Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Eur J Neurosci ; 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39223860

RESUMEN

Working memory (WM) involves the capacity to maintain and manipulate information over short periods. Previous research has suggested that fronto-parietal activities play a crucial role in WM. However, there remains no agreement on the effect of working memory load (WML) on neural activities and haemodynamic responses. Here, our study seeks to examine the effect of WML through simultaneous electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS). In this study, a delay change detection task was conducted on 23 healthy volunteers. The task included three levels: one item, three items and five items. The EEG and fNIRS were simultaneously recorded during the task. Neural activities and haemodynamic responses at prefrontal and parietal regions were analysed using time-frequency analysis and weighted phase-lag index (wPLI). We observed a significant enhancement in prefrontal and parietal ß suppression as WML increased. Furthermore, as WML increased, there was a notable enhancement in fronto-parietal connectivity (FPC), as evidenced by both EEG and fNIRS. Correlation analysis indicated that as WML increased, there was a potential for enhancement of neurovascular coupling (NVC) of FPC.

2.
J Behav Addict ; 13(2): 565-575, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38842943

RESUMEN

Background: Exercise dependence (ED) is characterised by behavioural and psychological symptoms that resemble those of substance use disorders. However, it remains inconclusive whether ED is accompanied by similar brain alterations as seen in substance use disorders. Therefore, we investigated brain alterations in individuals with ED and inactive control participants. Methods: In this cross-sectional neuroimaging investigation, 29 individuals with ED as assessed with the Exercise Dependence Scale (EDS) and 28 inactive control participants (max one hour exercising per week) underwent structural and functional resting-state magnetic resonance imaging (MRI). Group differences were explored using voxel-based morphometry and functional connectivity analyses. Analyses were restricted to the striatum, amygdala, and inferior frontal gyrus (IFG). Exploratory analyses tested whether relationships between brain structure and function were differently related to EDS subscales among groups. Results: No structural differences were found between the two groups. However, right IFG and bilateral putamen volumes were differently related to the EDS subscales "time" and "tolerance", respectively, between the two groups. Resting-state functional connectivity was increased from right IFG to right superior parietal lobule in individuals with ED compared to inactive control participants. Furthermore, functional connectivity of the angular gyrus to the left IFG and bilateral caudate showed divergent relationships to the EDS subscale "tolerance" among groups. Discussion: The findings suggest that ED may be accompanied by alterations in cognition-related brain structures, but also functional changes that may drive compulsive habitual behaviour. Further prospective studies are needed to disentangle beneficial and detrimental brain effects of ED.


Asunto(s)
Ejercicio Físico , Imagen por Resonancia Magnética , Humanos , Masculino , Adulto , Estudios Transversales , Femenino , Ejercicio Físico/fisiología , Encéfalo/diagnóstico por imagen , Encéfalo/fisiopatología , Adulto Joven , Imagen Multimodal , Conducta Adictiva/diagnóstico por imagen , Conducta Adictiva/fisiopatología , Neuroimagen
3.
J Clin Med ; 8(3)2019 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-30841486

RESUMEN

Consciousness arises from the functional interaction of multiple brain structures and their ability to integrate different complex patterns of internal communication. Although several studies demonstrated that the fronto-parietal and functional default mode networks play a key role in conscious processes, it is still not clear which topological network measures (that quantifies different features of whole-brain functional network organization) are altered in patients with disorders of consciousness. Herein, we investigate the functional connectivity of unresponsive wakefulness syndrome (UWS) and minimally conscious state (MCS) patients from a topological network perspective, by using resting-state EEG recording. Network-based statistical analysis reveals a subnetwork of decreased functional connectivity in UWS compared to in the MCS patients, mainly involving the interhemispheric fronto-parietal connectivity patterns. Network topological analysis reveals increased values of local-community-paradigm correlation, as well as higher clustering coefficient and local efficiency in UWS patients compared to in MCS patients. At the nodal level, the UWS patients showed altered functional topology in several limbic and temporo-parieto-occipital regions. Taken together, our results highlight (i) the involvement of the interhemispheric fronto-parietal functional connectivity in the pathophysiology of consciousness disorders and (ii) an aberrant connectome organization both at the network topology level and at the nodal level in UWS patients compared to in the MCS patients.

4.
Front Hum Neurosci ; 13: 474, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-32116597

RESUMEN

Background: Transcranial stimulation with direct (tDCS) and alternating current (tACS) has increasingly gained interest in various fields, from cognitive neuroscience to clinical investigations. Transcranial current stimulation used alone may modulate brain activity that consequently influences behaviors, without providing information on potentially induced brain activity changes. The combination of transcranial current stimulation and functional magnetic resonance imaging (fMRI) may help to address this. This exploratory study investigated instantaneous and subsequent effects of tDCS and tACS on resting-state functional connectivity (rsFC) in healthy adults. Methods: We conducted a randomized crossover study with 15 healthy subjects receiving three stimulation conditions (tDCS, tACS, and sham) on separate days. Stimulation was applied over the left and right dorsolateral prefrontal cortex (DLPFC) for 30 min (1 mA). rsFC of the targeted prefrontal areas was assessed before, during, and after stimulation using multiband fMRI and using left and right DLPFC as seeds. Results: Both tDCS and tACS increased rsFC during and after the stimulation period, as compared to sham. tDCS-induced changes were observed between the left DLPFC and bilateral parietal regions at the junction of the superior parietal and the inferior parietal lobules. tACS-induced changes were observed between the left DLPFC and the right inferior parietal lobule. Conclusion: Overall, these results suggest that a single session with a low dose, 1 mA, of tDCS or tACS can cause changes in fronto-parietal connectivity that occur rapidly, that is, within the first 15 min. Although exploratory, this work contributes to the discussion of the potential of transcranial current stimulation to modulate resting-state networks and the interest of combining transcranial current stimulation with neuroimaging to identify these changes.

5.
Cereb Cortex ; 26(6): 2381-90, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-25899709

RESUMEN

Behavioral and electrophysiological studies in humans and non-human primates have correlated frontal high-beta activity with the orienting of endogenous attention and shown the ability of the latter function to modulate visual performance. We here combined rhythmic transcranial magnetic stimulation (TMS) and diffusion imaging to study the relation between frontal oscillatory activity and visual performance, and we associated these phenomena to a specific set of white matter pathways that in humans subtend attentional processes. High-beta rhythmic activity on the right frontal eye field (FEF) was induced with TMS and its causal effects on a contrast sensitivity function were recorded to explore its ability to improve visual detection performance across different stimulus contrast levels. Our results show that frequency-specific activity patterns engaged in the right FEF have the ability to induce a leftward shift of the psychometric function. This increase in visual performance across different levels of stimulus contrast is likely mediated by a contrast gain mechanism. Interestingly, microstructural measures of white matter connectivity suggest a strong implication of right fronto-parietal connectivity linking the FEF and the intraparietal sulcus in propagating high-beta rhythmic signals across brain networks and subtending top-down frontal influences on visual performance.


Asunto(s)
Ritmo beta/fisiología , Sensibilidad de Contraste/fisiología , Lóbulo Frontal/diagnóstico por imagen , Lóbulo Frontal/fisiología , Lóbulo Parietal/diagnóstico por imagen , Lóbulo Parietal/fisiología , Imagen de Difusión por Resonancia Magnética , Femenino , Lateralidad Funcional , Humanos , Masculino , Vías Nerviosas/diagnóstico por imagen , Vías Nerviosas/fisiología , Pruebas Neuropsicológicas , Psicometría , Estimulación Magnética Transcraneal , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/fisiología , Adulto Joven
6.
Front Hum Neurosci ; 8: 1047, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25628553

RESUMEN

Brain changes in schizophrenia evolve along a dynamic trajectory, emerging before disease onset and proceeding with ongoing illness. Recent investigations have focused attention on functional brain interactions, with experimental imaging studies supporting the disconnection hypothesis of schizophrenia. These studies have revealed a broad spectrum of abnormalities in brain connectivity in patients, particularly for connections integrating the frontal cortex. A critical point is that brain connectivity abnormalities, including altered resting state connectivity within the fronto-parietal (FP) network, are already observed in non-help-seeking individuals with psychotic-like experiences. If we consider psychosis as a continuum, with individuals with psychotic-like experiences at the lower and psychotic patients at the upper ends, individuals with psychotic-like experiences represent a key population for investigating the validity of putative biomarkers underlying the onset of psychosis. This paper selectively addresses the role played by FP connectivity in the psychosis continuum, which includes patients with chronic psychosis, early psychosis, clinical high risk, genetic high risk, as well as the general population with psychotic experiences. We first discuss structural connectivity changes among the FP pathway in each domain in the psychosis continuum. This may provide a basis for us to gain an understanding of the subsequent changes in functional FP connectivity. We further indicate that abnormal FP connectivity may arise from glutamatergic disturbances of this pathway, in particular from abnormal NMDA receptor-mediated plasticity. In the second part of this paper we propose some concepts for further research on the use of network connectivity in the classification of the psychosis continuum. These concepts are consistent with recent efforts to enhance the role of data in driving the diagnosis of psychiatric spectrum diseases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA