Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 312
Filtrar
1.
Sci Rep ; 14(1): 20918, 2024 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-39251732

RESUMEN

Halophilic archaea are a unique group of microorganisms that thrive in high-salt environments, exhibiting remarkable adaptations to survive extreme conditions. Archaeological wood and El-Hamra Lake serve as a substrate for a diverse range of microorganisms, including archaea, although the exact role of archaea in archaeological wood biodeterioration remains unclear. The morphological and chemical characterizations of archaeological wood were evaluated using FTIR, SEM, and EDX. The degradation of polysaccharides was identified in Fourier transform infrared analysis (FTIR). The degradation of wood was observed through scanning electron microscopy (SEM). The energy dispersive X-ray spectroscopy (EDX) revealed the inclusion of minerals, such as calcium, silicon, iron, and sulfur, into archaeological wood structure during burial and subsequent interaction with the surrounding environment. Archaea may also be associated with detected silica in archaeological wood since several organosilicon compounds have been found in the crude extracts of archaeal cells. Archaeal species were isolated from water and sediment samples from various sites in El-Hamra Lake and identified as Natronococcus sp. strain WNHS2, Natrialba hulunbeirensisstrain WNHS14, Natrialba chahannaoensis strain WNHS9, and Natronococcus occultus strain WNHS5. Additionally, three archaeal isolates were obtained from archaeological wood samples and identified as Natrialba chahannaoensisstrain W15, Natrialba chahannaoensisstrain W22, and Natrialba chahannaoensisstrain W24. These archaeal isolates exhibited haloalkaliphilic characteristics since they could thrive in environments with high salinity and alkalinity. Crude extracts of archaeal cells were analyzed for the organic compounds using gas chromatography-mass spectrometry (GC-MS). A total of 59 compounds were identified, including free saturated and unsaturated fatty acids, saturated fatty acid esters, ethyl and methyl esters of unsaturated fatty acids, glycerides, phthalic acid esters, organosiloxane, terpene, alkane, alcohol, ketone, aldehyde, ester, ether, and aromatic compounds. Several organic compounds exhibited promising biological activities. FTIR spectroscopy revealed the presence of various functional groups, such as hydroxyl, carboxylate, siloxane, trimethylsilyl, and long acyl chains in the archaeal extracts. Furthermore, the archaeal extracts exhibited antioxidant effects. This study demonstrates the potential of archaeal extracts as a valuable source of bioactive compounds with pharmaceutical and biomedical applications.


Asunto(s)
Arqueología , Lagos , Madera , Madera/química , Madera/microbiología , Lagos/microbiología , Egipto , Archaea , Espectroscopía Infrarroja por Transformada de Fourier , Filogenia , Espectrometría por Rayos X
2.
Cell Genom ; 4(9): 100593, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39265525

RESUMEN

Neanderthal genomes have been recovered from sites across Eurasia, painting an increasingly complex picture of their populations' structure that mostly indicates that late European Neanderthals belonged to a single metapopulation with no significant evidence of population structure. Here, we report the discovery of a late Neanderthal individual, nicknamed "Thorin," from Grotte Mandrin in Mediterranean France, and his genome. These dentognathic fossils, including a rare example of distomolars, are associated with a rich archeological record of Neanderthal final technological traditions in this region ∼50-42 thousand years ago. Thorin's genome reveals a relatively early divergence of ∼105 ka with other late Neanderthals. Thorin belonged to a population with a small group size that showed no genetic introgression with other known late European Neanderthals, revealing some 50 ka of genetic isolation of his lineage despite them living in neighboring regions. These results have important implications for resolving competing hypotheses about causes of the disappearance of the Neanderthals.


Asunto(s)
Fósiles , Hombre de Neandertal , Hombre de Neandertal/genética , Animales , Aislamiento Social , Humanos , Genoma , Extinción Biológica , Francia
3.
Anat Rec (Hoboken) ; 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39118368

RESUMEN

Frontal size variation is comparatively poorly sampled among sub-Saharan African populations. This study assessed frontal sinus size in a sample of Khoe-San skeletal remains from South African Later Stone Age contexts. Volumes were determined from CT scans of 102 adult crania; individual sex could be estimated in 82 cases. Sinus volume is not sexually dimorphic in this sample. The lack of frontal sinus aplasia is concordant with the low incidences recorded for other sub-Saharan African and most other global populations save those that inhabit high latitudes. There is considerable variation in frontal sinus size among global populations, and the Khoe-San possess among the smallest. The Khoe-San have rather diminutive sinuses compared to sub-Saharan Bantu-speaking populations but resemble a northern African (Sudanese) population. Genetic studies indicate the earliest population divergence within Homo sapiens to have been between the Khoe-San and all other living groups, and that this likely occurred in Africa during the span of Marine Isotope Stages 8-6. There is scant information on frontal sinus development among Late Quaternary African fossils that are likely either closely related or attributable to Homo sapiens. Among these, the MIS 3 cranium from Hofmeyr, South Africa, exhibits distinct Khoe-San cranial affinities and despite its large size has a very small frontal sinus. This raises the possibility that the small frontal sinuses of the Holocene South African Khoe-San might be a feature retained from an earlier MIS 3 population.

4.
Mol Phylogenet Evol ; 200: 108185, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39209047

RESUMEN

Petaluridae (Odonata: Anisoptera) is a relict dragonfly family, having diverged from its sister family in the Jurassic, of eleven species that are notable among odonates (dragonflies and damselflies) for their exclusive use of fen and bog habitats, their burrowing behavior as nymphs, large body size as adults, and extended lifespans. To date, several nodes within this family remain unresolved, limiting the study of the evolution of this peculiar family. Using an anchored hybrid enrichment dataset of over 900 loci we reconstructed the species tree of Petaluridae. To estimate the temporal origin of the genera within this family, we used a set of well-vetted fossils and a relaxed molecular clock model in a divergence time estimation analysis. We estimate that Petaluridae originated in the early Cretaceous and confirm the existence of monophyletic Gondwanan and Laurasian clades within the family. Our relaxed molecular clock analysis estimated that these clades diverged from their MRCA approximately 160 mya. Extant lineages within this family were identified to have persisted from 6 (Uropetala) to 120 million years (Phenes). Our biogeographical analyses focusing on a set of key regions suggest that divergence within Petaluridae is largely correlated with continental drift, the exposure of land bridges, and the development of mountain ranges. Our results support the hypothesis that species within Petaluridae have persisted for tens of millions of years, with little fossil evidence to suggest widespread extinction in the family, despite optimal conditions for the fossilization of nymphs. Petaluridae appear to be a rare example of habitat specialists that have persisted for tens of millions of years.


Asunto(s)
Fósiles , Odonata , Filogenia , Animales , Odonata/genética , Odonata/clasificación , Extinción Biológica , Modelos Genéticos , Teorema de Bayes , Análisis de Secuencia de ADN , Evolución Molecular
5.
R Soc Open Sci ; 11(7): 231827, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39021769

RESUMEN

Fossils constitute an inestimable archive of past life on the Earth. However, the stochastic processes driving decay and fossilization and overwhelmingly distorting this archive, are challenging to interpret. Consequently, concepts of exceptional or poor preservation are often subjective or arbitrarily defined. Here, we offer an alternative way to think about fossilization. We propose a mathematical description of decay and fossilization relying on the change in the relative frequency and characteristics of biogenic objects (e.g. atoms, functional groups, molecules, body parts and organisms) within an organism-fossil system. This description partitions taphonomic changes into three categories: gain, loss and alteration of state. Although the changes undergone by organisms through decay, preservation and alteration vary a lot for different organisms under different conditions, we provide a unified formalism which can be applied directly in the comparison of different assemblages, experiments and fossils. Our expression is closely related to George R. Price's famous equation for the change in evolutionary traits and can be adapted to the study of palaeontological systems and many others.

6.
MethodsX ; 13: 102794, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39036608

RESUMEN

Studying insect fossils, particularly those preserved as compressions in sedimentary matrices, can be difficult due to the taphonomic processes that often result to poor preservation and contrast of structures compared to the embedding matrix. To address this, we propose a user-friendly and simple methodology based on UV-light to study insect fossils and select specimens of interest for more advanced imagery exploration. While UV-light imaging has been previously applied to compressions of arthropod fossils, it typically involved laser light sources. Our approach allows the investigation of fossils using an affordable, compact, and portable UV-light source, along with a simple and replicable low-cost protocol. •The methodology is based on UV-light induced natural fluorescence of sediment and fossil remains.•UV-light is effective on compression fossils to gain natural contrast and enhance observation of body structures like veins or setae on wings.•UV-light is effective to reveal palaeoecological information such as pollen grains preserved on specimens, especially near or on putative pollinator or pollen-eating taxa.

7.
PeerJ ; 12: e17478, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38952976

RESUMEN

Bolt's Farm is the name given to a series of non-hominin bearing fossil sites that have often been suggested to be some of the oldest Pliocene sites in the Cradle of Humankind, South Africa. This article reports the results of the first combined Uranium-Series and Electron Spin Resonance (US-ESR) dating of bovid teeth at Milo's Cave and Aves Cave at Bolt's Farm. Both tooth enamel fragments and tooth enamel powder ages were presented for comparison. US-ESR, EU and LU models are calculated. Overall, the powder ages are consistent with previous uranium-lead and palaeomagnetic age estimates for the Aves Cave deposit, which suggest an age between ~3.15 and 2.61 Ma and provide the first ages for Milo's Cave dates to between ~3.1 and 2.7 Ma. The final ages were not overly dependent on the models used (US-ESR, LU or EU), which all overlap within error. These ages are all consistent with the biochronological age estimate (<3.4->2.6 Ma) based on the occurrence of Stage I Metridiochoerus andrewsi. Preliminary palaeomagnetic analysis from Milo's Cave indicates a reversal takes place at the site with predominantly intermediate directions, suggesting the deposit may date to the period between ~3.03 and 3.11 Ma within error of the ESR ages. This further suggests that there are no definitive examples of palaeocave deposits at Bolt's Farm older than 3.2 Ma. This research indicates that US-ESR dating has the potential to date fossil sites in the Cradle of Humankind to over 3 Ma. However, bulk sample analysis for US-ESR dating is recommended for sites over 3 Ma.


Asunto(s)
Fósiles , Datación Radiométrica , Uranio , Sudáfrica , Espectroscopía de Resonancia por Spin del Electrón/métodos , Uranio/análisis , Animales , Cuevas/química , Diente/química , Diente/anatomía & histología , Esmalte Dental/química
8.
Insects ; 15(6)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38921097

RESUMEN

Fossils can document the morphological diversification through time and date lineages, providing relevant characters are preserved. Primascena Klimaszewsi, 1997 was erected for P. subita Klimaszewsi, 1997 on the basis of a single, partly damaged male from Dominican amber. Originally assigned to Rhinocolidae: Paurocephalinae, the genus was subsequently transferred to Psyllidae: Aphalaroidinae. Recently, two undescribed species resembling the fossil species were discovered in Brazil (Mato Grosso do Sul), allowing a detailed morphological study of adults and immatures. Based on the morphological study, a revised diagnosis of the genus is provided, including the previously unknown female and fifth instar immatures. Primascena subita is redescribed and P. empsycha n. spec. and P. ruprechtiae n. spec. are formally described and illustrated. An identification key is provided for the species of Primascena. A cladistic morphological analysis supports the placement of the two new species in Primascena, and of this genus in the Aphalaroidinae. It is sister to all but Aphalaroida, though with little support. The two Brazilian species develop on Ruprechtia spp. (Polygonaceae: Eriogonoideae), an unusual psyllid host. Immatures of P. ruprechtiae are free-living on the lower leaf face and do not induce galls.

9.
Curr Biol ; 34(11): 2541-2550.e4, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38788708

RESUMEN

Major ecological transitions are thought to fuel diversification, but whether they are contingent on the evolution of certain traits called key innovations1 is unclear. Key innovations are routinely invoked to explain how lineages rapidly exploit new ecological opportunities.1,2,3 However, investigations of key innovations often focus on single traits rather than considering trait combinations that collectively produce effects of interest.4 Here, we investigate the evolution of synergistic trait interactions in anglerfishes, which include one of the most species-rich vertebrate clades in the bathypelagic, or "midnight," zone of the deep sea: Ceratioidea.5 Ceratioids are the only vertebrates that possess sexual parasitism, wherein males temporarily attach or permanently fuse to females to mate.6,7 We show that the rapid transition of ancestrally benthic anglerfishes into pelagic habitats occurred during a period of major global warming 50-35 million years ago.8,9 This transition coincided with the origins of sexual parasitism, which is thought to increase the probability of successful reproduction once a mate is found in the midnight zone, Earth's largest habitat.5,6,7 Our reconstruction of the evolutionary history of anglerfishes and the loss of immune genes support that permanently fusing clades have convergently degenerated their adaptive immunity. We find that degenerate adaptive immune genes and sexual body size dimorphism, both variably present in anglerfishes outside the ceratioid radiation, likely promoted their transition into the bathypelagic zone. These results show how traits from separate physiological, morphological, and reproductive systems can interact synergistically to drive major transitions and subsequent diversification in novel environments.


Asunto(s)
Evolución Biológica , Océanos y Mares , Animales , Ecosistema , Filogenia , Masculino , Femenino
10.
PeerJ ; 12: e17277, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38708352

RESUMEN

Background: Squamata (lizards, snakes, and amphisbaenians) is a Triassic lineage with an extensive and complex biogeographic history, yet no large-scale study has reconstructed the ancestral range of early squamate lineages. The fossil record indicates a broadly Pangaean distribution by the end- Cretaceous, though many lineages (e.g., Paramacellodidae, Mosasauria, Polyglyphanodontia) subsequently went extinct. Thus, the origin and occupancy of extant radiations is unclear and may have been localized within Pangaea to specific plates, with potential regionalization to distinct Laurasian and Gondwanan landmasses during the Mesozoic in some groups. Methods: We used recent tectonic models to code extant and fossil squamate distributions occurring on nine discrete plates for 9,755 species, with Jurassic and Cretaceous fossil constraints from three extinct lineages. We modeled ancestral ranges for crown Squamata from an extant-only molecular phylogeny using a suite of biogeographic models accommodating different evolutionary processes and fossil-based node constraints from known Jurassic and Cretaceous localities. We hypothesized that the best-fit models would not support a full Pangaean distribution (i.e., including all areas) for the origin of crown Squamata, but would instead show regionalization to specific areas within the fragmenting supercontinent, likely in the Northern Hemisphere where most early squamate fossils have been found. Results: Incorporating fossil data reconstructs a localized origin within Pangaea, with early regionalization of extant lineages to Eurasia and Laurasia, while Gondwanan regionalization did not occur until the middle Cretaceous for Alethinophidia, Scolecophidia, and some crown Gekkotan lineages. While the Mesozoic history of extant squamate biogeography can be summarized as a Eurasian origin with dispersal out of Laurasia into Gondwana, their Cenozoic history is complex with multiple events (including secondary and tertiary recolonizations) in several directions. As noted by previous authors, squamates have likely utilized over-land range expansion, land-bridge colonization, and trans-oceanic dispersal. Tropical Gondwana and Eurasia hold more ancient lineages than the Holarctic (Rhineuridae being a major exception), and some asymmetries in colonization (e.g., to North America from Eurasia during the Cenozoic through Beringia) deserve additional study. Future studies that incorporate fossil branches, rather than as node constraints, into the reconstruction can be used to explore this history further.


Asunto(s)
Fósiles , Animales , Filogenia , Evolución Biológica , Serpientes/anatomía & histología , Serpientes/clasificación , Serpientes/genética , Lagartos/anatomía & histología , Lagartos/genética , Lagartos/clasificación , Filogeografía , Europa (Continente) , Asia
11.
Methods Mol Biol ; 2757: 27-102, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38668962

RESUMEN

Ctenophores or comb jellies represent the first diverging lineage of extant animals - sister to all other Metazoa. As a result, they occupy a unique place in the biological sciences. Despite their importance, this diverse group of marine predators has remained relatively poorly known, with both the species and higher-level taxonomy of the phylum in need of attention. We present a checklist of the phylum based on a review of the current taxonomic literature and illustrate their diversity with images. The current classification presented remains substantially in conflict with recent phylogenetic results, and many of the taxa are not monophyletic or untested. This chapter summarizes the existing classification focusing on recognized families and genera with 185 currently accepted, extant species listed. We provide illustrative examples of ctenophore diversity covering all but one of the 33 families and 47 of the 48 genera, as well as about 25-30 undescribed species. We also list the 14 recognized ctenophore fossil species and note others that have been controversially attributed to the phylum. Analyses of unique ctenophore adaptations are critical to understanding early animal evolution and adaptive radiation of this clade of basal metazoans.


Asunto(s)
Ctenóforos , Filogenia , Animales , Ctenóforos/clasificación , Ctenóforos/genética , Fósiles , Evolución Biológica
12.
BMC Biol ; 22(1): 96, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38679748

RESUMEN

BACKGROUND: The early Cambrian arthropod clade Megacheira, also referred to as great appendage arthropods, comprised a group of diminutive and elongated predators during the early Palaeozoic era, around 518 million years ago. In addition to those identified in the mid-Cambrian Burgess Shale biota, numerous species are documented in the renowned 518-million-year-old Chengjiang biota of South China. Notably, one species, Tanglangia longicaudata, has remained inadequately understood due to limited available material and technological constraints. In this study, we, for the first time, examined eight fossil specimens (six individuals) utilizing state-of-the-art µCT and computer-based 3D rendering techniques to unveil the hitherto hidden ventral and appendicular morphology of this species. RESULTS: We have identified a set of slender endopodites gradually narrowing distally, along with a leaf-shaped exopodite adorned with fringed setae along its margins, and a small putative exite attached to the basipodite. Our techniques have further revealed the presence of four pairs of biramous appendages in the head, aligning with the recently reported six-segmented head in other early euarthropods. Additionally, we have discerned two peduncle elements for the great appendage. These findings underscore that, despite the morphological diversity observed in early euarthropods, there exists similarity in appendicular morphology across various groups. In addition, we critically examine the existing literature on this taxon, disentangling previous mislabelings, mentions, descriptions, and, most importantly, illustrations. CONCLUSIONS: The µCT-based investigation of fossil material of Tanglangia longicaudata, a distinctive early Cambrian euarthropod from the renowned Chengjiang biota, enhances our comprehensive understanding of the evolutionary morphology of the Megacheira. Its overall morphological features, including large cup-shaped eyes, raptorial great appendages, and a remarkably elongated telson, suggest its potential ecological role as a crepuscular predator and adept swimmer in turbid waters.


Asunto(s)
Artrópodos , Fósiles , Animales , Fósiles/anatomía & histología , Artrópodos/anatomía & histología , China , Evolución Biológica , Biota , Microtomografía por Rayos X
13.
Biodivers Data J ; 12: e117275, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38469223

RESUMEN

Background: The digital inventory of paleontological material stored in Chilean museums is highly relevant as it increases accessibility to information, both locally and over long distances, while reducing wear and tear on specimens caused by physical manipulation. The Fossil Collection database of the Museum of Zoology of the University of Concepción (UCC_MZUC_FOS) includes 144 records, with the main representatives being marine invertebrates of the Bivalvia, Echinoidea and Gastropoda classes. Notable species include Encopecalderensis, Hemiasterwayensis, Zygochlamyspatagonica and Retrotapesexalbidus, most of which come from important Chilean fossil sites. Material was collected between 1970 and 2017, with a large portion of it being donated and identified by Professor Emeritus Hugo I. Moyano and Dr. Alberto Larraín. Although the specimens contained in the resource offer basic collecting information, they substantially contribute to sharing knowledge on the fossils kept in the museums throughout the country, while providing data on their distribution. New information: This resource corresponds to the first publication of data on faunal fossils from a museum collection in Chile on the Global Biodiversity Information Facility (GBIF) platform, thereby enhancing the understanding and documentation of Chile's paleontological heritage and its national biodiversity.

14.
Biol Lett ; 20(3): 20230604, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38503343

RESUMEN

Lake Victoria is well known for its high diversity of endemic fish species and provides livelihoods for millions of people. The lake garnered widespread attention during the twentieth century as major environmental and ecological changes modified the fish community with the extinction of approximately 40% of endemic cichlid species by the 1980s. Suggested causal factors include anthropogenic eutrophication, fishing, and introduced non-native species but their relative importance remains unresolved, partly because monitoring data started in the 1970s when changes were already underway. Here, for the first time, we reconstruct two time series, covering the last approximately 200 years, of fish assemblage using fish teeth preserved in lake sediments. Two sediment cores from the Mwanza Gulf of Lake Victoria, were subsampled continuously at an intra-decadal resolution, and teeth were identified to major taxa: Cyprinoidea, Haplochromini, Mochokidae and Oreochromini. None of the fossils could be confidently assigned to non-native Nile perch. Our data show significant decreases in haplochromine and oreochromine cichlid fish abundances that began long before the arrival of Nile perch. Cyprinoids, on the other hand, have generally been increasing. Our study is the first to reconstruct a time series of any fish assemblage in Lake Victoria extending deeper back in time than the past 50 years, helping shed light on the processes underlying Lake Victoria's biodiversity loss.


Asunto(s)
Cíclidos , Lagos , Animales , Humanos , Factores de Tiempo , Tanzanía , Biodiversidad , Especies Introducidas
15.
Evolution ; 78(5): 919-933, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38437579

RESUMEN

Present-day geographic and phylogenetic patterns often reflect the geological and climatic history of the planet. Neontological distribution data are often sufficient to unravel a lineage's biogeographic history, yet ancestral range inferences can be at odds with fossil evidence. Here, I use the fossilized birth-death process and the dispersal-extinction cladogenesis model to jointly infer the dated phylogeny and range evolution of the tree fern order Cyatheales. I use data for 101 fossil and 442 extant tree ferns to reconstruct the biogeographic history of the group over the last 220 million years. Fossil-aware reconstructions evince a prolonged occupancy of Laurasia over the Triassic-Cretaceous by Cyathealean tree ferns, which is evident in the fossil record but hidden from analyses relying on neontological data alone. Nonetheless, fossil-aware reconstructions are affected by uncertainty in fossils' phylogenetic placement, taphonomic biases, and specimen sampling and are sensitive to interpretation of paleodistributions and how these are scored. The present results highlight the need and challenges of incorporating fossils into joint inferences of phylogeny and biogeography to improve the reliability of ancestral geographic range estimation.


Asunto(s)
Helechos , Fósiles , Filogenia , Filogeografía , Helechos/genética , Helechos/clasificación , Evolución Biológica
16.
Evolution ; 78(5): 821-834, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38437861

RESUMEN

Evolutionary stasis characterizes lineages that seldom speciate and show little phenotypic change over long stretches of geological time. Although lineages that appear to exhibit evolutionary stasis are often called living fossils, no single mechanism is thought to be responsible for their slow rates of morphological evolution and low species diversity. Some analyses of molecular evolutionary rates in a handful of living fossil lineages have indicated that these clades exhibit slow rates of genomic change. Here, we investigate mechanisms of evolutionary stasis using a dataset of 1,105 exons for 481 vertebrate species. We demonstrate that two ancient clades of ray-finned fishes classically called living fossils, gars and sturgeons, exhibit the lowest rates of molecular substitution in protein-coding genes among all jawed vertebrates. Comparably low rates of evolution are observed at fourfold degenerate sites in gars and sturgeons, implying a mechanism of stasis decoupled from selection that we speculate is linked to a highly effective DNA repair apparatus. We show that two gar species last sharing common ancestry over 100 million years ago produce morphologically intermediate and fertile hybrids in the wild. This makes gars the oldest naturally hybridizing divergence among eukaryotes and supports a theoretical prediction that slow rates of nucleotide substitution across the genome slow the accumulation of genetic incompatibilities, enabling hybridization across deeply divergent lineages and slowing the rate of speciation over geological timescales. Our results help establish molecular stasis as a barrier to speciation and phenotypic innovation and provide a mechanism to explain the low species diversity in living fossil lineages.


Asunto(s)
Peces , Fósiles , Animales , Peces/genética , Genoma , Evolución Molecular , Evolución Biológica , Filogenia
17.
Naturwissenschaften ; 111(1): 8, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38329546

RESUMEN

Bioeroded carbonate clasts from a Pliocene shallow-marine succession of Almería (SE Spain, Betic Cordillera) were analysed with computed tomography (CT). This revealed the detailed 3D architecture of bioerosion structures hidden within and allowed for their ichnotaxonomic identification (14 ichnospecies of 5 ichnogenera) and quantification. Borings are produced by worms, mostly polychaetes and sipunculids dominated, followed by bivalves and lastly by sponges. The crosscutting relationship between the borings and their preservation characteristics points to a complex colonization history of the clasts with repeated bioerosive episodes interrupted by physical disturbances, including overturning and abrasion of the clasts followed by their recolonization. Our findings facilitated paleoenvironmental interpretation and can be compared to analogous modern-day ecological succession. The sharp dominance of worm borings - early successional species - may be related to frequent, periodic, physical disturbance that possibly prevented the cobble-dwelling macroboring community from being overtaken by sponges - late successional taxa. CT, hand sample and petrographic observations detected, aside from borings, other irregularly shaped pores which are interpreted to be generated by diagenetic processes including dolomitization, silicification and dissolution, representing an intraparticle moldic and moldic enlarged porosity. Boring porosity crosscutting the diagenetically altered grains suggests the later occurrence of bioerosion processes. Irregular shapes ranging from roughly spherical, elongate sub-polyhedral to amoeboid resemble morphologies produced by modern sponges. Moldic pores possibly acted as primary domiciles for boring sponges, which infested, altered and enlarged pre-existing pores as they grew (as happens in the modern), providing an example of how biological and non-biological processes interacted and together influenced endolithic palaeocommunity development.


Asunto(s)
Tomografía Computarizada por Rayos X , España
18.
Anat Rec (Hoboken) ; 307(4): 1559-1593, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38197580

RESUMEN

The complex constructions of land vertebrate skulls have inspired a number of functional analyses. In the present study, we provide a basic view on skull biomechanics and offer a framework for more general observations using advanced modeling approaches in the future. We concentrate our discussion on the cranial openings in the temporal skull region and work out two major, feeding-related factors that largely influence the shape of the skull. We argue that (1) the place where the most forceful biting is conducted and (2) the handling of resisting food (sideward movements) constitute the formation and shaping of either one or two temporal arcades surrounding these openings. Diversity in temporal skull anatomy among amniotes can be explained by specific modulations of these factors with different amounts of acting forces which inevitably lead to deposition or reduction of bone material. For example, forceful anterior bite favors an infratemporal bar, whereas forceful posterior bite favors formation of an upper temporal arcade. Transverse forces (inertia and resistance of seized objects) as well as neck posture also influence the shaping of the temporal region. Considering their individual skull morphotypes, we finally provide hypotheses on the feeding adaptation in a variety of major tetrapod groups. We did not consider ligaments, internal bone structure, or cranial kinesis in our considerations. Involving those in quantitative tests of our hypotheses, such as finite element system synthesis, will provide a comprehensive picture on cranial mechanics and evolution in the future.


Asunto(s)
Dinosaurios , Cráneo , Animales , Fenómenos Biomecánicos , Cráneo/anatomía & histología , Cabeza/anatomía & histología , Dinosaurios/anatomía & histología , Fuerza de la Mordida , Fósiles
19.
Anat Rec (Hoboken) ; 307(5): 1764-1825, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-37726984

RESUMEN

This paper is the first in a two-part series that charts the evolution of appendicular musculature along the mammalian stem lineage, drawing upon the exceptional fossil record of extinct synapsids. Here, attention is focused on muscles of the forelimb. Understanding forelimb muscular anatomy in extinct synapsids, and how this changed on the line to mammals, can provide important perspective for interpreting skeletal and functional evolution in this lineage, and how the diversity of forelimb functions in extant mammals arose. This study surveyed the osteological evidence for muscular attachments in extinct mammalian and nonmammalian synapsids, two extinct amniote outgroups, and a large selection of extant mammals, saurians, and salamanders. Observations were integrated into an explicit phylogenetic framework, comprising 73 character-state complexes covering all muscles crossing the shoulder, elbow, and wrist joints. These were coded for 33 operational taxonomic units spanning >330 Ma of tetrapod evolution, and ancestral state reconstruction was used to evaluate the sequence of muscular evolution along the stem lineage from Amniota to Theria. In addition to producing a comprehensive documentation of osteological evidence for muscle attachments in extinct synapsids, this work has clarified homology hypotheses across disparate taxa and helped resolve competing hypotheses of muscular anatomy in extinct species. The evolutionary history of mammalian forelimb musculature was a complex and nonlinear narrative, punctuated by multiple instances of convergence and concentrated phases of anatomical transformation. More broadly, this study highlights the great insight that a fossil-based perspective can provide for understanding the assembly of novel body plans.


Asunto(s)
Evolución Biológica , Fósiles , Animales , Filogenia , Mamíferos/fisiología , Miembro Anterior/anatomía & histología , Músculo Esquelético/anatomía & histología
20.
Anat Rec (Hoboken) ; 307(5): 1826-1896, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-37727023

RESUMEN

This paper is the second in a two-part series that charts the evolution of appendicular musculature along the mammalian stem lineage, drawing upon the exceptional fossil record of extinct synapsids. Here, attention is focused on muscles of the hindlimb. Although the hindlimb skeleton did not undergo as marked a transformation on the line to mammals as did the forelimb skeleton, the anatomy of extant tetrapods indicates that major changes to musculature have nonetheless occurred. To better understand these changes, this study surveyed the osteological evidence for muscular attachments in extinct mammalian and nonmammalian synapsids, two extinct amniote outgroups, and a large selection of extant mammals, saurians, and salamanders. Observations were integrated into an explicit phylogenetic framework, comprising 80 character-state complexes covering all muscles crossing the hip, knee, and ankle joints. These were coded for 33 operational taxonomic units spanning >330 Ma of tetrapod evolution, and ancestral state reconstruction was used to evaluate the sequence of muscular evolution along the stem lineage from Amniota to Theria. The evolutionary history of mammalian hindlimb musculature was complex, nonlinear, and protracted, with several instances of convergence and pulses of anatomical transformation that continued well into the crown group. Numerous traits typically regarded as characteristically "mammalian" have much greater antiquity than previously recognized, and for some traits, most synapsids are probably more reflective of the ancestral amniote condition than are extant saurians. More broadly, this study highlights the utility of the fossil record in interpreting the evolutionary appearance of distinctive anatomies.


Asunto(s)
Evolución Biológica , Fósiles , Animales , Filogenia , Mamíferos/fisiología , Miembro Posterior/anatomía & histología , Músculos , Articulación de la Rodilla/anatomía & histología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA