Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 933: 172881, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38701922

RESUMEN

Wetlands play a disproportionate role in the global climate as major sources and sinks of greenhouse gases. Herbicides are the most heavily used agrochemicals and are frequently detected in aquatic ecosystems, with glyphosate and 2,4-Dichlorophenoxyacetic acid (2,4-D), representing the two most commonly used worldwide. In recent years, these herbicides are being used in mixtures to combat herbicide-tolerant noxious weeds. While it is well documented that herbicide use for agriculture is expected to increase, their indirect effects on wetland greenhouse gas dynamics are virtually unknown. To fill this knowledge gap, we conducted a factorial microcosm experiment using low, medium, and high concentrations of glyphosate or 2,4-D, individually and in combination to investigate their effects on wetland methane, carbon dioxide, and nitrous oxide fluxes. We predicted that mixed herbicide treatments would have a synergistic effect on greenhouse gases compared to individual herbicides. Our results showed that carbon dioxide flux rates and cumulative emissions significantly increased from both individual and mixed herbicide treatments, whereas methane and nitrous oxide dynamics were less affected. This study suggests that extensive use of glyphosate and 2,4-D may increase carbon dioxide emissions from wetlands, which could have implications for climate change.

2.
Bioscience ; 74(4): 253-268, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38720908

RESUMEN

Managing coastal wetlands is one of the most promising activities to reduce atmospheric greenhouse gases, and it also contributes to meeting the United Nations Sustainable Development Goals. One of the options is through blue carbon projects, in which mangroves, saltmarshes, and seagrass are managed to increase carbon sequestration and reduce greenhouse gas emissions. However, other tidal wetlands align with the characteristics of blue carbon. These wetlands are called tidal freshwater wetlands in the United States, supratidal wetlands in Australia, transitional forests in Southeast Asia, and estuarine forests in South Africa. They have similar or larger potential for atmospheric carbon sequestration and emission reductions than the currently considered blue carbon ecosystems and have been highly exploited. In the present article, we suggest that all wetlands directly or indirectly influenced by tides should be considered blue carbon. Their protection and restoration through carbon offsets could reduce emissions while providing multiple cobenefits, including biodiversity.

3.
Front Microbiol ; 15: 1397683, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38650885

RESUMEN

Freshwater wetlands are the wetland ecosystems surrounded by freshwater, which are at the interface of terrestrial and freshwater ecosystems, and are rich in ecological composition and function. Biodiversity in freshwater wetlands plays a key role in maintaining the stability of their habitat functions. Due to anthropogenic interference and global change, the biodiversity of freshwater wetlands decreases, which in turn destroys the habitat function of freshwater wetlands and leads to serious degradation of wetlands. An in-depth understanding of the effects of biodiversity on the stability of habitat function and its regulation in freshwater wetlands is crucial for wetland conservation. Therefore, this paper reviews the environmental drivers of habitat function stability in freshwater wetlands, explores the effects of plant diversity and microbial diversity on habitat function stability, reveals the impacts and mechanisms of habitat changes on biodiversity, and further proposes an outlook for freshwater wetland research. This paper provides an important reference for freshwater wetland conservation and its habitat function enhancement.

4.
Sci Total Environ ; 859(Pt 2): 160384, 2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36414070

RESUMEN

Inland freshwater wetland ecosystems are among the largest sink of carbon (C) in the biosphere. However, improved scientific understanding of the C stability and sequestration potential is required to predict response of C pool under environmental change and to identify priorities for lacustrine C sink management. This study analyses the concentration of organic C fractions based on their stability and estimates C stock along with depth and eco-zones of the Rudrasagar lake in Northeast India. Sediment samples up to 100 cm depth were collected from littoral, sub-littoral and deep layers, and analysed for organic C concentrations. Results showed that C concentration decreases with depth in the littoral layer but increases with depth in sub-littoral and deep layers. Two-way analysis of variance showed that concentrations of soil organic C (SOC) fractions were significantly different among the eco-zones but not between the soil depth. Average SOC stock was significantly higher in the deep layer (334.9 Mg C ha-1) followed by sub-littoral (248.4 Mg C ha-1) and littoral layer (106.1 Mg C ha-1). Overall, we show that substantial spatial variability in SOC stock exists among the eco-zones and depth that may be driven by water inundation in deep layer and fluctuating hydrological conditions at the edges of the lacustrine ecosystem. Our study demonstrates that inland freshwater wetland is a major sink of organic C and if disturbed it can act as a carbon dioxide source.


Asunto(s)
Ecosistema , Humedales , Suelo , Lagos , Dióxido de Carbono , Secuestro de Carbono , China
5.
J Anim Ecol ; 92(6): 1135-1148, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36527172

RESUMEN

One of the primary ways in which climate change will impact coastal freshwater wetlands is through changes in the frequency, intensity, timing and distribution of extreme weather events. Disentangling the direct and indirect mechanisms of population- and community-level responses to extreme events is vital to predicting how species composition of coastal wetlands will change under future conditions. We extended static structural equation modelling approaches to incorporate system dynamics in a multi-year multispecies occupancy model to quantify the effects of extreme weather events on a coastal freshwater wetland system. We used data from an 8-year study (2009-2016) on St. Marks National Wildlife Refuge in Florida, USA, to quantify species-specific and community-level changes in amphibian and fish occupancy associated with two flooding events in 2012 and 2013. We examine how physical changes to the landscape, including potential changes in salinity and increased wetland connectivity, may have contributed to or exacerbated the effects of these extreme weather events on the biota of isolated coastal wetlands. We provide evidence that the primary effects of flooding on the amphibian community were through indirect mechanisms via changes in the composition of the sympatric fish community that may have had lethal (i.e. through direct predation) or non-lethal (i.e. through direct or indirect competitive interactions) effects. In addition, we have shown that amphibian species differed in their sensitivity to direct flooding effects and indirect changes in the fish community and wetland-specific conductance, which led to variable responses across the community. These effects led to the overall decline in amphibian species richness from 2009 to 2016, suggesting that wetland-breeding amphibian communities on St. Marks National Wildlife Refuge may not be resilient to predicted changes in coastal disturbance regimes because of climate change. Understanding both direct and indirect effects, as well as species interactions, is important for predicting the effects of a changing climate on individual species, communities and ecosystems.


Asunto(s)
Ecosistema , Humedales , Animales , Biota , Animales Salvajes , Salinidad
6.
Front Plant Sci ; 13: 1075496, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36561449

RESUMEN

Both seed and bud banks play important roles in the recruitment and maintenance of macrophyte communities; however, few studies have investigated them simultaneously. We investigated the abundance, species composition, and seasonal patterns of seed and bud banks in two dominant macrophyte communities, Carex and Miscanthus, in the Dongting Lake wetlands. The seed densities of both communities were lower from November (after flooding) to March and increased dramatically before flooding (in May). The bud densities of the two dominant communities peaked in the coldest month of the year (January), decreased markedly in March, and were the lowest before flooding. The seed banks of the two macrophyte communities were mainly composed of annual species and a few perennial species, whereas the bud banks were composed of only dominant perennials. Furthermore, the perennial species present in bud banks did not occur in seed banks. Among the soil variables, the bud densities of both plant communities were negatively associated with soil bulk density, whereas the seed density of the Miscanthus community was positively associated with soil bulk density. Our results suggest that seed and bud banks are complementary in the potential recruitment of macrophyte communities; that is, bud banks regulate the demography of dominant perennials, and seed banks contribute to the recruitment and dispersal of annual species. Given the high abundance of annuals and near absence of the most dominant perennials in the seed bank, the bud banks of dominant perennial species should be more widely used in wetland restoration and management.

7.
Sci Total Environ ; 847: 157568, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-35882330

RESUMEN

Hydrological regimes can combine with climatic factors to affect plant phenology; however, few studies have attempted to quantify their complex influences on plant phenology in floodplain wetlands. We obtained phenological information on Carex vegetation through MODIS normalized difference vegetation index (NDVI) data during 2001-2020, and monthly field investigation during 2011-2020. We then explored how these data were correlated with climatic factors and flood regimes in a Yangtze River-connected floodplain wetland (Dongting Lake, China). Our results showed that warmer temperature tended to advance the start of the pre-flooding growing season (SOS1), with a relative contribution of 76.1 %. Flood rising time strongly contributed to controlling the end of the pre-flooding growing season. Flood recession time and inundation duration were dominant factors determining the start of the post-flooding growing season (SOS2). Earlier flood recession time and shortened inundation duration tended to advance the SOS2. Shortened inundation duration, earlier flood recession time, and lower solar radiation tended to advance the end of the post-flooding growing season. The phenology of Carex distributed at high-elevation areas was more affected by hydrology than that of Carex distributed at low-elevation areas. Thus, climatic factors strongly affect the phenology of Carex during the pre-flooding growing season, whereas flood regimes play a dominant role in determining the phenology in the post-flooding growing season. The different responses of Carex phenology to climatic and flooding factors may provide insights for the conservation and management of floodplain wetlands in Yangtze River because Carex are primary food source and habitat for herbivorous waterfowls.


Asunto(s)
Carex (Planta) , Humedales , Ecosistema , Inundaciones , Hidrología , Ríos
8.
Sci Total Environ ; 827: 154225, 2022 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-35247398

RESUMEN

Changes in flood regimes, floodwater quality, and macrophyte types may affect sediment characteristics post-flooding. However, few studies have attempted to unravel their complex influences in floodplain wetlands. From 2011 to 2020, the physical and chemical properties of surface layer sediment pre- and post-flooding was investigated through field surveys in the Dongting Lake wetland. Results indicated that the pre-flooding soil total phosphorus (TP) and total nitrogen (TN) exhibited an increasing trend during 2011-2020. Soil TP increased post-flooding relative to that pre-flooding. The changes in TN, sediment organic matter (SOM), sediment moisture content (SMC), and sediment bulk density (SBD) fluctuated over the years. The best-fitting multi-regression model demonstrated that the changes in sediment variables post-flooding showed a parabolic trajectory along the inundation duration (ID), except for SMC. Changes in soil properties post-flooding were negatively correlated with ID for sediment with a low IDs (<148 days). Meanwhile, changes in soil properties post flooding were positively correlated with ID for sediment with a high IDs (>193 days). Changes in SBD and SOM post-flooding were positively influenced by the TP content in the floodwater. These findings indicate that changes in the flooding regime, and water quality generated by anthropogenic disturbances such as the Three Gorges Dam significantly affect sediment properties, and subsequently influence the ecological functions of the Dongting Lake wetland.


Asunto(s)
Ríos , Humedales , China , Inundaciones , Nitrógeno/análisis , Fósforo/análisis , Suelo
9.
Water Res ; 192: 116853, 2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33513468

RESUMEN

Microplastics pollution in aquatic ecosystems is of great concern; however, systemic investigations are still lacking in freshwater wetland systems used for wastewater treatment. The present study discusses such freshwater wetland system in Eastern India to understand its microplastics transport mechanism, heavy metals association and microplastics removal efficiency. Microplastics (63 µm - 5 mm) were heavily found in surface water and sediments of treatment ponds (7.87 to 20.39 items/L and 2124.84 to 6886.76 items/kg) and associated wastewater canals (30.46 to 137.72 items/L and 1108.78 to 34612.87 items/kg). A high content of toxic metals (As, Cd, Cr, Cu, Ni, Pb and Zn) were found on the microplastics with polyethylene terephthalate and polyethylene as major plastics types which were also found in fishes and macroinvertebrates of treatment ponds. Machine learning algorithm revealed a close association between microplastics content in fishes and surface water, indicating risk associated with floating microplastics to the aquatic biota. The study also revealed that microplastics were acting as heavy metals vector and potentially causing fish contamination. Surface water microplastics removing efficiency of the treatment ponds was estimated to be 53%. The study bespeaks about transport of microplastics through wastewater canals and their retention in treatment ponds emphasizing sustainability maintenance of natural wastewater treatment systems especially considering microplastics contamination to the aquatic biota of freshwater wetland systems.


Asunto(s)
Metales Pesados , Contaminantes Químicos del Agua , Purificación del Agua , Animales , Ecosistema , Monitoreo del Ambiente , Sedimentos Geológicos , India , Metales Pesados/análisis , Microplásticos , Plásticos , Contaminantes Químicos del Agua/análisis , Humedales
10.
Carbon Balance Manag ; 15(1): 17, 2020 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-32876789

RESUMEN

BACKGROUND: The occurrence of climate change at an unprecedented scale has resulted in alterations of ecosystems around the world. Numerous studies have reported on the potential to slow down climate change through the sequestration of carbon in soil and trees. Freshwater wetlands hold significant potential for climate change mitigation owing to their large capacity to sequester atmospheric carbon dioxide (CO2). Wetlands among all terrestrial ecosystems have the highest carbon density and are found to store up to three to five times more carbon than terrestrial forests. The current study was undertaken to quantify carbon stocks of two carbon pools: aboveground biomass (AGB) and belowground biomass (BGB). Chosen study sites; Kolonnawa wetland and Thalawathugoda wetland park are distributed within the Colombo wetland complex. Colombo was recognized as one of the 18 global Ramsar wetland cities in 2018. A combination of field measurements and allometric tree biomass regression models was used in the study. Stratification of the project area was performed using the normalized difference vegetation index (NDVI). RESULTS: The AGB carbon stock, across strata, is estimated to be in the range of 13.79 ± 3.65-66.49 ± 6.70 tC/ha and 8.13 ± 2.42-52.63 ± 10.00 tC/ha at Kolonnawa wetland and Thalawathugoda wetland park, respectively. The BGB carbon stock is estimated to be in the range of 2.47 ± 0.61-10.12 ± 0.89 tC/ha and 1.56 ± 0.41-8.17 ± 1.39 tC/ha at Kolonnawa wetland and Thalawathugoda wetland park, respectively. The total AGB carbon stock of Kolonnawa wetland was estimated at 19,803 ± 1566 tCO2eq and that of Thalawathugoda wetland park was estimated at 4180 ± 729 tCO2eq. CONCLUSIONS: In conclusion, the study reveals that tropical freshwater wetlands contain considerable potential as carbon reservoirs. The study suggests the use of tropical freshwater wetlands in carbon sequestration enhancement plans in the tropics. The study also shows that Annona glabra, an invasive alien species (IAS), has the potential to enhance the net sink of AGB carbon in these non-mangrove wetlands. However, further studies are essential to confirm if enhanced carbon sequestration by Annona glabra is among the unexplored and unreported benefits of the species.

11.
Ecohydrology ; 13(2): e2173, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32313604

RESUMEN

Coastal zones are characterized by the interactions between continents and oceans and, therefore, between fresh and salt surface and groundwater. The wetlands of coastal zones represent transitional ecosystems that are affected by these conditions, although little is known about the hydrogeochemistry of wetlands, especially coastal wetlands. In the present study, the hydrogeochemical characterization of coastal freshwater herbaceous wetlands in the Ciénaga del Fuerte Protected Natural Area in Veracruz, Mexico, in the American tropics was carried out per plant community. Four herbaceous wetlands (alligator flag, saw grass, cattail, and floodplain pasture) were monitored to understand the origin of the water feeding these ecosystems, the hydrogeochemical composition of groundwater, and the relationship between the groundwater and ecology of these ecosystems during dry and rainy seasons. The results indicate that Ciénaga del Fuerte is located in a regional discharge area and receives local recharge, so it is fed by both regional and local flows. The chemical composition varied temporally and spatially, creating unique conditions that determined the habitat occupied by the hydrophytic vegetation. The spatiotemporal behaviour of groundwater is one factor that, along with the hydroperiod, determines wetland dynamics and affects wetland biota (ecohydrogeochemistry). Generalist plant communities established in zones of local recharge, whereas other more specialized and/or plastic communities inhabited zones receiving regional flows with greater ion concentrations. This information forms the basis for establishing an appropriate scale (municipal, state, or larger regions) for the sustainable management of goods and services provided by the wetlands.

12.
Sci Total Environ ; 704: 135271, 2020 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-31791783

RESUMEN

Warming and eutrophication can have varying effects on exotic species performance and their interactions. These effects can vary with trophic level, but are rarely investigated simultaneously on exotic species from multiple trophic levels. To address this, we manipulated temperature, nutrients, and plant origin (native vs. exotic) in snail invaded wetland communities. Warming increased exotic apple snail (Pomacea maculata) reproduction (4-fold increase in egg mass) and also number of egg clutches produced while warming slowed exotic snail growth, suggesting a trade-off between reproduction and growth in exotic snails influenced by warming and nutrients. However, exotic snail size varied with warming and nutrients. Additionally, warming reduced native plant mass with no effect on exotic plants while nutrients had greater positive effects on exotic plants biomass. In combination warming and nutrient enrichment will likely increase exotic snail growth, while nutrient enrichment alone will contribute to exotic plant dominance. In conclusion, the individual and interactive effects of warming and eutrophication vary with the trophic level of exotic species with trade-offs in exotic herbivores depending on environmental conditions, making it difficult to predict effects of multiple anthropogenic factors on co-occurring exotic plants and their effects on native communities.


Asunto(s)
Especies Introducidas , Caracoles , Humedales , Animales , Fenómenos Biológicos , Biomasa , Eutrofización , Alimentos , Herbivoria , Plantas , Reproducción
13.
Sci Total Environ ; 696: 134029, 2019 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-31470319

RESUMEN

Microorganisms in tidal freshwater wetlands affect biogeochemical cycling of nutrients, but the structures and functions of the wetland communities change due to natural and anthropogenic stresses. Soil samples were collected along a 350-m sampling belt in typical tidal freshwater wetlands of Yellow River Delta to investigate nutrient distributions, bacterial community structures and potential metabolic functions under tide and runoff stress by high-throughput sequencing and PICRUSt analysis. The total nitrogen (TN) contents varied greatly while total phosphorous (TP) contents were relatively stable. The bacterial community structures and predicted functions varied along a 350-m sampling belt. Some sulfate-reducing bacteria, nitrifying bacteria, Marmoricola, unclassified_f_Salinisphaeraceae and Oceanococcus exhibited a decreased trend with increasing distances far away from the river bank (B-0m). However, Salinisphaera was more dominant far away from the river bank (B-350m), indicating the stronger tolerance degree under salt stress. Marinobacterium and Marinobacter could be widely detected from B-0m to B-350m, demonstrating that those bacteria could tolerate a broad range of salinity and have its exceptional adaptation capacities. Redundancy analysis (RDA) indicated that nutrient and salinity played an important role in shaping bacterial community composition. NH4+-N and AP were the key factors in explaining the variance of the genus level. Predicted by PICRUSt analysis, nitrogen fixation (NF), nitrogen mineralization (NM), denitrification and dissimilatory nitrate reduction to ammonium (DNRA) might be the dominant processes of nitrogen metabolism and related genes abundance were abundant in tidal freshwater wetland soils. These findings could provide new insights into the prevention and control of potential nutrient pollution in tidal freshwater wetlands under the dual stress of tide and runoff.


Asunto(s)
Bacterias , Agua Dulce/microbiología , Microbiota , Humedales , China , Desnitrificación , Nitrificación , Nitrógeno , Fijación del Nitrógeno , Ríos , Salinidad , Suelo/química
14.
Microorganisms ; 7(3)2019 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-30845660

RESUMEN

Urban expansion causes coastal wetland loss, and environmental stressors associated with development can lead to wetland degradation and loss of ecosystem services. This study investigated the effect of urbanization on prokaryotic community composition in tidal freshwater wetlands. Sites in an urban, suburban, and rural setting were located near Buenos Aires, Argentina, and Washington D.C., USA. We sampled soil associated with two pairs of functionally similar plant species, and used Illumina sequencing of the 16S rRNA gene to examine changes in prokaryotic communities. Urban stressors included raw sewage inputs, nutrient pollution, and polycyclic aromatic hydrocarbons. Prokaryotic communities changed along the gradient (nested PerMANOVA, Buenos Aires: p = 0.005; Washington D.C.: p = 0.001), but did not differ between plant species within sites. Indicator taxa included Methanobacteria in rural sites, and nitrifying bacteria in urban sites, and we observed a decrease in methanogens and an increase in ammonia-oxidizers from rural to urban sites. Functional profiles in the Buenos Aires communities showed higher abundance of pathways related to nitrification and xenobiotic degradation in the urban site. These results suggest that changes in prokaryotic taxa across the gradient were due to surrounding stressors, and communities in urban and rural wetlands are likely carrying out different functions.

15.
Appl Microbiol Biotechnol ; 100(7): 3291-300, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26621804

RESUMEN

Anaerobic ammonium oxidation (anammox) process plays a significant role in the marine nitrogen cycle. However, the quantitative importance of this process in nitrogen removal in wetland systems, particularly in natural freshwater wetlands, is still not determined. In the present study, we provided the evidence of the distribution and activity of anammox bacteria in a natural freshwater wetland, located in southeastern China, by using (15)N stable isotope measurements, quantitative PCR assays and 16S rRNA gene clone library analysis. The potential anammox rates measured in this wetland system ranged between 2.5 and 25.5 nmol N2 g(-1) soil day(-1), and up to 20% soil dinitrogen gas production could be attributed to the anammox process. Phylogenetic analysis of 16S rRNA genes showed that anammox bacteria related to Candidatus Brocadia, Candidatus Kuenenia, Candidatus Anammoxoglobus and two novel anammox clusters coexisted in the collected soil cores, with Candidatus Brocadia and Candidatus Kuenenia being the dominant anammox genera. Quantitative PCR of hydrazine synthase genes showed that the abundance of anammox bacteria varied from 2.3 × 10(5) to 2.2 × 10(6) copies g(-1) soil in the examined soil cores. Correlation analyses suggested that the soil ammonium concentration had significant influence on the activity of anammox bacteria. On the basis of (15)N tracing technology, it is estimated that a total loss of 31.1 g N m(-2) per year could be linked the anammox process in the examined wetland.


Asunto(s)
Compuestos de Amonio/química , Bacterias/genética , Agua Dulce/microbiología , Genes Bacterianos , Microbiología del Suelo , Humedales , Compuestos de Amonio/metabolismo , Anaerobiosis , Bacterias/clasificación , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Marcaje Isotópico , Ciclo del Nitrógeno , Oxidación-Reducción , Filogenia , ARN Ribosómico 16S/genética , Suelo/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA