concentrations met the emission standards of China. These findings indicate that adding FBC into S. potulacastum-constructed wetlands would result in high nitrogen removal efficiencies from wastewater and have large potential applications in further water treatment technology.


Asunto(s)
Desnitrificación , Aguas Residuales , Carbono , Humedales , Nitrógeno/análisis , Bacterias/genética , Bacterias/metabolismo
17.
J Environ Manage ; 340: 117996, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37087889

RESUMEN

Potassium ferrate (PF) pretreatment in anaerobic sludge and its potential influence mechanisms have received widely attention. This study investigated the coupling effect of PF loading on steel slag (SS) on excess sludge anaerobic fermentation. Results showed that SS loading increase the treatment performance of PF on short chain volatile fatty acids (SCFAs) production from anaerobic fermented sludge. It was showed that the modified PF loaded SS (MPF-SS) promoted the dissolution and release of organic substrates from intracellular to extracellular. Further exploration showed the promotion of PF and MPF-SS exposure to acid production microorganisms was much more than that to acid consumption microorganisms. MPF-SS addition can also effectively reinforce the carbohydrate transport, amino acid metabolism and the key enhanced genes associated with fatty acid biosynthesis pathways. This study fills the knowledge gap about modified PF on sludge treatment and also expands a new perspective for its application for sludge resource recovery.


Asunto(s)
Aguas del Alcantarillado , Acero , Fermentación , Aguas del Alcantarillado/química , Anaerobiosis , Ácidos Grasos Volátiles , Concentración de Iones de Hidrógeno
18.
Sci Total Environ ; 865: 161283, 2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36587687

RESUMEN

In this work, the immobilization stabilization and mechanism of heavy metal(loid)s by goethite loaded montmorillonite (GMt) were investigated, and the soil microbial response was explored. The simulated acid rain leaching experiment showed that GMt had a higher acid tolerance and the more stable heavy metal(loid)s fixation ability. The soil incubation demonstrated that GMt significantly decreased the available Cd, Zn, Pb and As concentration. Interestingly, higher immobilization of heavy metals was observed by GMt in highly acid leached and acidic soils. The richness and diversity of bacterial communities improved after the addition of GMt. GMt induced the enrichment of the excellent functional bacteria of the phylum Proteobacteria as well as the genus Massilia and Sphingomonas. The main immobilization mechanisms of heavy metal(loid)s by GMt include electrostatic interaction, complexation, precipitation and oxidation. The addition of the GMt also optimizes the soil bacterial community structure, which further facilitates the immobilization of heavy metal(loid)s. Our results confirm that the novel GMt has a promising application in the immobilization and stabilization of heavy metal(loid)s contaminated soils in non-ferrous metal smelting areas.


Asunto(s)
Metaloides , Metales Pesados , Contaminantes del Suelo , Suelo/química , Bentonita , Metales Pesados/análisis , Contaminantes del Suelo/análisis
19.
Environ Sci Pollut Res Int ; 30(10): 27730-27742, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36383316

RESUMEN

Membrane fouling has been a key factor limiting the applications of membrane bioreactor (MBR). In this study, a novel umbrella-shape membrane module was applied to construct two MBRs for two-stage partial nitrification-anaerobic ammonia oxidation (PN-ANAMMOX) process. After 55 days operation, the ANAMMOX process was started and the PN process was well controlled. Then, the ANAMMOX and PN process were successfully coupled to run the PN-ANAMMOX process. On 103 days, the best nitrogen removing effect was achieved with the maximum nitrogen loading rate (NLR) of 0.4 kg N·(m3·d)-1 and the corresponding maximum total nitrogen removal rate (TNRR) of 75.23%. The umbrella-shape membrane module in both reactors only needed to be cleaned once during the operation for 105 days, indicating that the membrane module had better resistance to membrane fouling. The functional bacteria were cultivated in suspension state; moreover, the cell densities of ammonia oxidizing bacteria (AOB) and ANAMMOX bacteria (AnAOB) reached 58.32 × 1012 copies/g sludge and 28.39 × 1012 copies/g sludge. Their abundances reached 73.25% and 57.80% of the total bacteria, respectively. MBR improved by umbrella-shape membrane module could realize the rapid start-up of ANAMMOX process, effective control of PN process, and stable operation of PN-ANAMMOX process. This study provided a novel approach to control membrane fouling by optimizing the membrane module shape and widened applications of MBRs in PN-ANAMMOX process.


Asunto(s)
Oxidación Anaeróbica del Amoníaco , Nitrificación , Aguas del Alcantarillado , Reactores Biológicos/microbiología , Bacterias/metabolismo , Nitrógeno/metabolismo , Oxidación-Reducción , Desnitrificación
20.
Sci Total Environ ; 859(Pt 1): 160186, 2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36379346

RESUMEN

This study investigated the bioremediation of PAHs in soil by two different microbial inoculants prepared with Paracoccus aminovorans HPD-2 and the carrier humic acid (HA) or montmorillonite (Mont). After incubation for 42 d, the greatest removal of PAHs, 42.8 % or 41.6 %, was observed in microcosms with 0.2 % HA inoculant or 2 % Mont inoculant. The PAH removal efficiency in these treatments was significantly greater than that in soil amended only with planktonic HPD-2. Bacterial community analysis showed that the survival of Paracoccus aminovorans was enhanced in the treatments with Mont inoculant compared with the treatments with HA inoculant or with HPD-2 alone. Moreover, the diversity of PAH-degrading bacterial genera was greater in the treatments containing Mont inoculant than in the treatments containing HA inoculant. These results indicate that the organic material HA and inorganic material Mont promote PAH removal in different ways. Specifically, HA promotes PAHs bioavailability to accelerate the degradation of PAHs in soil, whereas Mont protects PAH-degrading microorganisms to promote pollutant removal. Overall, the findings suggest that HA and Mont are promising materials for microbial immobilization for the bioremediation of PAH-contaminated soil.


Asunto(s)
Inoculantes Agrícolas , Hidrocarburos Policíclicos Aromáticos , Contaminantes del Suelo , Suelo , Inoculantes Agrícolas/metabolismo , Contaminantes del Suelo/análisis , Microbiología del Suelo , Hidrocarburos Policíclicos Aromáticos/análisis , Biodegradación Ambiental , Bacterias/metabolismo , Sustancias Húmicas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA