Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 628
Filtrar
1.
Eur J Neurosci ; 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39223860

RESUMEN

Working memory (WM) involves the capacity to maintain and manipulate information over short periods. Previous research has suggested that fronto-parietal activities play a crucial role in WM. However, there remains no agreement on the effect of working memory load (WML) on neural activities and haemodynamic responses. Here, our study seeks to examine the effect of WML through simultaneous electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS). In this study, a delay change detection task was conducted on 23 healthy volunteers. The task included three levels: one item, three items and five items. The EEG and fNIRS were simultaneously recorded during the task. Neural activities and haemodynamic responses at prefrontal and parietal regions were analysed using time-frequency analysis and weighted phase-lag index (wPLI). We observed a significant enhancement in prefrontal and parietal ß suppression as WML increased. Furthermore, as WML increased, there was a notable enhancement in fronto-parietal connectivity (FPC), as evidenced by both EEG and fNIRS. Correlation analysis indicated that as WML increased, there was a potential for enhancement of neurovascular coupling (NVC) of FPC.

2.
Brain Imaging Behav ; 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39269599

RESUMEN

Insomnia is a widespread health problem among adults, and it impairs cognitive control and emotional regulation functions. Stress and insomnia are positively correlated, and their vicious cycle has been widely reported. In this study, we explore the neural biomarkers of insomnia from the perspective of whole-brain functional connectivity and investigate the neural mechanisms underlying the association between stress and insomnia. The current study was conducted on a cross-sectional sample (N = 430). First, we investigated the correlation between perceived stress and insomnia. Second, we applied connectome-based predictive modeling (CPM) to determine the neuromarkers of insomnia. Finally, we explored the neural basis underlying the association between perceived stress and insomnia. A significant positive correlation was found between perceived stress and insomnia in the present research. Results of CPM revealed the following as the neural substrates supporting insomnia: the emotion regulation circuit involving repetitive negative thinking and the cognitive control circuit involving attention control. According to further results from mediation analysis, the frontoparietal network supporting cognitive emotion regulation is an important neural mechanism that maintains the correlation between stress and insomnia. The present study offers a profound insight into the alterations of brain activity related to insomnia, and it further investigates the neural underpinnings of the robust association between stress and insomnia. This study also opens new avenues for neural interventions to alleviate stress-related insomnia.

3.
Brain Behav ; 14(9): e70022, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39295099

RESUMEN

BACKGROUND: Prolonged changes to functional network connectivity as a result of a traumatic brain injury (TBI) may relate to long-term cognitive complaints reported by TBI survivors. No interventions have proven to be effective at treating long-term cognitive complaints after TBI but physical activity has been shown to promote cognitive function and modulate functional network connectivity in non-injured adults. Therefore, the objective of this study was to test if physical activity engagement was associated with functional connectivity of the cognitively relevant frontoparietal control network (FPCN) in adults with a TBI history. METHODS: In a case-control study design, resting state function magnetic resonance imaging and physical activity data from a subset of participants (18-81 years old) from the Cambridge Centre for Ageing and Neuroscience (Cam-CAN) study was analyzed. Fifty-seven participants reported a prior head injury with loss of consciousness and 57 age and sex matched controls were selected. Seed-based functional connectivity analyses were performed using seeds in the dorsolateral prefrontal cortex and the inferior parietal lobule, to test for differences in functional connectivity between groups, associations between physical activity and functional connectivity within TBI as well as differential associations between physical activity and functional connectivity between TBI and controls. RESULTS: Seed-based connectivity analyses from the dorsolateral prefrontal cortex showed that those with a history of TBI had decreased positive connectivity between dorsolateral prefrontal cortex and intracalcarine cortex, lingual gyrus, and cerebellum, and increased positive connectivity between dorsolateral prefrontal cortex and cingulate gyrus and frontal pole in the TBI group. Results showed that higher physical activity was positively associated with increased connectivity between the dorsolateral prefrontal cortex and inferior temporal gyrus. Differential associations were observed between groups whereby the strength of the physical activity-functional connectivity association was different between the inferior parietal lobule and inferior temporal gyrus in TBI compared to controls. DISCUSSION: Individuals with a history of TBI show functional connectivity alterations of the FPCN. Moreover, engagement in physical activity is associated with functional network connectivity of the FPCN in those with a TBI. These findings are consistent with the evidence that physical activity affects FPCN connectivity in non-injured adults; however, this effect presents differently in those with a history of TBI.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Ejercicio Físico , Imagen por Resonancia Magnética , Lóbulo Parietal , Humanos , Masculino , Femenino , Adulto , Persona de Mediana Edad , Lesiones Traumáticas del Encéfalo/fisiopatología , Lesiones Traumáticas del Encéfalo/diagnóstico por imagen , Lóbulo Parietal/fisiopatología , Lóbulo Parietal/diagnóstico por imagen , Anciano , Estudios de Casos y Controles , Adulto Joven , Ejercicio Físico/fisiología , Anciano de 80 o más Años , Adolescente , Red Nerviosa/fisiopatología , Red Nerviosa/diagnóstico por imagen , Lóbulo Frontal/fisiopatología , Lóbulo Frontal/diagnóstico por imagen
4.
Front Psychol ; 15: 1441584, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39295768

RESUMEN

Introduction: While traditional neuroimaging approaches to the study of executive functions (EFs) have typically employed task-evoked paradigms, resting state studies are gaining popularity as a tool for investigating inter-individual variability in the functional connectome and its relationship to cognitive performance outside of the scanner. Method: Using resting state functional magnetic resonance imaging data from the Human Connectome Project Lifespan database, the present study capitalized on graph theory to chart cross-sectional variations in the intrinsic functional organization of the frontoparietal (FPN) and the default mode (DMN) networks in 500 healthy individuals (from 10 to 100 years of age), to investigate the neural underpinnings of EFs across the lifespan. Results: Topological properties of both the FPN and DMN were associated with EF performance but not with a control task of picture naming, providing specificity in support for a tight link between neuro-functional and cognitive-behavioral efficiency within the EF domain. The topological organization of the DMN, however, appeared more sensitive to age-related changes relative to that of the FPN. Discussion: The DMN matures earlier in life than the FPN and it is more susceptible to neurodegenerative changes. Because its activity is stronger in conditions of resting state, the DMN might be easier to measure in noncompliant populations and in those at the extremes of the life-span curve, namely very young or elder participants. Here, we argue that the study of its functional architecture in relation to higher order cognition across the lifespan might, thus, be of greater interest compared with what has been traditionally thought.

5.
Biol Psychiatry ; 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39218135

RESUMEN

BACKGROUND: Abnormalities in structural-functional connectivity (SC-FC) coupling have been identified globally in patients with major depressive disorder (MDD). However, investigations have neglected the variability and hierarchical distribution of these abnormalities across different brain regions. Furthermore, the biological mechanisms underlying regional SC-FC coupling patterns are not well understood. METHODS: We enrolled 182 patients with MDD and 157 healthy control (HC) subjects, quantifying the intergroup differences in regional SC-FC coupling. The extreme gradient boosting (XGBoost), support vector machines (SVM) and random forest (RF) models were constructed to assess the potential of SC-FC coupling as biomarkers for MDD diagnosis and symptom prediction. Then, we examined the link between changes in regional SC-FC coupling in patients with MDD, neurotransmitter distributions, and gene expression. RESULTS: We observed increased regional SC-FC coupling in default mode network (T = 3.233) and decreased coupling in frontoparietal network (T = -3.471) in MDD relative to HC. XGBoost (AUC = 0.853), SVM (AUC = 0.832) and RF (p < 0.05) models exhibited good prediction performance. The alterations in regional SC-FC coupling in patients with MDD were correlated with the distributions of four neurotransmitters (p < 0.05) and expression maps of specific genes. These genes were strongly enriched in genes implicated in excitatory neurons, inhibitory neurons, cellular metabolism, synapse function, and immune signaling. These findings were replicated on two brain atlases. CONCLUSIONS: This work enhances our understanding of MDD and pave the way for the development of additional targeted therapeutic interventions.

6.
Dev Cogn Neurosci ; 69: 101419, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39098250

RESUMEN

Mathematical operations are cognitive actions we take to calculate relations among numbers. Arithmetic operations, addition, subtraction, multiplication, and division are elemental in education. Addition is the first one taught in school and is most popular in functional magnetic resonance imaging (fMRI) studies. Division, typically taught last is least studied with fMRI. fMRI meta-analyses show that arithmetic operations activate brain areas in parietal, cingulate and insular cortices for children and adults. Critically, no meta-analysis examines concordance across brain correlates of separate arithmetic operations in children and adults. We review and examine using quantitative meta-analyses data from fMRI articles that report brain coordinates separately for addition, subtraction, multiplication, and division in children and adults. Results show that arithmetic operations elicit common areas of concordance in fronto-parietal and cingulo-opercular networks in adults and children. Between operations differences are observed primarily for adults. Interestingly, higher within-group concordance, expressed in activation likelihood estimates, is found in brain areas associated with the cingulo-opercular network rather than the fronto-parietal network in children, areas also common between adults and children. Findings are discussed in relation to constructivist cognitive theory and practical directions for future research.

7.
Front Neurosci ; 18: 1368754, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39091347

RESUMEN

Objective: Recent studies have shown that transcutaneous vagal nerve stimulation (tVNS) holds promise as a treatment for neurological or psychiatric disease through the ability to modulate neural activity in some brain regions without an invasive procedure. The objective of this study was to identify the neural correlates underlying the effects of tVNS. Methods: Twenty right-handed healthy subjects with normal hearing participated in this study. An auricle-applied tVNS device (Soricle, Neurive Co., Ltd., Gyeongsangnam-do, Republic of Korea) was used to administer tVNS stimulation. A session consisted of 14 blocks, including 7 blocks of tVNS stimulation or sham stimulation and 7 blocks of rest, and lasted approximately 7 min (1 block = 30 s). Functional magnetic resonance imaging (fMRI) was performed during the stimulation. Results: No activated regions were observed in the fMRI scans following both sham stimulation and tVNS after the first session. After the second session, tVNS activated two clusters of brain regions in the right frontal gyrus. A comparison of the activated regions after the second session of each stimulation revealed that the fMRI following tVNS exhibited four surviving clusters. Additionally, four clusters were activated in the overall stimulated area during both the first and second sessions. When comparing the fMRI results after each type of stimulation, the fMRI following tVNS showed four surviving clusters compared to the fMRI after sham stimulation. Conclusion: tVNS could stimulate some brain regions, including the fronto-parietal network. Stimulating these regions for treating neurological or psychiatric disease might require applying tVNS for at least 3.5 min.

8.
Brain Sci ; 14(8)2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39199467

RESUMEN

Decision-making is a cognitive process involving working memory, executive function, and attention. However, the connectivity of large-scale brain networks during decision-making is not well understood. This is because gaining access to large-scale brain networks in humans is still a novel process. Here, we used SEEG (stereoelectroencephalography) to record neural activity from the default mode network (DMN), dorsal attention network (DAN), and frontoparietal network (FN) in ten humans while they performed a gambling task in the form of the card game, "War". By observing these networks during a decision-making period, we related the activity of and connectivity between these networks. In particular, we found that gamma band activity was directly related to a participant's ability to bet logically, deciding what betting amount would result in the highest monetary gain or lowest monetary loss throughout a session of the game. We also found connectivity between the DAN and the relation to a participant's performance. Specifically, participants with higher connectivity between and within these networks had higher earnings. Our preliminary findings suggest that connectivity and activity between these networks are essential during decision-making.

10.
Neuroimage ; 297: 120761, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39069226

RESUMEN

Flexible cognitive functions, such as working memory (WM), usually require a balance between localized and distributed information processing. However, it is challenging to uncover how local and distributed processing specifically contributes to task-induced activity in a region. Although the recently proposed activity flow mapping approach revealed the relative contribution of distributed processing, few studies have explored the adaptive and plastic changes that underlie cognitive manipulation. In this study, we recruited 51 healthy volunteers (31 females) and investigated how the activity flow and brain activation of the frontoparietal systems was modulated by WM load and training. While the activation of both executive control network (ECN) and dorsal attention network (DAN) increased linearly with memory load at baseline, the relative contribution of distributed processing showed a linear response only in the DAN, which was prominently attributed to within-network activity flow. Importantly, adaptive training selectively induced an increase in the relative contribution of distributed processing in the ECN and also a linear response to memory load, which were predominantly due to between-network activity flow. Furthermore, we demonstrated a causal effect of activity flow prediction through training manipulation on connectivity and activity. In contrast with classic brain activation estimation, our findings suggest that the relative contribution of distributed processing revealed by activity flow prediction provides unique insights into neural processing of frontoparietal systems under the manipulation of cognitive load and training. This study offers a new methodological framework for exploring information integration versus segregation underlying cognitive processing.


Asunto(s)
Función Ejecutiva , Imagen por Resonancia Magnética , Memoria a Corto Plazo , Humanos , Femenino , Masculino , Adulto Joven , Adulto , Memoria a Corto Plazo/fisiología , Función Ejecutiva/fisiología , Mapeo Encefálico , Atención/fisiología , Cognición/fisiología , Encéfalo/fisiología , Red Nerviosa/fisiología , Red Nerviosa/diagnóstico por imagen , Lóbulo Parietal/fisiología
11.
Brain Sci ; 14(7)2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39061446

RESUMEN

Lack of sleep has been found to be associated with cognitive impairment in children, yet the neural mechanism underlying this relationship remains poorly understood. To address this issue, this study utilized the data from the Adolescent Brain Cognitive Development (ABCD) study (n = 4930, aged 9-10), involving their sleep assessments, cognitive measures, and functional magnetic resonance imaging (fMRI) during an emotional n-back task. Using partial correlations analysis, we found that the out-of-scanner cognitive performance was positively correlated with sleep duration. Additionally, the activation of regions of interest (ROIs) in frontal and parietal cortices for the 2-back versus 0-back contrast was positively correlated with both sleep duration and cognitive performance. Mediation analysis revealed that this activation significantly mediated the relationship between sleep duration and cognitive function at both individual ROI level and network level. After performing analyses separately for different sexes, it was revealed that the mediation effect of the task-related activation was present in girls (n = 2546). These findings suggest that short sleep duration may lead to deficit in cognitive function of children, particularly in girls, through the modulation of frontoparietal activation during working memory load.

12.
Hum Brain Mapp ; 45(11): e26777, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39046114

RESUMEN

The development and refinement of functional brain circuits crucial to human cognition is a continuous process that spans from childhood to adulthood. Research increasingly focuses on mapping these evolving configurations, with the aim to identify markers for functional impairments and atypical development. Among human cognitive systems, nonsymbolic magnitude representations serve as a foundational building block for future success in mathematical learning and achievement for individuals. Using task-based frontoparietal (FPN) and salience network (SN) features during nonsymbolic magnitude processing alongside machine learning algorithms, we developed a framework to construct brain age prediction models for participants aged 7-30. Our study revealed differential developmental profiles in the synchronization within and between FPN and SN networks. Specifically, we observed a linear increase in FPN connectivity, concomitant with a decline in SN connectivity across the age span. A nonlinear U-shaped trajectory in the connectivity between the FPN and SN was discerned, revealing reduced FPN-SN synchronization among adolescents compared to both pediatric and adult cohorts. Leveraging the Gradient Boosting machine learning algorithm and nested fivefold stratified cross-validation with independent training datasets, we demonstrated that functional connectivity measures of the FPN and SN nodes predict chronological age, with a correlation coefficient of .727 and a mean absolute error of 2.944 between actual and predicted ages. Notably, connectivity within the FPN emerged as the most contributing feature for age prediction. Critically, a more matured brain age estimate is associated with better arithmetic performance. Our findings shed light on the intricate developmental changes occurring in the neural networks supporting magnitude representations. We emphasize brain age estimation as a potent tool for understanding cognitive development and its relationship to mathematical abilities across the critical developmental period of youth. PRACTITIONER POINTS: This study investigated the prolonged changes in the brain's architecture across childhood, adolescence, and adulthood, with a focus on task-state frontoparietal and salience networks. Distinct developmental pathways were identified: frontoparietal synchronization strengthens consistently throughout development, while salience network connectivity diminishes with age. Furthermore, adolescents show a unique dip in connectivity between these networks. Leveraging advanced machine learning methods, we accurately predicted individuals' ages based on these brain circuits, with a more mature estimated brain age correlating with better math skills.


Asunto(s)
Lóbulo Frontal , Aprendizaje Automático , Imagen por Resonancia Magnética , Red Nerviosa , Lóbulo Parietal , Humanos , Adolescente , Niño , Adulto Joven , Masculino , Femenino , Adulto , Lóbulo Parietal/fisiología , Lóbulo Parietal/diagnóstico por imagen , Lóbulo Parietal/crecimiento & desarrollo , Lóbulo Frontal/fisiología , Lóbulo Frontal/crecimiento & desarrollo , Lóbulo Frontal/diagnóstico por imagen , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/fisiología , Red Nerviosa/crecimiento & desarrollo , Conceptos Matemáticos , Conectoma
13.
eNeuro ; 11(8)2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39029954

RESUMEN

Recent neurophysiological studies provide inconsistent results of frontoparietal network (FPN) stimulation for altering working memory (WM) capacity. This study aimed to boost WM capacity by manipulating the activity of the FPN via dual-site high-definition transcranial direct current stimulation. Forty-eight participants were randomly assigned to three stimulation groups, receiving either simultaneous anodal stimulation of the frontal and parietal areas (double stimulation), or stimulation of the frontal area only (single stimulation), or the placebo stimulation (sham) to frontal and parietal areas. After the stimulation, we used an operation span task to test memory accuracy, mathematical accuracy, time of calculation and memorizing, and recall response time across the three groups. The results revealed an enhancement of memory accuracy and a reduction of time of calculation in the double stimulation group compared with that in others. In addition, recall response time was significantly decreased in the double and single stimulation groups compared with that in sham. No differences in mathematical accuracy were observed. Our results confirm the pivotal role of the FPN in WM and suggest its functional dissociation, with the frontal component more implicated in the retrieval stage and the parietal component in the processing and retention stages.


Asunto(s)
Lóbulo Frontal , Memoria a Corto Plazo , Lóbulo Parietal , Estimulación Transcraneal de Corriente Directa , Humanos , Memoria a Corto Plazo/fisiología , Masculino , Lóbulo Parietal/fisiología , Femenino , Adulto Joven , Lóbulo Frontal/fisiología , Adulto , Cognición/fisiología , Tiempo de Reacción/fisiología , Recuerdo Mental/fisiología , Pruebas Neuropsicológicas
14.
J Psychiatr Res ; 177: 211-218, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39032275

RESUMEN

Suicidal ideation (SI) is a common symptom of major depressive disorder (MDD), often accompanied by cognitive alterations and emotional dysregulation. However, it is unclear whether cognitive dysfunction in patients with MDD is related to the presence or absence of SI and impaired connectivity within or between large-scale neurocognitive networks. Previous studies have shown that the frontoparietal network (FPN) and default mode network (DMN) are critical for cognitive control and emotional regulation. Participants were 51 MDD patients with suicidal ideation (MDDSI), 52 MDD patients without suicidal ideation (MDDNSI), and 55 healthy controls (HC). Using areas located within FPN and DMN networks as regions of interest (ROIs), we compared the cognitive performance of the three groups and the strength of the resting state functional connections (RSFC) within and between the FPN and DMN networks. Additionally, we examined the correlation between the strength of FC within the FPN and cognitive function in the SI group. Furthermore, network-based statistics (NBS) were used to correct for the strength of FPN and DMN functional connections. The study identified significant cognitive deficits in MDD patients. Reduced strength of FC was observed within the FPN and DMN networks in the SI group compared to the NSI group. In the SI group, the strength of FC within the FPN network was positively correlated with attention/vigilance. These insights underscore the critical roles of the FPN and DMN in the suicidal ideation, shedding light on the cognitively relevant neurobiological characteristics of MDDSI, providing new insights into the neural mechanisms of MDDSI. URL: https://www.chictr.org.cn/bin/project/edit?pid=131537. Registration number: ChiCTR2100049646.


Asunto(s)
Red en Modo Predeterminado , Trastorno Depresivo Mayor , Lóbulo Frontal , Imagen por Resonancia Magnética , Lóbulo Parietal , Ideación Suicida , Humanos , Trastorno Depresivo Mayor/fisiopatología , Trastorno Depresivo Mayor/diagnóstico por imagen , Masculino , Femenino , Red en Modo Predeterminado/fisiopatología , Red en Modo Predeterminado/diagnóstico por imagen , Adulto , Lóbulo Parietal/fisiopatología , Lóbulo Parietal/diagnóstico por imagen , Lóbulo Frontal/fisiopatología , Lóbulo Frontal/diagnóstico por imagen , Adulto Joven , Persona de Mediana Edad , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/fisiopatología , Disfunción Cognitiva/fisiopatología , Disfunción Cognitiva/etiología , Disfunción Cognitiva/diagnóstico por imagen , Conectoma
15.
Front Psychiatry ; 15: 1401623, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39041046

RESUMEN

Background: Obsessive-compulsive disorder (OCD) is a chronic psychiatric illness with complex clinical manifestations. Cognitive dysfunction may underlie OC symptoms. The frontoparietal network (FPN) is a key region involved in cognitive control. However, the findings of impaired FPN regions have been inconsistent. We employed meta-analysis to identify the fMRI-specific abnormalities of the FPN in OCD. Methods: PubMed, Web of Science, Scopus, and EBSCOhost were searched to screen resting-state functional magnetic resonance imaging (rs-fMRI) studies exploring dysfunction in the FPN of OCD patients using three indicators: the amplitude of low-frequency fluctuation/fractional amplitude of low-frequency fluctuation (ALFF/fALFF), regional homogeneity (ReHo) and functional connectivity (FC). We compared all patients with OCD and control group in a primary analysis, and divided the studies by medication in secondary meta-analyses with the activation likelihood estimation (ALE) algorithm. Results: A total of 31 eligible studies with 1359 OCD patients (756 men) and 1360 healthy controls (733 men) were included in the primary meta-analysis. We concluded specific changes in brain regions of FPN, mainly in the left dorsolateral prefrontal cortex (DLPFC, BA9), left inferior frontal gyrus (IFG, BA47), left superior temporal gyrus (STG, BA38), right posterior cingulate cortex (PCC, BA29), right inferior parietal lobule (IPL, BA40) and bilateral caudate. Additionally, altered connectivity within- and between-FPN were observed in the bilateral DLPFC, right cingulate gyrus and right thalamus. The secondary analyses showed improved convergence relative to the primary analysis. Conclusion: OCD patients showed dysfunction FPN, including impaired local important nodal brain regions and hypoconnectivity within the FPN (mainly in the bilateral DLPFC), during the resting state. Moreover, FPN appears to interact with the salience network (SN) and default mode network (DMN) through pivotal brain regions. Consistent with the hypothesis of fronto-striatal circuit dysfunction, especially in the dorsal cognitive circuit, these findings provide strong evidence for integrating two pathophysiological models of OCD.

16.
Artículo en Inglés | MEDLINE | ID: mdl-38976050

RESUMEN

Working memory (WM) is a distributed and dynamic process, and WM deficits are recognized as one of the top-ranked endophenotype candidates for major depressive disorders (MDD). However, there is a lack of knowledge of brain temporal-spatial profile of WM deficits in MDD. We used the dynamical degree centrality (dDC) to investigate the whole-brain temporal-spatial profile in 40 MDD and 40 controls during an n-back task with 2 conditions (i.e., '0back' and '2back'). We explored the dDC temporal variability and clustered meta-stable states in 2 groups during different WM conditions. Pearson's correlation analysis was used to evaluate the relationship between the altered dynamics with clinical symptoms and WM performance. Compared with controls, under '2back vs. 0back' contrast, patients showed an elevated dDC variability in wide range of brain regions, including the middle frontal gyrus, orbital part of inferior frontal gyrus (IFGorb), hippocampus, and middle temporal gyrus. Furthermore, the increased dDC variability in the hippocampus and IFGorb correlated with worse WM performance. However, there were no significant group-related differences in the meta-stable states were observed. This study demonstrated the increased WM-related instability (i.e., the elevated dDC variability) was represented in MDD, and enhancing stability may help patients achieve better WM performance.

17.
J Behav Addict ; 13(2): 565-575, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38842943

RESUMEN

Background: Exercise dependence (ED) is characterised by behavioural and psychological symptoms that resemble those of substance use disorders. However, it remains inconclusive whether ED is accompanied by similar brain alterations as seen in substance use disorders. Therefore, we investigated brain alterations in individuals with ED and inactive control participants. Methods: In this cross-sectional neuroimaging investigation, 29 individuals with ED as assessed with the Exercise Dependence Scale (EDS) and 28 inactive control participants (max one hour exercising per week) underwent structural and functional resting-state magnetic resonance imaging (MRI). Group differences were explored using voxel-based morphometry and functional connectivity analyses. Analyses were restricted to the striatum, amygdala, and inferior frontal gyrus (IFG). Exploratory analyses tested whether relationships between brain structure and function were differently related to EDS subscales among groups. Results: No structural differences were found between the two groups. However, right IFG and bilateral putamen volumes were differently related to the EDS subscales "time" and "tolerance", respectively, between the two groups. Resting-state functional connectivity was increased from right IFG to right superior parietal lobule in individuals with ED compared to inactive control participants. Furthermore, functional connectivity of the angular gyrus to the left IFG and bilateral caudate showed divergent relationships to the EDS subscale "tolerance" among groups. Discussion: The findings suggest that ED may be accompanied by alterations in cognition-related brain structures, but also functional changes that may drive compulsive habitual behaviour. Further prospective studies are needed to disentangle beneficial and detrimental brain effects of ED.


Asunto(s)
Ejercicio Físico , Imagen por Resonancia Magnética , Humanos , Masculino , Adulto , Estudios Transversales , Femenino , Ejercicio Físico/fisiología , Encéfalo/diagnóstico por imagen , Encéfalo/fisiopatología , Adulto Joven , Imagen Multimodal , Conducta Adictiva/diagnóstico por imagen , Conducta Adictiva/fisiopatología , Neuroimagen
18.
Alzheimers Res Ther ; 16(1): 119, 2024 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-38822365

RESUMEN

BACKGROUND: Autopsy work reported that neuronal density in the locus coeruleus (LC) provides neural reserve against cognitive decline in dementia. Recent neuroimaging and pharmacological studies reported that left frontoparietal network functional connectivity (LFPN-FC) confers resilience against beta-amyloid (Aß)-related cognitive decline in preclinical sporadic and autosomal dominant Alzheimer's disease (AD), as well as against LC-related cognitive changes. Given that the LFPN and the LC play important roles in attention, and attention deficits have been observed early in the disease process, we examined whether LFPN-FC and LC structural health attenuate attentional decline in the context of AD pathology. METHODS: 142 participants from the Harvard Aging Brain Study who underwent resting-state functional MRI, LC structural imaging, PiB(Aß)-PET, and up to 5 years of cognitive follow-ups were included (mean age = 74.5 ± 9.9 years, 89 women). Cross-sectional robust linear regression associated LC integrity (measured as the average of five continuous voxels with the highest intensities in the structural LC images) or LFPN-FC with Digit Symbol Substitution Test (DSST) performance at baseline. Longitudinal robust mixed effect analyses examined associations between DSST decline and (i) two-way interactions of baseline LC integrity (or LFPN-FC) and PiB or (ii) the three-way interaction of baseline LC integrity, LFPN-FC, and PiB. Baseline age, sex, and years of education were included as covariates. RESULTS: At baseline, lower LFPN-FC, but not LC integrity, was related to worse DSST performance. Longitudinally, lower baseline LC integrity was associated with a faster DSST decline, especially at PiB > 10.38 CL. Lower baseline LFPN-FC was associated with a steeper decline on the DSST but independent of PiB. At elevated PiB levels (> 46 CL), higher baseline LFPN-FC was associated with an attenuated decline on the DSST, despite the presence of lower LC integrity. CONCLUSIONS: Our findings demonstrate that the LC can provide resilience against Aß-related attention decline. However, when Aß accumulates and the LC's resources may be depleted, the functioning of cortical target regions of the LC, such as the LFPN-FC, can provide additional resilience to sustain attentional performance in preclinical AD. These results provide critical insights into the neural correlates contributing to individual variability at risk versus resilience against Aß-related cognitive decline.


Asunto(s)
Enfermedad de Alzheimer , Locus Coeruleus , Imagen por Resonancia Magnética , Lóbulo Parietal , Humanos , Femenino , Masculino , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/psicología , Enfermedad de Alzheimer/fisiopatología , Anciano , Locus Coeruleus/diagnóstico por imagen , Locus Coeruleus/patología , Imagen por Resonancia Magnética/métodos , Lóbulo Parietal/diagnóstico por imagen , Anciano de 80 o más Años , Atención/fisiología , Lóbulo Frontal/diagnóstico por imagen , Lóbulo Frontal/fisiopatología , Tomografía de Emisión de Positrones , Estudios Transversales , Vías Nerviosas/diagnóstico por imagen , Vías Nerviosas/fisiopatología , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/fisiopatología , Disfunción Cognitiva/psicología , Pruebas Neuropsicológicas
19.
Neurosci Lett ; 835: 137849, 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-38825146

RESUMEN

INTRODUCTION: Transcranial alternating current stimulation (tACS) at 5-Hz to the right hemisphere can effectively alleviate anxiety symptoms. This study aimed to explore the neural mechanisms that drive the therapeutic benefits. METHODS: We collected electroencephalography (EEG) data from 24 participants with anxiety disorders before and after a tACS treatment session. tACS was applied over the right hemisphere, with 1.0 mA at F4, 1.0 mA at P4, and 2.0 mA at T8 (10-10 EEG convention). With eLORETA, we transformed the scalp signals into the current source density in the cortex. We then assessed the differences between post- and pre-treatment brain maps across multiple spectra (delta to low gamma) with non-parametric statistics. RESULTS: We observed a trend of heightened power in alpha and reduced power in mid-to-high beta and low gamma, in accord with the EEG markers of anxiolytic effects reported in previous studies. Additionally, we observed a consistent trend of de-synchronization at the stimulating sites across spectra. CONCLUSION: tACS 5-Hz over the right hemisphere demonstrated EEG markers of anxiety reduction. The after-effects of tACS on the brain are intricate and cannot be explained solely by the widely circulated entrainment theory. Rather, our results support the involvement of plasticity mechanisms in the offline effects of tACS.


Asunto(s)
Electroencefalografía , Estimulación Transcraneal de Corriente Directa , Humanos , Estimulación Transcraneal de Corriente Directa/métodos , Masculino , Femenino , Adulto , Electroencefalografía/métodos , Adulto Joven , Trastornos de Ansiedad/terapia , Trastornos de Ansiedad/fisiopatología , Encéfalo/fisiopatología , Encéfalo/fisiología , Persona de Mediana Edad , Lateralidad Funcional/fisiología
20.
Sci Rep ; 14(1): 14135, 2024 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-38898075

RESUMEN

Numerous prospective biomarkers are being studied for their ability to diagnose various stages of Alzheimer's disease (AD). High-density electroencephalogram (EEG) methods show promise as an accurate, economical, non-invasive approach to measuring the electrical potentials of brains associated with AD. Event-related potentials (ERPs) may serve as clinically useful biomarkers of AD. Through analysis of secondary data, the present study examined the performance and distribution of N4/P6 ERPs across the frontoparietal network (FPN) using EEG topographic mapping. ERP measures and memory as a function of reaction time (RT) were compared between a group of (n = 63) mild untreated AD patients and a control group of (n = 73) healthy age-matched adults. Based on the literature presented, it was expected that healthy controls would outperform patients in peak amplitude and mean component latency across three parameters of memory when measured at optimal N4 (frontal) and P6 (parietal) locations. It was also predicted that the control group would exhibit neural cohesion through FPN integration during cross-modal tasks, thus demonstrating healthy cognitive functioning consistent with older healthy adults. By targeting select frontal and parietal EEG reference channels based on N4/P6 component time windows and positivity, our findings demonstrated statistically significant group variations between controls and patients in N4/P6 peak amplitudes and latencies during cross-modal testing. Our results also support that the N4 ERP might be stronger than its P6 counterpart as a possible candidate biomarker. We conclude through topographic mapping that FPN integration occurs in healthy controls but is absent in AD patients during cross-modal memory tasks.


Asunto(s)
Enfermedad de Alzheimer , Biomarcadores , Electroencefalografía , Potenciales Evocados , Lóbulo Frontal , Lóbulo Parietal , Humanos , Enfermedad de Alzheimer/fisiopatología , Enfermedad de Alzheimer/diagnóstico , Masculino , Femenino , Electroencefalografía/métodos , Anciano , Lóbulo Parietal/fisiopatología , Potenciales Evocados/fisiología , Lóbulo Frontal/fisiopatología , Lóbulo Frontal/diagnóstico por imagen , Persona de Mediana Edad , Tiempo de Reacción/fisiología , Estudios de Casos y Controles , Mapeo Encefálico/métodos , Anciano de 80 o más Años , Memoria/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA