Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 14(4)2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38392736

RESUMEN

A new solid lubrication method was proposed for dry forging of pure titanium with high reduction in thickness. A free-carbon tribofilm was formed in situ at the hot spots on the contact interface to protect the die surfaces from severe adhesion of work materials. This film consisted of the free carbon, which isolated from the carbon supersaturated die substrate materials, diffused to the contact interface and agglomerated to a thin film. Two different routes of carbon supersaturation process were developed to prepare carbon supersaturated ceramic and metal dies for the dry forging of pure titanium wires. A pure titanium bar was utilized as an easy-to-adherent work material for upsetting in dry and cold. The round bar was upset up to 70% in reduction in thickness with a low friction coefficient from 0.05 to 0.1 in a single stroke. Work hardening was suppressed by this low friction. SEM-EDX, EBSD and Raman spectroscopy were utilized to analyze the contact interface and to understand the role of in situ formed free-carbon films on the low friction and low work hardening during forging. Precise nanostructure analyses were utilized to describe low friction forging behavior commonly observed in these two processes. The in situ solid lubrication mechanism is discussed based on the equivalence between the nitrogen and carbon supersaturation processes.

2.
Materials (Basel) ; 15(15)2022 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-35955366

RESUMEN

An advanced process of mandrel forging and necking (MFN) was proposed for a hollow shaft with an inner stepped hole. The conventional mandrel forging process with an equal-diameter mandrel was used to form the outer stepped preform, and then the preform was formed into the hollow shaft with an inner stepped hole using the MFN process. A numerical simulation model was established to study the effect of the pressing reduction and the rotation angle on the MFN process. A preforming design method based on the isometric radius difference was given according to the principle of the equal volume, and the parameter relationships between the outer and inner stepped shapes were clarified. The experimental deformation laws of the MFN process were consistent with those obtained by the simulation. The MFN process and its preforming design method provide a new free forging approach for large hollow forgings with inner stepped holes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA