Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 385
Filtrar
2.
J Am Coll Cardiol ; 84(12): 1092-1103, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39260931

RESUMEN

BACKGROUND: B-type natriuretic peptide or N-terminal pro-B-type natriuretic peptide is the only blood biomarker in established risk calculators for pulmonary arterial hypertension (PAH). Profiling systemic-originated plasma immunoglobulin G (IgG) N-glycans, which reflect different components of the pathophysiology of PAH including immune dysregulation and inflammation, may improve PAH risk assessment. OBJECTIVES: This study sought to identify plasma IgG N-glycan biomarkers that predict survival in PAH to improve risk assessment. METHODS: This cohort study examined 622 PAH patients from 2 national centers (Beijing [discovery] cohort: n = 273; Shanghai [validation] cohort: n = 349). Plasma IgG N-glycomes were profiled by a robust mass spectrometry-based method. Prognostic IgG N-glycan traits were identified and validated in the 2 cohorts using Cox regression and Kaplan-Meier survival analyses. The added value of IgG N-glycan traits to previously established risk models was assessed using Harrell C-indexes and survival analysis. RESULTS: Plasma IgG fucosylation was found to predict survival independent of age and sex in the discovery cohort (HR: 0.377; 95% CI: 0.168-0.845; P = 0.018) with confirmation in the validation cohort (HR: 0.445; 95% CI: 0.264-0.751; P = 0.005). IgG fucosylation remained a robust predictor of mortality in combined cohorts after full adjustment and in subgroup analyses. Integrating IgG fucosylation into previously established risk models improved their predictive capacity, marked by an overall elevation in Harrell C-indexes. IgG fucosylation was useful in further stratifying the intermediate-risk patients classified by a previously established model. CONCLUSIONS: Plasma IgG fucosylation informs PAH prognosis independent of established factors, offering additional value for predicting PAH outcomes.


Asunto(s)
Biomarcadores , Inmunoglobulina G , Humanos , Femenino , Masculino , Inmunoglobulina G/sangre , Persona de Mediana Edad , Pronóstico , Biomarcadores/sangre , Adulto , Hipertensión Arterial Pulmonar/sangre , Hipertensión Arterial Pulmonar/mortalidad , Estudios de Cohortes , Polisacáridos/sangre , Anciano , Medición de Riesgo/métodos , China/epidemiología
3.
Inflamm Res ; 2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39180691

RESUMEN

OBJECTIVE: Intestinal mucositis is one of the common side effects of anti-cancer chemotherapy. However, the molecular mechanisms involved in mucositis development remain incompletely understood. In this study, we investigated the function of receptor-interacting protein kinase 3 (RIP3/RIPK3) in regulating doxorubicin-induced intestinal mucositis and its potential mechanisms. METHODS: Intestinal mucositis animal models were induced in mice for in vivo studies. Rat intestinal cell line IEC-6 was used for in vitro studies. RNA­seq was used to explore the transcriptomic changes in doxorubicin-induced intestinal mucositis. Intact glycopeptide characterization using mass spectrometry was applied to identify α-1,2-fucosylated proteins associated with mucositis. RESULTS: Doxorubicin treatment increased RIP3 expression in the intestine and caused severe intestinal mucositis in the mice, depletion of RIP3 abolished doxorubicin-induced intestinal mucositis. RIP3-mediated doxorubicin-induced mucositis did not depend on mixed lineage kinase domain-like (MLKL) but on α-1,2-fucosyltransferase 2 (FUT2)-catalyzed α-1,2-fucosylation on inflammation-related proteins. Deficiency of MLKL did not affect intestinal mucositis, whereas inhibition of α-1,2-fucosylation by 2-deoxy-D-galactose (2dGal) profoundly attenuated doxorubicin-induced inflammation and mucositis. CONCLUSIONS: RIP3-FUT2 pathway is a central node in doxorubicin-induced intestinal mucositis. Targeting intestinal RIP3 and/or FUT2-mediated α-1,2-fucosylation may provide potential targets for preventing chemotherapy-induced intestinal mucositis.

4.
Cancers (Basel) ; 16(15)2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39123480

RESUMEN

Cancer is a difficult-to-cure disease with high worldwide incidence and mortality, in large part due to drug resistance and disease relapse. Glycosylation, which is a common modification of cellular biomolecules, was discovered decades ago and has been of interest in cancer research due to its ability to influence cellular function and to promote carcinogenesis. A variety of glycosylation types and structures regulate the function of biomolecules and are potential targets for investigating and treating cancer. The link between glycosylation and carcinogenesis has been more recently revealed by the role of p53 in energy metabolism, including the p53 target gene alpha-L-fucosidase 1 (FUCA1), which plays an essential role in fucosylation. In this review, we summarize roles of glycan structures and glycosylation-related enzymes to cancer development. The interplay between glycosylation and tumor microenvironmental factors is also discussed, together with involvement of glycosylation in well-characterized cancer-promoting mechanisms, such as the epidermal growth factor receptor (EGFR), phosphatidylinositol-3-kinase/protein kinase B (PI3K/Akt) and p53-mediated pathways. Glycan structures also modulate cell-matrix interactions, cell-cell adhesion as well as cell migration and settlement, dysfunction of which can contribute to cancer. Thus, further investigation of the mechanistic relationships among glycosylation, related enzymes and cancer progression may provide insights into potential novel cancer treatments.

5.
Stem Cells ; 42(9): 809-820, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-38982795

RESUMEN

BACKGROUND: Idiopathic pulmonary fibrosis (PF) is a chronic progressive interstitial lung disease characterized by alveolar epithelial cell (AEC) injury and fibroblast activation. Inadequate autophagy in AECs may result from the activation of several signaling pathways following AEC injury, with glycoproteins serving as key receptor proteins. The core fucosylation (CF) modification in glycoproteins is crucial. Mesenchymal stem cells derived from bone marrow (BMSCs) have the ability to regenerate damaged tissue and treat PF. This study aimed to elucidate the relationship and mechanism of interaction between BMSCs, CF modification, and autophagy in PF. METHODS: C57BL/6 male mice, AEC-specific FUT8 conditional knockout (CKO) mice, and MLE12 cells were administered bleomycin (BLM), FUT8 siRNA, and mouse BMSCs, respectively. Experimental techniques including tissue staining, Western blotting, immunofluorescence, autophagic flux detection, and flow cytometry were used in this study. RESULTS: First, we found that autophagy was inhibited while FUT8 expression was elevated in PF mice and BLM-induced AEC injury models. Subsequently, CKO mice and MLE12 cells transfected with FUT8 siRNA were used to demonstrate that inhibition of CF modification induces autophagy in AECs and mitigates PF. Finally, mouse BMSCs were used to demonstrate that they alleviate the detrimental autophagy of AECs by inhibiting CF modification and decreasing PF. CONCLUSIONS: Suppression of CF modification enhanced the suppression of AEC autophagy and reduced PF in mice. Additionally, through the prevention of CF modification, BMSCs can assist AECs deficient in autophagy and partially alleviate PF.


Asunto(s)
Células Epiteliales Alveolares , Autofagia , Células Madre Mesenquimatosas , Animales , Ratones , Células Epiteliales Alveolares/metabolismo , Células Epiteliales Alveolares/patología , Células Madre Mesenquimatosas/metabolismo , Masculino , Ratones Endogámicos C57BL , Bleomicina/toxicidad , Ratones Noqueados , Fucosa/metabolismo , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/patología , Fibrosis Pulmonar/genética , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar Idiopática/patología , Fibrosis Pulmonar Idiopática/metabolismo , Fucosiltransferasas/metabolismo , Fucosiltransferasas/genética
6.
J Biol Chem ; 300(8): 107558, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39002669

RESUMEN

α1,6-Fucosyltransferase (Fut8) is the enzyme responsible for catalyzing core fucosylation. Exogenous L-fucose upregulates fucosylation levels through the GDP-fucose salvage pathway. This study investigated the relationship between core fucosylation and immunoglobulin G (IgG) amounts in serum utilizing WT (Fut8+/+), Fut8 heterozygous knockout (Fut8+/-), and Fut8 knockout (Fut8-/-) mice. The IgG levels in serum were lower in Fut8+/- and Fut8-/- mice compared with Fut8+/+ mice. Exogenous L-fucose increased IgG levels in Fut8+/- mice, while the ratios of core fucosylated IgG versus total IgG showed no significant difference among Fut8+/+, Fut8+/-, and Fut8+/- mice treated with L-fucose. These ratios were determined by Western blot, lectin blot, and mass spectrometry analysis. Real-time PCR results demonstrated that mRNA levels of IgG Fc and neonatal Fc receptor, responsible for protecting IgG turnover, were similar among Fut8+/+, Fut8+/-, and Fut8+/- mice treated with L-fucose. In contrast, the expression levels of Fc-gamma receptor Ⅳ (FcγRⅣ), mainly expressed on macrophages and neutrophils, were increased in Fut8+/- mice compared to Fut8+/+ mice. The effect was reversed by administrating L-fucose, suggesting that core fucosylation primarily regulates the IgG levels through the Fc-FcγRⅣ degradation pathway. Consistently, IgG internalization and transcytosis were suppressed in FcγRⅣ-knockout cells while enhanced in Fut8-knockout cells. Furthermore, we assessed the expression levels of specific antibodies against ovalbumin and found they were downregulated in Fut8+/- mice, with potential recovery observed with L-fucose administration. These findings confirm that core fucosylation plays a vital role in regulating IgG levels in serum, which may provide insights into a novel mechanism in adaptive immune regulation.


Asunto(s)
Fucosa , Fucosiltransferasas , Inmunoglobulina G , Ratones Noqueados , Receptores de IgG , Animales , Fucosa/metabolismo , Inmunoglobulina G/metabolismo , Inmunoglobulina G/inmunología , Fucosiltransferasas/metabolismo , Fucosiltransferasas/genética , Ratones , Receptores de IgG/metabolismo , Receptores de IgG/genética , Glicosilación , Fragmentos Fc de Inmunoglobulinas/genética , Fragmentos Fc de Inmunoglobulinas/metabolismo , Fragmentos Fc de Inmunoglobulinas/inmunología , Receptores Fc , Antígenos de Histocompatibilidad Clase I
7.
Arch Biochem Biophys ; 758: 110069, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38914216

RESUMEN

Bovine intestinal alkaline phosphatase (biALP), a membrane-bound plasma metalloenzyme, maintains intestinal homeostasis, regulates duodenal surface pH, and protects against infections caused by pathogenic bacteria. The N-glycans of biALP regulate its enzymatic activity, protein folding, and thermostability, but their structures are not fully reported. In this study, the structures and quantities of the N-glycans of biALP were analyzed by liquid chromatography-electrospray ionization-high energy collision dissociation-tandem mass spectrometry. In total, 48 N-glycans were identified and quantified, comprising high-mannose [6 N-glycans, 33.1 % (sum of relative quantities of each N-glycan)], hybrid (6, 11.9 %), and complex (36, 55.0 %) structures [bi- (13, 26.1 %), tri- (16, 21.5 %), and tetra-antennary (7, 7.4 %)]. These included bisecting N-acetylglucosamine (33, 56.6 %), mono-to tri-fucosylation (32, 53.3 %), mono-to tri-α-galactosylation (16, 20.7 %), and mono-to tetra-ß-galactosylation (36, 58.5 %). No sialylation was identified. N-glycans with non-bisecting GlcNAc (9, 10.3 %), non-fucosylation (10, 13.6 %), non-α-galactosylation (26, 46.2 %), and non-ß-galactosylation (6, 8.4 %) were also identified. The activity (100 %) of biALP was reduced to 37.3 ± 0.2 % (by de-fucosylation), 32.7 ± 2.9 % (by de-α-galactosylation), and 0.2 ± 0.2 % (by de-ß-galactosylation), comparable to inhibition by 10-4 to 101 mM EDTA, a biALP inhibitor. These results indicate that fucosylated and galactosylated N-glycans, especially ß-galactosylation, affected the activity of biALP. This study is the first to identify 48 diverse N-glycan structures and quantities of bovine as well as human intestinal ALP and to demonstrate the importance of the role of fucosylation and galactosylation for maintaining the activity of biALP.


Asunto(s)
Fosfatasa Alcalina , Galactosa , Polisacáridos , Animales , Bovinos , Polisacáridos/metabolismo , Polisacáridos/química , Fosfatasa Alcalina/metabolismo , Fosfatasa Alcalina/química , Galactosa/metabolismo , Fucosa/metabolismo , Fucosa/química , Intestinos/enzimología , Glicosilación
8.
Proc Natl Acad Sci U S A ; 121(27): e2314026121, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38917011

RESUMEN

The fucosylation of glycoproteins regulates diverse physiological processes. Inhibitors that can control cellular levels of protein fucosylation have consequently emerged as being of high interest. One area where inhibitors of fucosylation have gained significant attention is in the production of afucosylated antibodies, which exhibit superior antibody-dependent cell cytotoxicity as compared to their fucosylated counterparts. Here, we describe ß-carbafucose, a fucose derivative in which the endocyclic ring oxygen is replaced by a methylene group, and show that it acts as a potent metabolic inhibitor within cells to antagonize protein fucosylation. ß-carbafucose is assimilated by the fucose salvage pathway to form GDP-carbafucose which, due to its being unable to form the oxocarbenium ion-like transition states used by fucosyltransferases, is an incompetent substrate for these enzymes. ß-carbafucose treatment of a CHO cell line used for high-level production of the therapeutic antibody Herceptin leads to dose-dependent reductions in core fucosylation without affecting cell growth or antibody production. Mass spectrometry analyses of the intact antibody and N-glycans show that ß-carbafucose is not incorporated into the antibody N-glycans at detectable levels. We expect that ß-carbafucose will serve as a useful research tool for the community and may find immediate application for the rapid production of afucosylated antibodies for therapeutic purposes.


Asunto(s)
Cricetulus , Fucosa , Fucosa/metabolismo , Animales , Células CHO , Glicosilación , Humanos , Trastuzumab/farmacología , Trastuzumab/metabolismo , Fucosiltransferasas/metabolismo , Citotoxicidad Celular Dependiente de Anticuerpos/efectos de los fármacos
9.
Glycobiology ; 34(8)2024 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-38869882

RESUMEN

Higher breast cancer mortality rates continue to disproportionally affect black women (BW) compared to white women (WW). This disparity is largely due to differences in tumor aggressiveness that can be related to distinct ancestry-associated breast tumor microenvironments (TMEs). Yet, characterization of the normal microenvironment (NME) in breast tissue and how they associate with breast cancer risk factors remains unknown. N-glycans, a glucose metabolism-linked post-translational modification, has not been characterized in normal breast tissue. We hypothesized that normal female breast tissue with distinct Breast Imaging and Reporting Data Systems (BI-RADS) categories have unique microenvironments based on N-glycan signatures that varies with genetic ancestries. Profiles of N-glycans were characterized in normal breast tissue from BW (n = 20) and WW (n = 20) at risk for breast cancer using matrix assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI). A total of 176 N-glycans (32 core-fucosylated and 144 noncore-fucosylated) were identified in the NME. We found that certain core-fucosylated, outer-arm fucosylated and high-mannose N-glycan structures had specific intensity patterns and histological distributions in the breast NME dependent on BI-RADS densities and ancestry. Normal breast tissue from BW, and not WW, with heterogeneously dense breast densities followed high-mannose patterns as seen in invasive ductal and lobular carcinomas. Lastly, lifestyles factors (e.g. age, menopausal status, Gail score, BMI, BI-RADS) differentially associated with fucosylated and high-mannose N-glycans based on ancestry. This study aims to decipher the molecular signatures in the breast NME from distinct ancestries towards improving the overall disparities in breast cancer burden.


Asunto(s)
Manosa , Polisacáridos , Humanos , Femenino , Polisacáridos/metabolismo , Polisacáridos/química , Manosa/metabolismo , Manosa/química , Persona de Mediana Edad , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Glicómica , Mama/metabolismo , Mama/química , Mama/patología , Fucosa/metabolismo , Fucosa/química , Adulto , Microambiente Tumoral
10.
Eng Life Sci ; 24(6): 2300234, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38845814

RESUMEN

Cell engineering strategies typically rely on energy-consuming overexpression of genes or radical gene-knock out. Both strategies are not particularly convenient for the generation of slightly modulated phenotypes, as needed in biosimilar development of for example differentially fucosylated monoclonal antibodies (mAbs). Recently, transiently transfected small noncoding microRNAs (miRNAs), known to be regulators of entire gene networks, have emerged as potent fucosylation modulators in Chinese hamster ovary (CHO) production cells. Here, we demonstrate the applicability of stable miRNA overexpression in CHO production cells to adjust the fucosylation pattern of mAbs as a model phenotype. For this purpose, we applied a miRNA chaining strategy to achieve adjustability of fucosylation in stable cell pools. In addition, we were able to implement recently developed artificial miRNAs (amiRNAs) based on native miRNA sequences into a stable CHO expression system to even further fine-tune fucosylation regulation. Our results demonstrate the potential of miRNAs as a versatile tool to control mAb fucosylation in CHO production cells without adverse side effects on important process parameters.

11.
Front Mol Biosci ; 11: 1403727, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38863964

RESUMEN

Long since, carbohydrates were thought to be used just as an energy source and structural material. However, in recent years, with the emergence of the field of glycobiology and advances in glycomics, much has been learned about the biological role of oligosaccharides, a carbohydrate polymer containing a small number of monosaccharides, in cell-cell interaction, signal transduction, immune response, pathogen adhesion processes, early embryogenesis, and apoptosis. The function of oligosaccharides in these processes is diversified by fucosylation, also known as modification of oligosaccharides. Fucosylation has allowed the identification of more than 100 different oligosaccharide structures that provide functional diversity. ABO blood group and Lewis antigens are among the best known fucosyl-linked oligosaccharides. In addition, the antigens in the ABO system are composed of various sugar molecules, including fucosylated oligosaccharides, and Lewis antigens are structurally similar to ABO antigens but differ in the linkage of sugars. Variation in blood group antigen expression affects the host's susceptibility to many infections. However, altered expression of ABO and Lewis antigens is related with prognosis in carcinoma types. In addition, many pathogens recognize and bind to human tissues using a protein receptor with high affinity for the fucose molecule in glycoconjugates, such as lectin. Fucosylated oligosaccharides also play vital roles during fertilization and early embryogenesis. Learning and memory-related processes such as neurite growth, neurite migration, and synapse formation seen during the development of the brain, which is among the first organs to develop in embryogenesis, are regulated by fucosylated oligosaccharides. In conclusion, this review mentions the vital roles of fucosylated oligosaccharides in biology, drawing attention to their importance in the development of chemical tools to be used in function analysis and the investigation of various therapeutic targets.

12.
Methods Mol Biol ; 2810: 249-271, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38926284

RESUMEN

Genetic engineering plays an essential role in the development of cell lines for biopharmaceutical manufacturing. Advanced gene editing tools can improve both the productivity of recombinant cell lines as well as the quality of therapeutic antibodies. Antibody glycosylation is a critical quality attribute for therapeutic biologics because the glycan patterns on the antibody fragment crystallizable (Fc) region can alter its clinical efficacy and safety as a therapeutic drug. As an example, recombinant antibodies derived from Chinese hamster ovary (CHO) cells are generally highly fucosylated; the absence of α1,6-fucose significantly enhances antibody-dependent cell-mediated cytotoxicity (ADCC) against cancer cells. This chapter describes a protocol applying clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein 9 (Cas9) approach with different formats to disrupt the α-1,6-fucosyltransferase (FUT8) gene and subsequently inhibit α-1,6 fucosylation on antibodies expressed in CHO cells.


Asunto(s)
Sistemas CRISPR-Cas , Cricetulus , Fucosa , Fucosiltransferasas , Edición Génica , Células CHO , Animales , Edición Génica/métodos , Fucosiltransferasas/genética , Fucosiltransferasas/metabolismo , Glicosilación , Fucosa/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Cricetinae , Humanos
13.
Discov Oncol ; 15(1): 250, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38941002

RESUMEN

BACKGROUND: Gastric cancer (GC) is a malignant digestive tract tumor with a high recurrence rate and poor prognosis. Fucosylation is important in tumor glycosylation, in which the key enzyme is fucosyltransferase (FUT). FUT11 is a member of the fucosyltransferase family and has been closely associated with the development of multiple cancers. However, the specific relationship between FUT11 and GC prognosis and its molecular mechanism has not been fully studied. This study explored FUT11 expression, clinical correlation, and its role in GC occurrence and development to deepen understanding of its function. METHODS: FUT11 expression in 33 cancers was preliminarily analyzed using the Tumor Immunoassay Resource (TIMER2.0) database. FUT11 expression in GC was evaluated using The Cancer Genome Atlas stomach adenocarcinoma (TCGA-STAD) and Gene Expression Profiling Interactive Analysis (GEPIA2) data and verified using the Gene Expression Omnibus (GEO) GSE65801 dataset. Furthermore, we studied the survival prognosis of FUT11 in GC and analyzed its effect on the survival rate of patients with GC using the KM-plotter. We also performed COX regression analysis on TCGA GC clinical data and analyzed FUT11 expression in the pathway using the STRING and LinkedOmics databases. Moreover, the relationship between FUT11 and GC immune infiltration level was examined, and the Kaplan-Meier survival analysis diagram was constructed. The FUT11 genetic variation information was retrieved using cBioPortal, and its drug sensitivity was analyzed using CellMiner. Finally, differential FUT11 expression in GC tissues was verified using immunohistochemistry. RESULTS: The data mining and analysis demonstrated that FUT11 expression was abnormally elevated in GC tissues and correlated with poor patient prognosis. The FUT11 expression level was an independent prognostic factor for GC. The difference in FUT11 expression level resulted in different degrees of immune cell infiltration in the patients with GC, which might regulate the tumor microenvironment. FUT11 affected GC development by participating in cancer pathways such as PI3K-AKT, neuroactive ligand-receptor, and MAPK. Immunohistochemical staining revealed that FUT11 was highly expressed in GC. CONCLUSIONS: This study revealed that FUT11 expression is significantly increased in GC tissues. This increase is associated with poor prognosis and might affect immune regulation. FUT11 might have immunological and targeted therapeutic value, providing a new approach to GC treatment.

14.
Cell Commun Signal ; 22(1): 200, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38561745

RESUMEN

BACKGROUND: Hepatocellular carcinoma (HCC) ranks as the third most common cause of cancer related death globally, representing a substantial challenge to global healthcare systems. In China, the primary risk factor for HCC is the hepatitis B virus (HBV). Aberrant serum glycoconjugate levels have long been linked to the progression of HBV-associated HCC (HBV-HCC). Nevertheless, few study systematically explored the dysregulation of glycoconjugates in the progression of HBV-associated HCC and their potency as the diagnostic and prognostic biomarker. METHODS: An integrated strategy that combined transcriptomics, glycomics, and glycoproteomics was employed to comprehensively investigate the dynamic alterations in glyco-genes, N-glycans, and glycoproteins in the progression of HBV- HCC. RESULTS: Bioinformatic analysis of Gene Expression Omnibus (GEO) datasets uncovered dysregulation of fucosyltransferases (FUTs) in liver tissues from HCC patients compared to adjacent tissues. Glycomic analysis indicated an elevated level of fucosylated N-glycans, especially a progressive increase in fucosylation levels on IgA1 and IgG2 determined by glycoproteomic analysis. CONCLUSIONS: The findings indicate that the abnormal fucosylation plays a pivotal role in the progression of HBV-HCC. Systematic and integrative multi-omic analysis is anticipated to facilitate the discovery of aberrant glycoconjugates in tumor progression.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/metabolismo , Virus de la Hepatitis B/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Glicómica , Glicoproteínas/genética , Perfilación de la Expresión Génica , Polisacáridos
15.
J Proteome Res ; 23(4): 1379-1398, 2024 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-38507902

RESUMEN

Disruption of the glycosylation machinery is a common feature in many types of cancer, and colorectal cancer (CRC) is no exception. Core fucosylation is mediated by the enzyme fucosyltransferase 8 (FucT-8), which catalyzes the addition of α1,6-l-fucose to the innermost GlcNAc residue of N-glycans. We and others have documented the involvement of FucT-8 and core-fucosylated proteins in CRC progression, in which we addressed core fucosylation in the syngeneic CRC model formed by SW480 and SW620 tumor cell lines from the perspective of alterations in their N-glycosylation profile and protein expression as an effect of the knockdown of the FUT8 gene that encodes FucT-8. Using label-free, semiquantitative mass spectrometry (MS) analysis, we found noticeable differences in N-glycosylation patterns in FUT8-knockdown cells, affecting core fucosylation and sialylation, the Hex/HexNAc ratio, and antennarity. Furthermore, stable isotopic labeling of amino acids in cell culture (SILAC)-based proteomic screening detected the alteration of species involved in protein folding, endoplasmic reticulum (ER) and Golgi post-translational stabilization, epithelial polarity, and cellular response to damage and therapy. This data is available via ProteomeXchange with identifier PXD050012. Overall, the results obtained merit further investigation to validate their feasibility as biomarkers of progression and malignization in CRC, as well as their potential usefulness in clinical practice.


Asunto(s)
Neoplasias Colorrectales , Fucosiltransferasas , Humanos , Neoplasias Colorrectales/genética , Fucosa/metabolismo , Fucosiltransferasas/genética , Espectrometría de Masas , Polisacáridos/química , Proteómica
16.
Biotechnol Bioeng ; 121(5): 1659-1673, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38351869

RESUMEN

Monoclonal antibodies (MAbs) are powerful therapeutic tools in modern medicine and represent a rapidly expanding multibillion USD market. While bioprocesses are generally well understood and optimized for MAbs, online quality control remains challenging. Notably, N-glycosylation is a critical quality attribute of MAbs as it affects binding to Fcγ receptors (FcγRs), impacting the efficacy and safety of MAbs. Traditional N-glycosylation characterization methods are ill-suited for online monitoring of a bioreactor; in contrast, surface plasmon resonance (SPR) represents a promising avenue, as SPR biosensors can record MAb-FcγR interactions in real-time and without labeling. In this study, we produced five lots of differentially glycosylated Trastuzumab (TZM) and finely characterized their glycosylation profile by HILIC-UPLC chromatography. We then compared the interaction kinetics of these MAb lots with four FcγRs including FcγRIIA and FcγRIIB at 5°C and 25°C. When interacting with FcγRIIA/B at low temperature, the differentially glycosylated MAb lots exhibited distinct kinetic behaviors, contrary to room-temperature experiments. Galactosylated TZM (1) and core fucosylated TZM (2) could be discriminated and even quantified using an analytical technique based on the area under the curve of the signal recorded during the dissociation phase of a SPR sensorgram describing the interaction with FcγRIIA (1) or FcγRII2B (2). Because of the rapidity of the proposed method (<5 min per measurement) and the small sample concentration it requires (as low as 30 nM, exact concentration not required), it could be a valuable process analytical technology for MAb glycosylation monitoring.


Asunto(s)
Anticuerpos Monoclonales , Receptores de IgG , Anticuerpos Monoclonales/química , Receptores de IgG/metabolismo , Resonancia por Plasmón de Superficie , Glicosilación , Temperatura , Trastuzumab
17.
Heliyon ; 10(2): e24211, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38312635

RESUMEN

Glycoproteins, essential for cellular functions, contain monosaccharides like Levo-fucose, crucial for cell communication. Recent research highlights serum L-fucose as a potential biomarker for early detection of malignancies. Typically, serum L-fucose levels are low but rise with malignancy. This study evaluates serum L-fucose as an early biomarker in oral submucous fibrosis (OSMF) patients. Aim: Assess serum L-fucose's diagnostic potential for dysplasia in OSMF patients. Objectives: Determine the Association between Serum L Fucose Glycoprotein Levels and Dysplasia in OSF Patients.Evaluate the Diagnostic Accuracy of Serum L Fucose Glycoprotein as a Biomarker for OSF-Related Dysplasia. Methodology: Over a span of two years, this study encompassed 80 subjects, aged between 18 and 60 years, who were clinically and histopathologically identified as OSMF patients, with or without dysplastic alterations. From each participant, 5 ml of blood was collected. Following centrifugation to separate the serum, the samples were analyzed to determine the levels of Levo-fucose. Statistical analysis: Using SPSS (version 17.0), serum L-Fucose levels of the case group were compared to the control group using ANOVA. Frequencies were analyzed with the chi-square test, and Tukey's Test was used for multiple comparisons. Significance was set at p < 0.01. Results: The analysis revealed a statistically significant disparity in the mean serum L-Fucose levels between the two groups (p < 0.01). Notably, Group II patients (those with OSMF and dysplasia) exhibited markedly elevated mean serum L-fucose levels. Conclusion: Elevated serum L-Fucose levels were observed in OSMF patients with dysplasia. Harmful habits, especially gutkha chewing, were linked to Oral Squamous Cell Carcinoma onset. Serum L-fucose can be a reliable marker for evaluating precancerous conditions.

18.
Int J Mol Sci ; 25(2)2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38256141

RESUMEN

FUT8, the sole glycosyltransferase responsible for N-glycan core fucosylation, plays a crucial role in tumorigenesis and development. Aberrant FUT8 expression disrupts the function of critical cellular components and triggers the abnormality of tumor signaling pathways, leading to malignant transformations such as proliferation, invasion, metastasis, and immunosuppression. The association between FUT8 and unfavorable outcomes in various tumors underscores its potential as a valuable diagnostic marker. Given the remarkable variation in biological functions and regulatory mechanisms of FUT8 across different tumor types, gaining a comprehensive understanding of its complexity is imperative. Here, we review how FUT8 plays roles in tumorigenesis and development, and how this outcome could be utilized to develop potential clinical therapies for tumors.


Asunto(s)
Carcinogénesis , Transformación Celular Neoplásica , Fucosiltransferasas , Humanos , Carcinogénesis/genética , Transformación Celular Neoplásica/genética , Terapia de Inmunosupresión , Fucosiltransferasas/genética
19.
J Adv Res ; 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38280716

RESUMEN

INTRODUCTION: Ovarian low response to follicle-stimulating hormone (FSH) causes infertility featuring hypergonadotropic hypogonadism, ovarian failure, and/or defective ovarian response. OBJECTIVES: N-glycosylation is essential for FSH receptor (FSHR). Core fucosylation catalyzed by fucosyltransferase 8 (FUT8) is the most common N-glycosylation. Core fucosylation level changes between individuals and plays important roles in multiple physiological and pathological conditions. This study aims to elucidate the significance of FUT8 to modulate FSHR function in female fertility. METHODS: Samples from patients classified as poor ovary responders (PORs) were detected with lectin blot and real-time PCR. Fut8 gene knockout (Fut8-/-) mice and FUT8-knockdown human granulosa cell line (KGN-KD) were established and in vitro fertilization (IVF) assay, western blot, molecular interaction, immunofluorescence and immunoprecipitation were applied. RESULTS: Core fucosylation is indispensable for oocyte and follicular development. FSHR is a highly core-fucosylated glycoprotein. Loss of core fucosylation suppressed binding of FSHR to FSH, and attenuated FSHR downstream signaling in granulosa cells. Transcriptomic analysis revealed the downregulation of several transcripts crucial for oocyte meiotic progression and preimplantation development in Fut8-/- mice and in POR patients. Furthermore, loss of FUT8 inhibited the interaction between granulosa cells and oocytes, reduced transzonal projection (TZP) formation and caused poor developmental competence of oocytes after fertilization in vitro. While L-fucose administration increased the core fucosylation of FSHR, and its sensitivity to FSH. CONCLUSION: This study first reveals a significant presence of core fucosylation in female fertility control. Decreased fucosylation on FSHR reduces the interaction of FSH-FSHR and subsequent signaling, which is a feature of the POR patients. Our results suggest that core fucosylation controls oocyte and follicular development via the FSH/FSHR pathway and is essential for female fertility in mammals.

20.
Aging (Albany NY) ; 16(3): 2299-2319, 2024 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-38277230

RESUMEN

BACKGROUND: Kidney renal clear cell cancer (KIRC) is a type of urological cancer that occurs worldwide. Core fucosylation (CF), as the most common post-translational modification, is involved in the tumorigenesis. METHODS: The alterations of CF-related genes were summarized in pan-cancer. The "ConsensusClusterPlus" package was utilized to identify two CF-related KIRC subtypes. The "ssgsea" function was chosen to estimate the CF score, signaling pathways and cell deaths. Multiple algorithms were applied to assess immune responses. The "oncoPredict" was utilized to estimate the drug sensitivity. The IHC and subgroup analysis was performed to reveal the molecular features of FUT8. Single-cell RNA sequencing (scRNA-seq) data were scrutinized to evaluate the CF state. RESULTS: In pan-cancer, there was a noticeable alteration in the expression of CF-related genes. In KIRC, two CF-related subtypes (i.e., C1, C2) were obtained. In comparison to C2, C1 exhibited a higher CF score and correlated with poorer overall survival. Additionally, the TME of C2 demonstrated increased activity in neutrophils, macrophages, myeloid dendritic cells, and B cells, alongside a higher presence of silent mast cells, NK cells, and endothelial cells. Compared to normal samples, higher expression of FUT8 is observed in KIRC. The mutation of SETD2 was more frequent in low-FUT8 samples while the mutation of DNAH9 was more frequent in high-FUT8 samples. scRNA-seq analyses revealed that the CF score was predominantly higher in endothelial cells and fibroblast cells. CONCLUSIONS: Two CF-related subtypes with distinct prognosis and TME were identified in KIRC. FUT8 exhibited elevated expression in KIRC samples.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Células Endoteliales/metabolismo , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/metabolismo , Glicosilación , Neoplasias Renales/genética , Neoplasias Renales/metabolismo , Riñón/metabolismo , Dineínas Axonemales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA