Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros











Intervalo de año de publicación
1.
Insects ; 15(4)2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38667392

RESUMEN

The fruitless (fru) gene functions as a crucial "tuner" in male insect courtship behavior through distinct expression patterns. In Nilaparvata lugens, our previous research showed doublesex (dsx) influencing male courtship songs, causing mating failures with virgin females. However, the impact of fru on N. lugens mating remains unexplored. In this study, the fru homolog (Nlfru) in N. lugens yielded four spliceosomes: Nlfru-374-a/b, Nlfru-377, and Nlfru-433, encoding proteins of 374aa, 377aa, and 433aa, respectively. Notably, only Nlfru-374b exhibited male bias, while the others were non-sex-specific. All NlFRU proteins featured the BTB conserved domain, with NlFRU-374 and NlFRU-377 possessing the ZnF domain with different sequences. RNAi-mediated Nlfru or its isoforms' knockdown in nymph stages blocked wing-flapping behavior in mating males, while embryonic knockdown via maternal RNAi resulted in over 80% of males losing wing-flapping ability, and female receptivity was reduced. Nlfru expression was Nldsx-regulated, and yet courtship signals and mating success were unaffected. Remarkably, RNAi-mediated Nlfru knockdown up-regulated the expression of flightin in macropterous males, which regulated muscle stiffness and delayed force response, suggesting Nlfru's involvement in muscle development regulation. Collectively, our results indicate that Nlfru functions in N. lugens exhibit a combination of conservation and species specificity, contributing insights into fru evolution, particularly in Hemiptera species.

2.
Heliyon ; 10(3): e24614, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38317895

RESUMEN

"Fruitless Lycium barbarum leaf (FLBL) are the leaves of a new variety of Lycium barbarum in Ningxia, which exhibit higher content of various nutrients, trace elements, and bioactive substances compared to Lycium barbarum fruits and leaves. However, the health and medicinal value as well as the by-products derived from FLBL have not received sufficient attention, and the contents of main components vary at different harvesting periods. Therefore, for the first time this study aimed to establish high-performance liquid chromatography (HPLC) fingerprints and determine the contents of four phenolic acid bioactive substances during different harvesting periods in order to provide an experimental basis for cultivation, collection, and research on FLBL. The results revealed 17 common peaks among 10 batches samples with a similarity ranging from 0.71 to 0.976. The linear relationships R2 for catechin, epicatechin-catechin, chlorogenic acid, and rutin were determined as 0.9999 each; meanwhile, the average recovery rate ranged from 93.92 % to 120.11 %, with an RSD between 0.91 % and 2.82 %. The precision, repeatability stability (24 h), and recovery rate met the requirements outlined in "Chinese Pharmacopoeia". Catechin, epicatechin, and rutin exhibited higher levels from June to August, while chlorogenic acid showed increased levels from July to September. The findings serve as a foundation for quality control measures such as identifying optimal harvest periods or facilitating development and production processes related to Ningxia FLBL."

3.
WIREs Mech Dis ; 16(2): e1636, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38185860

RESUMEN

In multicellular organisms, sexed gonads have evolved that facilitate release of sperm versus eggs, and bilaterian animals purposefully combine their gametes via mating behaviors. Distinct neural circuits have evolved that control these physically different mating events for animals producing eggs from ovaries versus sperm from testis. In this review, we will describe the developmental mechanisms that sexually differentiate neural circuits across three major clades of bilaterian animals-Ecdysozoa, Deuterosomia, and Lophotrochozoa. While many of the mechanisms inducing somatic and neuronal sex differentiation across these diverse organisms are clade-specific rather than evolutionarily conserved, we develop a common framework for considering the developmental logic of these events and the types of neuronal differences that produce sex-differentiated behaviors. This article is categorized under: Congenital Diseases > Stem Cells and Development Neurological Diseases > Stem Cells and Development.


Asunto(s)
Semen , Diferenciación Sexual , Masculino , Animales , Reproducción , Células Germinativas , Espermatozoides
4.
Front Mol Neurosci ; 16: 1284367, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37928065

RESUMEN

Behavioral sex differences primarily derive from the sexually dimorphic organization of neural circuits that direct the behavior. In Drosophila melanogaster, the sex-determination genes fruitless (fru) and doublesex (dsx) play pivotal roles in producing the sexual dimorphism of neural circuits for behavior. Here we examine three neural groups expressing fru and/or dsx, i.e., the P1 cluster, aSP-f and aSP-g cluster pairs and aDN cluster, in which causal relationships between the dimorphic behavior and dimorphic neural characteristics are best illustrated. aSP-f, aSP-g and aDN clusters represent examples where fru or dsx switches cell-autonomously their neurite structures between the female-type and male-type. Processed sensory inputs impinging on these neurons may result in outputs that encode different valences, which culminate in the execution of distinct behavior according to the sex. In contrast, the P1 cluster is male-specific as its female counterpart undergoes dsx-driven cell death, which lowers the threshold for the induction of male-specific behaviors. We propose that the products of fru and dsx genes, as terminal selectors in sexually dimorphic neuronal wiring, induce and maintain the sex-typical chromatin state at postembryonic stages, orchestrating the transcription of effector genes that shape single neuron structures and govern cell survival and death.

5.
EMBO Rep ; 24(10): e56898, 2023 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-37530648

RESUMEN

Sexuality is generally prevented in newborns and arises with organizational rewiring of neural circuitry and optimization of fitness for reproduction competition. Recent studies reported that sex circuitry in Drosophila melanogaster is developed in juvenile males but functionally inhibited by juvenile hormone (JH). Here, we find that the fly sex circuitry, mainly expressing the male-specific fruitless (fruM ) and/or doublesex (dsx), is organizationally undeveloped and functionally inoperative in juvenile males. Artificially activating all fruM neurons induces substantial courtship in solitary adult males but not in juvenile males. Synaptic transmissions between major courtship regulators and all dsx neurons are strong in adult males but either weak or undetectable in juvenile males. We further find that JH does not inhibit male courtship in juvenile males but instead promotes courtship robustness in adult males. Our results indicate that the transition to sexuality from juvenile to adult flies requires organizational rewiring of neural circuitry.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Masculino , Drosophila melanogaster/genética , Factores de Transcripción , Proteínas de Drosophila/genética , Hormonas Juveniles , Conducta Sexual Animal/fisiología , Proteínas del Tejido Nervioso
6.
Proc Natl Acad Sci U S A ; 120(33): e2303318120, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37549285

RESUMEN

Innate behavior, such as courtship behavior, is controlled by a genetically defined set of neurons. To date, it remains challenging to visualize and artificially control the neural population that is active during innate behavior in a whole-brain scale. Immediate early genes (IEGs), whose expression is induced by neural activity, can serve as powerful tools to map neural activity in the animal brain. We screened for IEGs in vinegar fly Drosophila melanogaster and identified stripe/egr-1 as a potent neural activity marker. Focusing on male courtship as a model of innate behavior, we demonstrate that stripe-GAL4-mediated reporter expression can label fruitless (fru)-expressing neurons involved in courtship in an activity (experience)-dependent manner. Optogenetic reactivation of the labeled neurons elicited sexual behavior in males, whereas silencing of the labeled neurons suppressed courtship and copulation. Further, by combining stripe-GAL4-mediated reporter expression and detection of endogenous Stripe expression, we established methods that can label neurons activated under different contexts in separate time windows in the same animal. The cell assembly analysis of fru neural population in males revealed that distinct groups of neurons are activated during interactions with a female or another male. These methods will contribute to building a deeper understanding of neural circuit mechanisms underlying innate insect behavior.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster , Genes Inmediatos-Precoces , Factores de Transcripción , Animales , Femenino , Masculino , Cortejo , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/metabolismo , Instinto , Proteínas del Tejido Nervioso/metabolismo , Conducta Sexual Animal , Factores de Transcripción/metabolismo
7.
Insect Biochem Mol Biol ; 159: 103989, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37453662

RESUMEN

Sexual dimorphisms of the brain play essential roles in successful reproduction. Silkmoth Bombyx mori exhibits extensive sexual differences in sexual behavior, as well as their morphology. Although the neural circuits that transmit information about sex pheromone in the male brain are extensively analyzed, the molecular mechanisms that regulate their development are still elusive. In the present study, we focused on the silkmoth ortholog of fruitless (fru) as a candidate gene that regulates sexual dimorphisms of the brain. fru transcripts were expressed from multiple promoters in various tissues, and brain-specific transcripts were sex-specifically spliced, in a manner similar to Drosophila. Interestingly, fru was highly expressed in the adult female brain and the male larval testis. Analysis of CRISPR/Cas9-mediated fru knockout strains revealed that fru plays important roles in survival during late larval and pupal stages, testis development, and adult sexual behavior. fru mutant males exhibited highly reduced levels of courtship and low copulation rate, indicating that fru plays significant roles in the sexual behavior of silkmoths, although it is not absolutely necessary for copulation. In the fru mutant males, sexually dimorphic pattern of the odorant receptor expression was impaired, possibly causing the defects in courtship behavior. These results provide important clues to elucidate the development of sexual dimorphisms of silkmoth brains, as well as the evolution of fruitless gene in insects.


Asunto(s)
Bombyx , Proteínas de Drosophila , Masculino , Femenino , Animales , Bombyx/genética , Bombyx/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Cortejo , Factores de Transcripción/genética , Conducta Sexual Animal/fisiología , Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas del Tejido Nervioso/genética
8.
Vavilovskii Zhurnal Genet Selektsii ; 27(3): 250-263, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37293442

RESUMEN

The signal pathway of actin remodeling, including LIM-kinase 1 (LIMK1) and its substrate cofilin, regulates multiple processes in neurons of vertebrates and invertebrates. Drosophila melanogaster is widely used as a model object for studying mechanisms of memory formation, storage, retrieval and forgetting. Previously, active forgetting in Drosophila was investigated in the standard Pavlovian olfactory conditioning paradigm. The role of specific dopaminergic neurons (DAN) and components of the actin remodeling pathway in different forms of forgetting was shown. In our research, we investigated the role of LIMK1 in Drosophila memory and forgetting in the conditioned courtship suppression paradigm (CCSP). In the Drosophila brain, LIMK1 and p-cofilin levels appeared to be low in specific neuropil structures, including the mushroom body (MB) lobes and the central complex. At the same time, LIMK1 was observed in cell bodies, such as DAN clusters regulating memory formation in CCSP. We applied GAL4 × UAS binary system to induce limk1 RNA interference in different types of neurons. The hybrid strain with limk1 interference in MB lobes and glia showed an increase in 3-h short-term memory (STM), without significant effects on long-term memory. limk1 interference in cholinergic neurons (CHN) impaired STM, while its interference in DAN and serotoninergic neurons (SRN) also dramatically impaired the flies' learning ability. By contrast, limk1 interference in fruitless neurons (FRN) resulted in increased 15-60 min STM, indicating a possible LIMK1 role in active forgetting. Males with limk1 interference in CHN and FRN also showed the opposite trends of courtship song parameters changes. Thus, LIMK1 effects on the Drosophila male memory and courtship song appeared to depend on the neuronal type or brain structure.

9.
Genetics ; 224(2)2023 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-36999545

RESUMEN

The regulation of the initiation of transcription by transcription factors is often assumed to be dependent on specific recognition of DNA-binding sites and nonredundant. However, the redundant induction or rescue of a phenotype by transcription factors, phenotypic nonspecificity, challenges these assumptions. To assess the frequency of phenotypic nonspecificity in the rescue of transcription factor phenotypes, seven transcription factor phenotypes (labial, Deformed, Sex combs reduced, Ultrabithorax, fruitless, doublesex, and apterous) were screened for rescue by the expression of 12, or more, nonresident transcription factors. From 308 assessments of rescue by nonresident transcription factors, 18 rescues were identified across 6 of the 7 transcription factor phenotypes. Seventeen of the 18 rescues were with transcription factors that recognize distinct DNA-binding sites relative to the resident transcription factors. All rescues were nonuniform across pleiotropic transcription factor phenotypes suggesting extensive differential pleiotropy of the rescue. Primarily using RNAi to knockdown expression, and with the exceptions of the requirement of Bric a Brac 1 for female abdominal pigmentation and Myb oncogene-like for wing development, no evidence was found for a role of the other 16 nonresident transcription factor in the transcription factor phenotypes assessed. Therefore, these 16 rescues are likely due to functional complementation and not due to the expression of an epistatic function in the developmental/behavioral pathway. Phenotypic nonspecificity is both differentially pleiotropic and frequent, as on average 1 in 10-20 nonresident transcription factors rescue a phenotype. These observations will be important in future considerations of transcription factors function.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster , Animales , Femenino , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Fenotipo , Regulación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Proteínas de Ciclo Celular/genética , Proteínas Proto-Oncogénicas c-myb/genética , Proteínas Proto-Oncogénicas c-myb/metabolismo
10.
G3 (Bethesda) ; 13(6)2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36972331

RESUMEN

Social experience and pheromone signaling in olfactory neurons affect neuronal responses and male courtship behaviors in Drosophila. We previously showed that social experience and pheromone signaling modulate chromatin around behavioral switch gene fruitless, which encodes a transcription factor necessary and sufficient for male sexual behaviors. Fruitless drives social experience-dependent modulation of courtship behaviors and physiological sensory neuron responses to pheromone; however, the molecular mechanisms underlying this modulation of neural responses remain less clear. To identify the molecular mechanisms driving social experience-dependent changes in neuronal responses, we performed RNA-seq from antennal samples of mutants in pheromone receptors and fruitless, as well as grouped or isolated wild-type males. Genes affecting neuronal physiology and function, such as neurotransmitter receptors, ion channels, ion and membrane transporters, and odorant binding proteins are differentially regulated by social context and pheromone signaling. While we found that loss of pheromone detection only has small effects on differential promoter and exon usage within fruitless gene, many of the differentially regulated genes have Fruitless-binding sites or are bound by Fruitless in the nervous system. Recent studies showed that social experience and juvenile hormone signaling co-regulate fruitless chromatin to modify pheromone responses in olfactory neurons. Interestingly, genes involved in juvenile hormone metabolism are also misregulated in different social contexts and mutant backgrounds. Our results suggest that modulation of neuronal activity and behaviors in response to social experience and pheromone signaling likely arise due to large-scale changes in transcriptional programs for neuronal function downstream of behavioral switch gene function.


Asunto(s)
Proteínas de Drosophila , Animales , Masculino , Proteínas de Drosophila/metabolismo , Conducta Sexual Animal/fisiología , Drosophila/genética , Feromonas/metabolismo , Células Receptoras Sensoriales/metabolismo , Expresión Génica , Drosophila melanogaster/genética
11.
Elife ; 122023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36724009

RESUMEN

Drosophila melanogaster reproductive behaviors are orchestrated by fruitless neurons. We performed single-cell RNA-sequencing on pupal neurons that produce sex-specifically spliced fru transcripts, the fru P1-expressing neurons. Uniform Manifold Approximation and Projection (UMAP) with clustering generates an atlas containing 113 clusters. While the male and female neurons overlap in UMAP space, more than half the clusters have sex differences in neuron number, and nearly all clusters display sex-differential expression. Based on an examination of enriched marker genes, we annotate clusters as circadian clock neurons, mushroom body Kenyon cell neurons, neurotransmitter- and/or neuropeptide-producing, and those that express doublesex. Marker gene analyses also show that genes that encode members of the immunoglobulin superfamily of cell adhesion molecules, transcription factors, neuropeptides, neuropeptide receptors, and Wnts have unique patterns of enriched expression across the clusters. In vivo spatial gene expression links to the clusters are examined. A functional analysis of fru P1 circadian neurons shows they have dimorphic roles in activity and period length. Given that most clusters are comprised of male and female neurons indicates that the sexes have fru P1 neurons with common gene expression programs. Sex-specific expression is overlaid on this program, to build the potential for vastly different sex-specific behaviors.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster , Animales , Femenino , Masculino , Drosophila melanogaster/fisiología , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Transcriptoma , Conducta Sexual Animal/fisiología , Neuronas/fisiología , Caracteres Sexuales , Proteínas del Tejido Nervioso/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
12.
Proc Biol Sci ; 290(1992): 20222083, 2023 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-36722087

RESUMEN

Sexual dimorphism is common in animals. The most complete model of sex determination comes from Drosophila melanogaster, where the relative dosage of autosomes and X chromosomes leads indirectly to sex-specific transcripts of doublesex (dsx). Female Dsx interacts with a mediator complex protein encoded by intersex (ix) to activate female development. In males, the transcription factor encoded by fruitless (fru) promotes male-specific behaviour. The genetics of sex determination have been examined in a small number of other insects, yet several questions remain about the plesiomorphic state. Is dsx required for female and male development? Is fru conserved in male behaviour or morphology? Are other components such as ix functionally conserved? To address these questions, we report expression and functional tests of dsx, ix and fru in the hemipteran Oncopeltus fasciatus, characterizing three sexual dimorphisms. dsx prevents ix phenotypes in all sexes and dimorphic traits in the milkweed bug. ix and fru are expressed across the body, in females and males. fru and ix also affect the genitalia of both sexes, but have effects limited to different dimorphic structures in different sexes. These results reveal roles for ix and fru distinct from other insects, and demonstrate distinct development mechanisms in different sexually dimorphic structures.


Asunto(s)
Heterópteros , Caracteres Sexuales , Animales , Femenino , Masculino , Núcleo Celular , Proteínas de Unión al ADN , Genitales , Heterópteros/genética , Proteínas del Tejido Nervioso , Factores de Transcripción
13.
Insects ; 13(11)2022 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-36421951

RESUMEN

Targeting genes involved in sexual determinism, for vector or pest control purposes, requires a better understanding of their polymorphism in natural populations in order to ensure a rapid spread of the construct. By using genomic data from An. gambiae s.l., we analyzed the genetic variation and the conservation score of the fru gene in 18 natural populations across Africa. A total of 34,339 SNPs were identified, including 3.11% non-synonymous segregating sites. Overall, the nucleotide diversity was low, and the Tajima's D neutrality test was negative, indicating an excess of low frequency SNPs in the fru gene. The allelic frequencies of the non-synonymous SNPs were low (freq < 0.26), except for two SNPs identified at high frequencies (freq > 0.8) in the zinc-finger A and B protein domains. The conservation score was variable throughout the fru gene, with maximum values in the exonic regions compared to the intronic regions. These results showed a low genetic variation overall in the exonic regions, especially the male sex-specific exon and the BTB-exon 1 of the fru gene. These findings will facilitate the development of an effective gene drive construct targeting the fru gene that can rapidly spread without encountering resistance in wild populations.

14.
Neurosci Bull ; 38(11): 1277-1291, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35788510

RESUMEN

The choice of females to accept or reject male courtship is a critical decision for animal reproduction. Serotonin (5-hydroxytryptamine; 5-HT) has been found to regulate sexual behavior in many species, but it is unclear how 5-HT and its receptors function to regulate different aspects of sexual behavior. Here we used Drosophila melanogaster as the model animal to investigate how 5-HT and its receptors modulate female sexual receptivity. We found that knockout of tryptophan hydroxylase (Trh), which is involved in the biosynthesis of 5-HT, severely reduced virgin female receptivity without affecting post-mating behaviors. We identified a subset of sexually dimorphic Trh neurons that co-expressed fruitless (fru), in which the activity was correlated with sexual receptivity in females. We also found that 5-HT1A and 5-HT7 receptors regulate virgin female receptivity. Our findings demonstrate how 5-HT functions in sexually dimorphic neurons to promote virgin female receptivity through two of its receptors.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Masculino , Femenino , Drosophila/fisiología , Drosophila melanogaster/fisiología , Serotonina , Proteínas de Drosophila/fisiología , Conducta Sexual Animal/fisiología , Factores de Transcripción , Proteínas del Tejido Nervioso
15.
Artículo en Inglés | MEDLINE | ID: mdl-34920111

RESUMEN

The fruitless (fru) gene has an important function in the courtship behavior and sex determination pathway of Drosophila melanogaster; however, the fru gene has never been reported in shrimps. In this study, the fruitless-like gene was identified in Cherax quadricarinatus (Cqfru) and is reported here for the first time. A sequence analysis revealed a conserved BTB domain in Cqfru which is the same as fru in D. melanogaster. An analysis of the expression level of Cqfru showed that it was highly expressed in the gastrula stage during embryonic development. Furthermore, in situ hybridization and expression distribution in tissues showed that its sexually dimorphic expression may be focused on the hepatopancreas, brains, and gonads. The gonads, brains, and hepatopancreas of males had a higher expression level of Cqfru than those of females; however, the expression level of the abdominal ganglion was found to be higher in females than in males in this study. The results of an RNA interference treatment showed that a knockdown of Cqfru reduced the expression of the insulin-like androgenic gland hormone (IAG) and tumor necrosis factor (TNF). The characteristic fru gene in shrimps is reported here for the first time, with the results providing basic information for research into the sex-determination mechanism in C. quadricarinatus.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster , Animales , Astacoidea/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Femenino , Masculino , Proteínas del Tejido Nervioso/genética , Caracteres Sexuales , Procesos de Determinación del Sexo/genética , Factores de Transcripción/metabolismo
16.
Genes Brain Behav ; 20(8): e12772, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34672079

RESUMEN

Male sexual behavior in Drosophila melanogaster, largely controlled by the fruitless (fru) gene encoding the male specific FruM protein, is among the best studied animal behaviors. Although substantial studies suggest that FruM specifies a neuronal circuitry governing all aspects of male sexual behaviors, recent findings show that FruM is not absolutely necessary for such behaviors. We propose that another regulatory gene doublesex encoding the male-specific DsxM protein builds a core neuronal circuitry that possesses the potential for courtship, which could be either induced through adult social experience or innately manifested during development by FruM expression in a broader neuronal circuitry. FruM expression levels and patterns determine the modes of courtship behavior from innate heterosexual, homosexual, bisexual, to learned courtship. We discuss how FruM expression is regulated by hormones and social experiences and tunes functional flexibility of the sex circuitry. We propose that regulatory genes hierarchically build the potential for innate and learned aspects of courtship behaviors, and expression changes of these regulatory genes among different individuals and species with different social experiences ultimately lead to behavioral diversification.


Asunto(s)
Proteínas de Unión al ADN/genética , Proteínas de Drosophila/genética , Preferencia en el Apareamiento Animal , Proteínas del Tejido Nervioso/genética , Factores de Transcripción/genética , Animales , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Femenino , Masculino , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Factores de Transcripción/metabolismo
17.
J Neurogenet ; 35(3): 285-294, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34338589

RESUMEN

The identification of mutations in the gene fruitless (fru) paved the way for understanding the genetic basis of male sexual behavior in the vinegar fly Drosophila melanogaster. D. melanogaster males perform an elaborate courtship display to the female, ultimately leading to copulation. Mutations in fru have been shown to disrupt most aspects of the male's behavioral display, rendering males behaviorally sterile. The fru genomic locus encodes for multiple transcription factor isoforms from several promoters; only those under the regulation of the most distal P1 promoter are under the control of the sex determination hierarchy and play a role in male-specific behaviors. In this study, we used CRISPR/Cas9-based targeted genome editing of the fru gene, to remove the P1 promoter region. We have shown that removal of the P1 promoter leads to a dramatic decrease in male courtship displays towards females and male-specific sterility. We have expanded the analysis of fru P1-dependent behaviors, examining male's response to courtship song and general activity levels during12-hour light: dark cycles. Our novel allele expands the mutant repertoire available for future studies of fru P1-derived function in D. melanogaster. Our fruΔP1 mutant will be useful for future studies of fru P1-derived function, as it can be homozygosed without disrupting additional downstream promoter function and can be utilized in heterozygous combinations with other extant fru alleles.


Asunto(s)
Cortejo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Proteínas del Tejido Nervioso/genética , Conducta Sexual Animal/fisiología , Factores de Transcripción/genética , Animales , Masculino , Mutación , Regiones Promotoras Genéticas
18.
Proc Biol Sci ; 288(1950): 20202958, 2021 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-33975471

RESUMEN

The amount of genetic variation for fitness within populations tends to exceed that expected under mutation-selection-drift balance. Several mechanisms have been proposed to actively maintain polymorphism and account for this discrepancy, including antagonistic pleiotropy (AP), where allelic variants have opposing effects on different components of fitness. Here, we identify a non-coding indel polymorphism in the fruitless gene of Drosophila melanogaster and measure survival and reproductive components of fitness in males and females of replicate lines carrying each respective allele. Expressing the fruitless region in a hemizygous state reveals a pattern of AP, with one allele generating greater reproductive fitness and the other conferring greater survival to adulthood. Different fitness effects were observed in an alternative genetic background, which may reflect dominance reversal and/or epistasis. Our findings link sequence-level variation at a single locus with complex effects on a range of fitness components, thus helping to explain the maintenance of genetic variation for fitness. Transcription factors, such as fruitless, may be prime candidates for targets of balancing selection since they interact with multiple target loci and their associated phenotypic effects.


Asunto(s)
Drosophila melanogaster , Aptitud Genética , Alelos , Animales , Drosophila melanogaster/genética , Femenino , Variación Genética , Masculino , Mutación , Polimorfismo Genético , Selección Genética
19.
Addict Biol ; 26(5): e13045, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34044470

RESUMEN

Alcohol-induced aggression is a destructive and widespread phenomenon associated with violence and sexual assault. However, little is understood concerning its mechanistic origin. We have developed a Drosophila melanogaster model to genetically dissect and understand the phenomenon of sexually dimorphic alcohol-induced aggression. Males with blood alcohol levels of 0.04-mg/ml BAC were less aggressive than alcohol-naive males, but when the BAC had dropped to ~0.015 mg/ml, the alcohol-treated males showed an increase in aggression toward other males. This aggression-promoting treatment is referred to as the post-ethanol aggression (PEA) treatment. Females do not show increased aggression after the same treatment. PEA-treated males also spend less time courting and attempt to copulate earlier than alcohol-naive flies. PEA treatment induces expression of the FruM transcription factor (encoded by a male-specific transcript from the fruitless gene), whereas sedating doses of alcohol reduce FruM expression and reduce male aggression. Transgenic suppression of FruM induction also prevents alcohol-induced aggression. In male flies, alcohol-induced aggression is dependent on the male isoform of the fruitless transcription factor (FruM). Low-dose alcohol induces FruM expression and promotes aggression, whereas higher doses of alcohol suppress FruM and suppress aggression.


Asunto(s)
Agresión , Etanol/metabolismo , Conducta Sexual Animal/efectos de los fármacos , Animales , Drosophila melanogaster , Femenino , Regulación de la Expresión Génica , Masculino , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Caracteres Sexuales , Factores de Transcripción
20.
Elife ; 102021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33463521

RESUMEN

Drosophila male courtship is controlled by the male-specific products of the fruitless (fruM) gene and its expressing neuronal circuitry. fruM is considered a master gene that controls all aspects of male courtship. By temporally and spatially manipulating fruM expression, we found that fruM is required during a critical developmental period for innate courtship toward females, while its function during adulthood is involved in inhibiting male-male courtship. By altering or eliminating fruM expression, we generated males that are innately heterosexual, homosexual, bisexual, or without innate courtship but could acquire such behavior in an experience-dependent manner. These findings show that fruM is not absolutely necessary for courtship but is critical during development to build a sex circuitry with reduced flexibility and enhanced efficiency, and provide a new view about how fruM tunes functional flexibility of a sex circuitry instead of switching on its function as conventionally viewed.


Innate behaviors are behaviors that do not need to be learned. They include activities such as nest building in birds and web spinning in spiders. Another behavior that has been extensively studied, and which is generally considered to be innate, is courtship in fruit flies. Male fruit flies serenade potential mates by vibrating their wings to create a complex melody. This behavior is under the control of a gene called 'fruitless', which gives rise to several distinct proteins, including one that is unique to males. For many years, this protein ­ called FruM ­ was thought to be the master switch that activates courtship behavior. But recent findings have challenged this idea. They show that although male flies that lack FruM fail to show courtship behaviors if raised in isolation, they can still learn them if raised in groups. This suggests that the role of FruM is more complex than previously thought. To determine how FruM controls courtship behavior, Chen et al. have used genetic tools to manipulate FruM activity in male flies at different stages of the life cycle and distinct cells of the nervous system. The results revealed that FruM must be present during a critical period of development ­ but not adulthood ­ for male flies to court females. However, FruM strongly influences the type of courtship behavior the male flies display. The amount and location of FruM determines whether males show heterosexual, homosexual or bisexual courtship behaviors. Adult flies with lower levels of FruM show an increase in homosexual courtship and a decrease in heterosexual courtship. These findings provide a fresh view on how a master gene can generate complex and flexible behaviors. They show that fruitless, and the FruM protein it encodes, work distinctly at different life cycles to modify the type of courtship behavior shown by male flies, rather than simply switching courtship behavior on and off. Exactly how FruM acts within the fruit fly brain to achieve these complex effects requires further investigation.


Asunto(s)
Cortejo , Proteínas de Drosophila/genética , Drosophila melanogaster/fisiología , Proteínas del Tejido Nervioso/genética , Conducta Sexual Animal , Factores de Transcripción/genética , Animales , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Femenino , Masculino , Proteínas del Tejido Nervioso/metabolismo , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA