Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros











Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 16(33): 44249-44260, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39105730

RESUMEN

Understanding atomic friction within a liquid environment is crucial for engineering friction mechanisms and characterizing surfaces. It has been suggested that the lattice resolution of friction force microscope in liquid environments stems from a dry contact state, with all liquid molecules expelled from the area of closest approach between the tip and substrate. Here, we revisit this assertion by performing in-depth friction force microscopy experiments and molecular dynamics simulations of the influence of surrounding water molecules on the dynamic behavior of the nanotribological contact between an amorphous SiO2 probe and a monolayer MoS2 substrate. An analysis of simulation and experimental stick-slip patterns demonstrates the entrapment of water molecules at the contact interface. These trapped water molecules behave as an integral component of the probe and participate in its interaction with the substrate, affecting the dynamics of the probe and preventing long slips. Significantly, surrounding water from the capillary or layer exhibits a replenishing effect, acting as a water reservoir during sliding. This phenomenon facilitates the preservation of lattice-scale resolution across a range of applied normal loads.

2.
Adv Sci (Weinh) ; : e2401418, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39159073

RESUMEN

Actuation of micro-objects along unconstrained trajectories in van der Waals contacting systems-in the same capacity as optical tweezers to manipulate particles in fluidic environments-remains a formidable challenge due to the lack of effective methods to overcome and exploit surface friction. Herein, a technique that aims to resolve this difficulty is proposed. This study shows that, by utilizing a moderate power beam of light, micro-objects adhered on planar solid substrates can be precisely guided to move in arbitrary directions, realizing sub-nanometer resolution across extended surfaces. The underlying mechanism is the interplay between surface friction and pulsed opto-thermo-elastic deformations, and to render a biased motion with off-centroid light illumination. This technique enables high-precision assembly, separation control of nanogaps, regulation of rotation angles in various material-substrate systems, whose capability is further tested in reconfigurable construction of optoelectronic devices. With simple set-up and theoretical generality, opto-thermo-elastic actuation opens up an avenue for versatile optical manipulation in the solid domain.

3.
ACS Appl Mater Interfaces ; 16(30): 39701-39707, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39013158

RESUMEN

It is critical to understand molecular ordering processes in small-molecule organic semiconductor (OSC) films in optimizing electronic device applications, although it is difficult to observe and investigate the ordering characteristics at a mesoscopic or device scale. Here, we report that friction force microscopy (FFM) allows visualizing the ordering transformation process from a thermodynamically metastable phase to a stable phase at a mesoscopic scale. We utilized 2-octyl-benzothieno[3,2-b]naphtho[2,3-b]thiophene (2-C8-BTNT) as a typical highly layered-crystalline OSC. We found that the friction force between an AFM tip and spin-coated OSC films significantly depends on whether local film states are in metastable monolayer phase or stable bilayer-type herringbone (b-LHB) phase that exhibits high carrier mobility. The formation of the stable b-LHB phase leads to lower friction than the metastable monolayer phase, clearly visualizing the molecular order. Force map (Fmap) analysis indicates that the lower friction in the b-LHB phase should be associated with the reduction of interfacial adhesion force. Notably, the observed results demonstrate that the spin-coated thin film changes from continuous film with the monolayer phase to rugged microcrystal grains with the b-LHB phase when left at ambient conditions. By contrast, an appropriate post-thermal annealing process facilitates the phase transformation without inducing such morphological changes. The technique provides a unique and effective tool for revealing the relationship between processing conditions and device performance in polycrystalline OSC films.

4.
Am J Otolaryngol ; 45(4): 104309, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38657533

RESUMEN

BACKGROUND: The Dix-Hallpike (DH) test is a gold standard for diagnosing benign paroxysmal positional vertigo (BPPV). However, lateral semicircular canal BPPV is not rare. We have been performing the new roll test that begins from the sitting position and contains a head-hanging position, in order not to overlook lateral canal BPPV. We noticed that transient vertical/torsional nystagmus sometimes occurs during the new roll test. OBJECTIVE: To clarify the value of the new roll test in diagnosing posterior canal BPPV and elucidate the position that elicits nystagmus. MATERIALS AND METHODS: The subjects were 100 consecutive patients (79 were female, 21 were male) with posterior canal BPPV. We classified the patients into four types based on a position that induced nystagmus. RESULTS: The patient's position that elicited nystagmus varied. The supine type accounted for 24 %, the lateral type accounted for 62 %, the head-hanging type accounted for 9 %, and the DH type accounted for 5 %. CONCLUSION: The new roll test is valuable for diagnosing posterior canalolithiasis cases. Most patients reveal vertical/torsional nystagmus in the supine or lateral position. Therefore, performing the new roll test first is efficient at the initial visit.


Asunto(s)
Vértigo Posicional Paroxístico Benigno , Canales Semicirculares , Humanos , Vértigo Posicional Paroxístico Benigno/diagnóstico , Vértigo Posicional Paroxístico Benigno/fisiopatología , Masculino , Femenino , Canales Semicirculares/fisiopatología , Persona de Mediana Edad , Anciano , Adulto , Anciano de 80 o más Años , Nistagmo Patológico/diagnóstico , Nistagmo Patológico/fisiopatología , Posicionamiento del Paciente/métodos , Pruebas de Función Vestibular/métodos , Postura/fisiología
5.
Heliyon ; 10(3): e25428, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38322835

RESUMEN

Objectives: Sufficient trials of acupuncture manipulations should be practiced to obtain proficiency. However, there is not an adequate quantitative methodology for selecting a tissue-mimicking phantom that effectively reproduces the mechanical behavior that occurs during acupuncture. The objective of this study was to determine the proper mixing ratio of polydimethylsiloxane (PDMS) to obtain tissue phantom that is the most similar to porcine phantoms. Design: An automatic needle manipulator equipped with a six-degrees-of-freedom force/torque sensor was installed to monitor the interaction force that occurred when the acupuncture needle performed lifting-thrusting and twirling manipulations. Four types of PDMS phantoms, composed of two silicone elastomers with different hardener ratios, were studied alongside four control groups consisting of different porcine sites. A Visual Analog Scale was used to quantify the similarity of the PDMS phantoms to the controls by 11 Korean medical doctors. Results: Using the lifting-thrusting method, PDMS D (mixing ratio of 1:4.5) and control 2 (porcine blade shoulder) revealed no significant difference in the dynamic friction coefficients or maximum and minimum friction force values (P < 0.001). Using the twirling method, PDMS D showed no significant difference from all controls in the viscosity coefficient or maximum and minimum torque values (P ≤ 0.001). By practitioners, PDMS D showed the greatest score. Conclusion: PDMS D delivered a haptic sensation that is most similar to that of biological tissues in the case of acu-needle lifting-thrusting and twirling methods. This finding guides the preparation of tissue phantoms for acu-needle studies and acupuncture training.

6.
Biomimetics (Basel) ; 9(1)2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38248626

RESUMEN

The quasi-static regime of friction between a rigid steel indenter and a soft elastomer with high adhesion is studied experimentally. An analysis of the formally calculated dependencies of a friction coefficient on an external load (normal force) shows that the friction coefficient monotonically decreases with an increase in the load, following a power law relationship. Over the entire range of contact loads, a friction mode is realized in which constant shear stresses are maintained in the tangential contact, which corresponds to the "adhesive" friction mode. In this mode, Amonton's law is inapplicable, and the friction coefficient loses its original meaning. Some classical works, which show the existence of a transition between "adhesive" and "normal" friction, were analyzed. It is shown that, in fact, there is no such transition. A computer simulation of the indentation process was carried out within the framework of the boundary element method, which confirmed the experimental results.

7.
Proc Inst Mech Eng H ; 237(9): 1061-1071, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37574843

RESUMEN

Medical interventions require control over surgical needle insertion to minimize tissue damage and target inaccuracies during percutaneous procedures. The composite coating of the needle using Polydopamine (PDA), Polytetrafluoroethylene (PTFE), and Activated Carbon (C) has been used to reduce the damaging needle insertion force. This research aims to further understand the interfacial mechanics of coated needle insertion by studying the forces at the needle and tissue interface and developing an analytical insertion force model through a combined experimental and numerical method. The proposed analytical force model is divided into two components: (1) Friction force on the needle shaft, modeled using a modified Karnopp model that includes an elastic force component; (2) Cutting force on the needle tip, modeled using a constant cutting coefficient for a given tissue and insertion speed. In this work, the analytical model was established by incorporating experiments conducted at a reasonable 35 mm insertion depth in tissues. In a bovine kidney with a 35 mm insertion depth, the insertion force evaluated through experimentation and modeling differed by 6.5% for a bare needle and 17.1% for a coated needle. It is important to note that this difference in the analytical insertion force model is anticipated when dealing with real tissues with a highly complex structured tissue. Prediction of the insertion force could potentially be utilized in robotic needle systems for needle control to improve the success of percutaneous procedures.


Asunto(s)
Agujas , Animales , Bovinos , Fricción
8.
Small Methods ; 7(11): e2300250, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37551063

RESUMEN

Ionic liquids (ILs) represent an important class of liquids considered for a broad range of applications such as lubrication, catalysis, or as electrolytes in batteries. It is well-known that in the case of charged surfaces, ILs form a pronounced layer structure that can be easily triggered by an externally applied electrode potential. Information about the time required to form a stable interface under varying electrode potentials is of utmost importance in many applications. For the first time, probing of relaxation times of ILs by friction force microscopy is demonstrated. The friction force is extremely sensitive to even subtle changes in the interfacial configuration of ILs. Various relaxation processes with different time scales are observed. A significant difference dependent on the direction of switching the applied potential, i.e., from a more cation-rich to a more anion-rich interface or vice versa, is found. Furthermore, variations in height immediately after the potential step and the presence of trace amounts of water are discussed as well.

9.
Yakugaku Zasshi ; 143(6): 533-539, 2023.
Artículo en Japonés | MEDLINE | ID: mdl-37258186

RESUMEN

To accelerate therapeutic effects, the mixtures of two or more topical pharmaceutical products having different medicinal purposes are often applied in the medical field. In this study, we aimed to develop a simple mixing method/procedure to achieve excellent homogeneity in the mixture of two topical products, a steroidal ointment and a skin moisturizer. To assess an in-tube mixing method as a simple mixing procedure, we injected both topical products into an empty resin tube, a flexible hollow tube with an open end that can be closed on one side, and a closed end on the other, removed as less air as possible inside the tube, and then thermocompressed (sealed) the open end to close it. The two topical products were then mixed uniformly by repeated finger pressure along the longitudinal axis of the tube. The homogeneity of the two topical products in the tube was evaluated by measuring the content of methyl paraoxybenzoate (MP), an additive loaded in the skin moisturizer. In addition, the mixability was qualitatively evaluated from the distribution of white petrolatum, another additive loaded in the steroid ointment, using Raman spectroscopy. As a result, the measured value of MP relative to the label claim was in the range of 100±12%, and the coefficients of variation value was also less than 12%. These results indicate that the in-tube mixing method using two topical products is approximately hologenetic preparations that do not cause therapeutic problems.


Asunto(s)
Vaselina , Piel , Pomadas , Composición de Medicamentos
10.
ACS Appl Mater Interfaces ; 15(16): 20495-20507, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37053001

RESUMEN

Double-network (DN) hydrogels are promising materials for tissue engineering due to their biocompatibility, high strength, and toughness, but understanding of their microstructure-property relationships still remains limited. This work investigates a DN hydrogel comprising a physically crosslinked agarose, as the first network, and a chemically crosslinked copolymer with a varying ratio of acrylamide and acrylic acid, as the second network. The charge, intrinsic to most DN hydrogels, introduces a responsive behavior to chemical and electrical stimuli. The DN strengthens agarose hydrogels, but the strengthening decreases with the swelling ratio resulting from increasing acrylic acid content or reducing salt concentration. Through careful imaging by atomic force microscopy, the heterogenous surface structure and properties arising from the DN are resolved, while the lubrication mechanisms are elucidated by studying the heterogeneous frictional response to extrinsic stimuli. This method reveals the action of the first (agarose) network (forming grain boundaries), copolymer-rich and poor regions (in grains), charge and swelling in providing lubrication. Friction arises from the shear of the polymeric network, whereas hydrodynamic lift and viscoelastic deformation become more significant at higher sliding velocities. We identify the copolymer-rich phase as the main source of the stimulus-responsive behavior. Salt concentration enhances effective charge density and reduces viscoelastic deformation, while electric bias swells the gel and improves lubrication. This work also demonstrates the dynamic control of interfacial properties like hydrogel friction and adhesion, which has implications for other areas of study like soft robotics and tissue replacements.

11.
ACS Appl Mater Interfaces ; 15(17): 21595-21601, 2023 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-37070722

RESUMEN

Tribological properties depend strongly on environmental conditions such as temperature, humidity, and operation liquid. However, the origin of the liquid effect on friction remains largely unexplored. Herein, taking molybdenum disulfide (MoS2) as a model system, we explored the nanoscale friction of MoS2 in polar (water) and nonpolar (dodecane) liquids through friction force microscopy. The friction force exhibits a similar layer-dependent behavior in liquids as in air; i.e., thinner samples have a larger friction force. Interestingly, friction is significantly influenced by the polarity of the liquid, and it is larger in polar water than in nonpolar dodecane. Atomically resolved friction images together with atomistic simulations reveal that the polarity of the liquid has a substantial effect on friction behavior, where liquid molecule arrangement and hydrogen-bond formation lead to a higher resistance in polar water in comparison to that in nonpolar dodecane. This work provides insights into the friction on two-dimensional layered materials in liquids and holds great promise for future low-friction technologies.

12.
J Colloid Interface Sci ; 640: 940-948, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-36907154

RESUMEN

HYPOTHESIS: When a droplet starts sliding on a solid surface, the droplet-solid friction force develops in a manner comparable to the solid-solid friction force, showing a static regime and a kinetic regime. Today, the kinetic friction force that acts on a sliding droplet is well-characterized. But the mechanism underlying the static friction force is still less understood. Here we hypothesize that we can further draw an analogy between the detailed droplet-solid and solid-solid friction law, i.e., the static friction force is contact area dependent. METHODS: We deconstruct a complex surface defect into three primary surface defects (atomic structure, topographical defect, and chemical heterogeneity). Using large-scale Molecular Dynamics simulations, we study the mechanisms of droplet-solid static friction forces induced by primary surface defects. FINDINGS: Three element-wise static friction forces related to primary surface defects are revealed and the corresponding mechanisms for the static friction force are disclosed. We find that the static friction force induced by chemical heterogeneity is contact line length dependent, while the static friction force induced by atomic structure and topographical defect is contact area dependent. Moreover, the latter causes energy dissipation and leads to a wiggle movement of the droplet during the static-kinetic friction transition.

13.
Nanomaterials (Basel) ; 14(1)2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38202460

RESUMEN

This study focuses on the fabrication of polymer nanocomposite films using polyvinyl alcohol (PVA)/graphene quantum dots (GQDs). We investigate the relationship between the structural, thermal, and nanoscale morphological properties of these films and their photoluminescent response. Although according to X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), and differential thermal analysis (DTA), the incorporation of GQDs does not significantly affect the percentage crystallinity of the PVA matrix, for a range of added GQD concentrations, atomic force microscopy (AFM) showed the formation of islands with apparent crystalline morphology on the surface of the PVA/GQD films. This observation suggests that GQDs presumably act as nucleating agents for island growth. The incorporation of GQDs also led to the formation of characteristic surface pores with increased stiffness and frictional contrast, as indicated by ultrasonic force microscopy (UFM) and frictional force microscopy (FFM) data. The photoluminescence (PL) spectra of the films were found to depend both on the amount of GQDs incorporated and on the film morphology. For GQD loads >1.2%wt, a GQD-related band was observed at ~1650 cm-1 in FT-IR, along with an increase in the PL band at lower energy. For a load of ~2%wt GQDs, the surface morphology was characterized by extended cluster aggregates with lower stiffness and friction than the surrounding matrix, and the PL signal decreased.

14.
J Orthod Sci ; 12: 82, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38234657

RESUMEN

BACKGROUND: Static friction force between the orthodontic brackets and wire impacts the sliding mechanics that affect teeth movements and treatment duration. This sliding media is jam-packed with released metal ions from the fixed appliances. This study aimed to assess the static frictional force and surface topography of stainless steel (SS) and I archwires in dry conditions and in media fully with metal ions that were released from fixed appliances. METHODS: In this research study, a set of 60 as-received straight archwires specimens (5 cm wire) were employed and categorized into two groups based on the material type [30 super elastics new I archwires gauge (0.018 × 0.014 inch) and 30 SS archwires 0.018 × 0.022" as a control]. The archwires' static friction force was measured while sliding a loaded Roth SS brackets (0.018") on the archwire using a universal tensile testing machine in dry and metal ions released media, while the surface topography was assessed using a noncontact AFM machine. RESULTS: The static friction of I archwire was significantly lower than the SS wire in dry condition. Metal ions media released from fixed appliances significantly reduced the Static friction compared to dry and wet conditions with deionized water for both wires. An Atomic Force Microscope machine surface roughness reports revealed that the highest mean of all three roughness parameters was found in the SS group, followed by I archwires in descending order. Additionally, metal ions media significantly reduce all roughness parameters.

15.
IEEE ASME Trans Mechatron ; 27(5): 2418-2428, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36340914

RESUMEN

In this paper, we thoroughly analyze the effect of single-tendon and antagonistic tendons actuation on tension loss of multi-segment tendon-driven continuum manipulators (TD-CMs) with irregular geometry. To this end, we propose a generic analytical modeling approach and iterative algorithm that can solve the unknown correlation between distributed friction force, tendons' tension transmission loss, and planar deformation behavior of TD-CMs during tendons' pulling and releasing phases. The proposed generic model solely relies on known input tendons' tensions and does not require a priori knowledge of the manipulator's shape and/or other experimental conditions. To investigate the influence of actuation type on tension loss and deformation behavior of TD-CMs, we fabricated two different TD-CMs and performed various simulation and experimental studies with single-tendon and antagonistic tensions actuations. The obtained results indicate the importance of considering the effect of distributed friction force and actuation type on tension(s) loss of multi-segment TD-CMs. Moreover, it clearly demonstrates the efficacy and accuracy of the proposed model in providing insights and understanding of tension transmission process in various types of actuations in multi-segment TD-CMs with irregular geometry.

16.
Biomimetics (Basel) ; 7(3)2022 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-35997428

RESUMEN

Bioinspired surfaces with special wettabilities attract increasing attention due to their extensive applications in many fields. However, the characterizations of surface wettability by contact angle (CA) and sliding angle (SA) have clear drawbacks. Here, by using an array of triangular micropillars (ATM) prepared by soft lithography, the merits of measuring the friction force of a water droplet on ATM over measurements of CA and SA in characterizing the surface wettability are demonstrated. The CA and SA measurements show ignorable differences in the wettabilities of ATM in opposite directions (1.13%) and that with different periodic parameters under the elongation ranging from 0 to 70%. In contrast, the friction measurement reveals a difference of > 10% in opposite directions. Moreover, the friction force shows a strong dependence on the periodic parameters which is regulated by mechanical stretching. Increasing the elongation from 0 to 50% increases the static and kinetic friction force up to 23.0% and 22.9%, respectively. Moreover, the stick-slip pattern during kinetic friction can reveal the periodic features of the measured surface. The friction force measurement is a sensitive technique that could find applications in the characterization of surface wettabilities.

17.
Front Robot AI ; 9: 899850, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35783025

RESUMEN

Inchworm-styled locomotion is one of the simplest gaits for mobile robots, which enables easy actuation, effective movement, and strong adaptation in nature. However, an agile inchworm-like robot that realizes versatile locomotion usually requires effective friction force manipulation with a complicated actuation structure and control algorithm. In this study, we embody a friction force controller based on the deformation of the robot body, to realize bidirectional locomotion. Two kinds of differential friction forces are integrated into a beam-like soft robot body, and along with the cyclical actuation of the robot body, two locomotion gaits with opposite locomotion directions can be generated and controlled by the deformation process of the robot body, that is, the dynamic gaits. Based on these dynamic gaits, two kinds of locomotion control schemes, the amplitude-based control and the frequency-based control, are proposed, analyzed, and validated with both theoretical simulations and prototype experiments. The soft inchworm crawler achieves the versatile locomotion result via a simple system configuration and minimalist actuation input. This work is an example of using soft structure vibrations for challenging robotic tasks.

18.
Materials (Basel) ; 15(3)2022 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-35160970

RESUMEN

During the single-point incremental forming (SPIF) process, a sheet is formed by a locally acting stress field on the surface consisting of a normal and shear component that is strongly affected by friction of the dragging forming tool. SPIF is usually performed under well-lubricated conditions in order to reduce friction. Instead of lubricating the contact surface of the sheet metal, we propose an innovative, environmentally friendly method to reduce the coefficient of friction by ultrasonic excitation of the metal sheet. By evaluating the tool-workpiece interaction process as non-linear due to large deformations in the metal sheet, the finite element method (FEM) allows for a virtual evaluation of the deformation and piercing parameters of the SPIF process in order to determine destructive loads.

19.
Acta Pharm Sin B ; 12(1): 437-450, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35127397

RESUMEN

Dry powder inhalers (DPIs) had been widely used in lung diseases on account of direct pulmonary delivery, good drug stability and satisfactory patient compliance. However, an indistinct understanding of pulmonary delivery processes (PDPs) hindered the development of DPIs. Most current evaluation methods explored the PDPs with over-simplified models, leading to uncompleted investigations of the whole or partial PDPs. In the present research, an innovative modular process analysis platform (MPAP) was applied to investigate the detailed mechanisms of each PDP of DPIs with different carrier particle sizes (CPS). The MPAP was composed of a laser particle size analyzer, an inhaler device, an artificial throat and a pre-separator, to investigate the fluidization and dispersion, transportation, detachment and deposition process of DPIs. The release profiles of drug, drug aggregation and carrier were monitored in real-time. The influence of CPS on PDPs and corresponding mechanisms were explored. The powder properties of the carriers were investigated by the optical profiler and Freeman Technology four powder rheometer. The next generation impactor was employed to explore the aerosolization performance of DPIs. The novel MPAP was successfully applied in exploring the comprehensive mechanism of PDPs, which had enormous potential to be used to investigate and develop DPIs.

20.
Nanotechnology ; 33(23)2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35180710

RESUMEN

Controlling friction force and thermal conductance at solid/solid interface is of great importance but remains a significant challenge. In this work, we propose a method to control the matching degree of phonon spectra at the interface through modifying the atomic mass of contact materials, thereby regulating the interfacial friction force and thermal conductance. Results of Debye theory and molecular dynamics simulations show that the cutoff frequency of phonon spectrum decreases with increasing atomic mass. Thus, two contact surfaces with equal atomic mass have same vibrational characteristics, so that more phonons could pass through the interface. In these regards, the coupling strength of phonon modes on contact surfaces makes it possible to gain insight into the nonmonotonic variation of interfacial friction force and thermal conductance. Our investigations suggest that the overlap of phonon modes increases energy scattering channels and therefore phonon transmission at the interface, and finally, an enhanced energy dissipation in friction and heat transfer ability at interface.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA