Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
ISA Trans ; : 1-13, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39271406

RESUMEN

A fixed-time distributed formation control strategy is investigated for multiple underactuated unmanned surface vehicles (USVs) with unmeasured velocities and input saturation. Initially, a necessary coordinate transformation is applied to the mathematical model of USVs to address the underactuated issue. Subsequently, a fixed-time extended state observer (FESO) is constructed to estimate unmeasured velocities and lumped disturbances of USVs based on input and output data in the control loop. Meanwhile, the leader-follower approach is applied to achieve a preset formation. A fixed-time differentiator is utilized to compute real-time differential signals for virtual control laws, which simplifies the complexity of controller design. Furthermore, a fixed-time distributed formation controller is designed based on an asymmetric differentiable saturation model. The effects of input saturation are eliminated by a designed auxiliary system. Finally, the fixed-time stability of the closed-loop system is analyzed through the Lyapunov stability theory. The comparison simulation results verify the effectiveness and superiority of the proposed formation control scheme.

2.
ISA Trans ; 153: 96-116, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39107194

RESUMEN

To address the problem of underactuated surface vessel (USV) formation control in static obstacle environments with model uncertainties and time-varying external disturbances, a model-free formation control strategy is proposed in this paper. First, based on the guiding vector field (GVF), a composite GVF is developed to guide USV formation to the desired position and to avoid multiple static obstacles. Second, a flexible constraint strategy is introduced, and the constraint boundary conditions are appropriately relaxed to avoid singularities in the obstacle environment. Then, based on the Mexican hat wavelet function, the self-structuring fuzzy Mexican hat wavelet cerebellar model articulation controller (SCMAC), and a self-structuring fuzzy Mexican hat wavelet brain emotional learning controller (SBELC), are proposed to achieve model-free control. In addition, the self-structuring algorithm is embedded into SCMAC and SBELC to achieve autonomous optimization of the controller structure and to reduce the computational effort of the control system. The salient features in the proposed control strategy are as follows. First, the proposed model-free formation control strategy does not have to rely on accurate model information. Second, collisions are effectively avoided, and good control performance is guaranteed even under the influence of disturbances and static obstacles. Third, the proposed self-structuring algorithm achieves automatic construction of the controller structure. Finally, the signals in the control system are proven to be bounded, and the simulation results verify the feasibility and superiority of the proposed model-free control strategy.

3.
Front Robot AI ; 11: 1370104, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39076840

RESUMEN

Coordinating the movements of a robotic fleet using consensus-based techniques is an important problem in achieving the desired goal of a specific task. Although most available techniques developed for consensus-based control ignore the collision of robots in the transient phase, they are either computationally expensive or cannot be applied in environments with dynamic obstacles. Therefore, we propose a new distributed collision-free formation tracking control scheme for multiquadcopter systems by exploiting the properties of the barrier Lyapunov function (BLF). Accordingly, the problem is formulated in a backstepping setting, and a distributed control law that guarantees collision-free formation tracking of the quads is derived. In other words, the problems of both tracking and interagent collision avoidance with a predefined accuracy are formulated using the proposed BLF for position subsystems, and the controllers are designed through augmentation of a quadratic Lyapunov function. Owing to the underactuated nature of the quadcopter system, virtual control inputs are considered for the translational (x and y axes) subsystems that are then used to generate the desired values for the roll and pitch angles for the attitude control subsystem. This provides a hierarchical controller structure for each quadcopter. The attitude controller is designed for each quadcopter locally by taking into account a predetermined error limit by another BLF. Finally, simulation results from the MATLAB-Simulink environment are provided to show the accuracy of the proposed method. A numerical comparison with an optimization-based technique is also provided to prove the superiority of the proposed method in terms of the computational cost, steady-state error, and response time.

4.
ISA Trans ; 152: 28-37, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38964998

RESUMEN

This paper proposes a novel multi-unmanned aerial vehicle (UAV) connectivity preservation controller, suitable for scenarios with bounded actuation and limited communication range. According to the hierarchical control strategy, controllers are designed separately for the position and attitude subsystems. A distributed position controller is developed, integrating an indirect coupling control mechanism. The innovative mechanism associates each UAV with a virtual proxy, facilitating connections among adjacent UAVs through these proxies. This structuring assists in managing the actuator saturation constraints effectively. The artificial potential function is utilized to preserve network connectivity and fulfill coordination among all virtual proxies. Additionally, an attitude controller designed for finite-time convergence guarantees that the attitude subsystem adheres precisely to the attitude specified by the distributed position controller. Simulation results validate the efficacy of this distributed formation controller with connectivity preservation under bounded actuation conditions. The simulation results confirm the effectiveness of the distributed connectivity preservation controller with bounded actuation.

5.
Sensors (Basel) ; 24(12)2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38931501

RESUMEN

The development and study of an optimal control method for the problem of controlling the formation of a group of mobile robots is still a current and popular theme of work. However, there are few works that take into account the issues of time synchronization of units in a decentralized group. The motivation for taking up this topic was the possibility of improving the accuracy of the movement of a group of robots by including dynamic time synchronization in the control algorithm. The aim of this work was to develop a two-layer synchronous motion control system for a decentralized group of mobile robots. The system consists of a master layer and a sublayer. The sublayer of the control system performs the task of tracking the reference trajectory using a single robot with a kinematic and dynamic controller. In this layer, the input and output signals are linear and angular velocity. The master layer realizes the maintenance of the desired group formation and synchronization of robots during movement. Consensus tracking and virtual structure algorithms were used to implement this level of control. To verify the correctness of operation and evaluate the quality of control for the proposed proprietary approach, simulation studies were conducted in the MATLAB/Simulink environment, followed by laboratory tests using real robots under ROS. The developed system can successfully find application in transportation and logistics tasks in both civilian and military areas.

6.
Front Neurosci ; 18: 1367248, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38591066

RESUMEN

This study proposes a multi-consensus formation control algorithm by artificial potential field (APF) method based on velocity threshold. The algorithm improves the multi-consensus technique. This algorithm can split a group of agents into multiple agent groups. Note that the algorithm can easily complete the queue transformation as long as the entire proxy group is connected initially and no specific edges need to be removed. Furthermore, collision avoidance and maintenance of existing communication connectivity should be considered during the movement of all agents. Therefore, we design a new swarm motion potential function. The stability of multi-consensus formation control has proven to be effective in avoiding collisions, maintaining connectivity, and generating formations. The final numerical simulation results show the role of the controller we designed.

7.
ISA Trans ; 147: 118-129, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38431454

RESUMEN

This article studies the distributed formation control problem for multiple unmanned surface vehicles (USVs) considering uncertain coefficient matrixes, unmeasurable velocities, and time-varying disturbances. The main contributions are as follows: First, a global coordinate translation is proposed to partially linearize the nonlinear dynamic model equipped with the unmeasurable velocity. Second, based on the global coordinate translation, a novel type of fixed-time extended two-state observer (FTETSO) is developed to estimate unmeasurable velocities and total disturbances for each vehicle. Wherein, the estimation errors will converge to zero within a fixed time. Meanwhile, considering estimation accuracy, a two-state extension is proposed to replace a single-state extension. Third, using a sliding model-based control technique, an FTETSO-based distributed global output-feedback fixed-time formation controller (GOFFC) is elaborately developed. Based on the proposed controller, the fixed-time convergence of the closed-loop system is ensured. Finally, the validity and stability of the proposed control approach are verified by simulations.

8.
ISA Trans ; 147: 239-251, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38462383

RESUMEN

In this paper, a distributed bearing-based formation control scheme with finite-time convergency is proposed for multiple underactuated surface vessels (USVs). By virtue of the guide point-based model transformation method, the dimension of underactuated tracking error dynamics can be reduced from three to two. This allows us to convert the actuator model to a fully form that matches dimension-reduced tracking error dynamics. Further, to reduce the computation complexity, a finite-time recruited filter is designed according to first-order Levant differentiator. At meanwhile, auxiliary error compensation signals are introduced to address unknowns stemming from filter process and system dynamics. Since merely relative-distances and inner bearings are utilized in the proposed bearing-based formation approaches, the proposed control scheme provides a feasible solution to achieve formation control under body-fixed frame. Finally, theoretical analysis and numerical simulations are presented to demonstrate the efficacy.

9.
Entropy (Basel) ; 26(2)2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38392389

RESUMEN

We study a node-wise monotone barrier coupling law, motivated by the synaptic coupling of neural central pattern generators. It is illustrated that this coupling imitates the desirable properties of neural central pattern generators. In particular, the coupling law (1) allows us to assign multiple central patterns on the circle and (2) allows for rapid switching between different patterns via simple 'kicks'. In the end, we achieve full control by partitioning the state space by utilizing a barrier effect and assigning a unique steady-state behavior to each element of the resulting partition. We analyze the global behavior and study the viability of the design.

10.
Sensors (Basel) ; 24(2)2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38257681

RESUMEN

Although the formation control of multi-agent systems has been widely investigated from various aspects, the problem is still not well resolved, especially for the case of distributed output-feedback formation controller design without input information exchange among neighboring agents. Using relative output information, this paper presents a novel distributed reduced-order estimation of the formation error at a predefined time. Based on the proposed distributed observer, a neural-network-based formation controller is then designed for multi-agent systems with connected graphs. The results are verified by both theoretical demonstration and simulation example.

11.
ISA Trans ; 145: 205-224, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38105171

RESUMEN

This paper proposes a reinforcement learning-based formation-surrounding control method for multiple quadrotor unmanned aerial vehicles (UAVs) pursuit-evasion (MPE) games system subject to external disturbances. In the framework of the MPE games, the pursuers aim to equally surround the evaders which try to avoid being surrounded when forming the desired formation. By constructing position and attitude tracking error subsystems of quadrotor UAV, this paper proposes two control strategies which combines the feedforward control technique and reinforcement learning (RL) method. First, two novel cost functions are presented for the quadrotor UAV with external disturbances. Then, two control schemes based on RL have been developed to guarantee the stability of the tracking error subsystem. Subsequently, two critic-only neural networks (NN) weight update laws that only satisfy finite excitation conditions are proposed to estimate the optimal cost function. Furthermore, Nash equilibrium for multiple quadrotor UAVs is achieved by means of RL strategy to solve the Hamilton-Jacobi-Isaacs (HJI) equations. And the property of equally surrounding is proved for the first time by utilizing Euler's formula in this paper. Finally, the numerical simulation results are given to show the effectiveness and superior performance of the proposed control method.

12.
Sensors (Basel) ; 23(23)2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38067925

RESUMEN

Motivated by feedback from firefighters in Normandy, this work aims to provide a simple technique for a set of identical drones to collectively describe an arbitrary planar virtual shape in a 3D space in a decentralized manner. The original problem involved surrounding a toxic cloud to monitor its composition and short-term evolution. In the present work, the pattern is described using Fourier descriptors, a convenient mathematical formulation for that purpose. Starting from a reference point, which can be the center of a fire, Fourier descriptors allow for more precise description of a shape as the number of harmonics increases. This pattern needs to be evenly occupied by the fleet of drones under consideration. To optimize the overall view, the drones must be evenly distributed angularly along the shape. The proposed method enables virtual planar shape description, decentralized bearing angle assignment, drone movement from takeoff positions to locations along the shape, and collision avoidance. Furthermore, the method allows for the number of drones to change during the mission. The method has been tested both in simulation, through emulation, and in outdoor experiments with real drones. The obtained results demonstrate that the method is applicable in real-world contexts.

13.
Heliyon ; 9(10): e20944, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37916121

RESUMEN

This paper investigates the intelligent finite time formation control for multiple Flapping wing micro aerial vehicles (FWMAVs) system. Firstly, the translational and the rotational attitude motion equations are proposed based on the Lagrangian equation for FWMAVs. The motion system is decouple into an internal and an external dual loop subsystems. An adaptive neural network estimation algorithm is proposed based on the internal and external double loop system of the coupled model to effectively estimate the uncertainties and the external disturbances of the model. In addition, two effective intelligent control protocols are presented for the translational and the rotational attitude motion subsystem, respectively, by utilizing potential energy function, generalized inverse matrix, and finite-time stability. The main contribution of this paper is the case that, four control objectives are achieved for multiple FWMAVs system, including the estimation of uncertainties, collision avoidance, connectivity preservation, and finite time convergence. Finally, a simulation example of formation tracking control is given by using matlab software in the numerical simulation part, and the effectiveness of the obtained results and the superiority of the control protocol are verified.

14.
Sensors (Basel) ; 23(21)2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37960514

RESUMEN

Single UAVs have limited capabilities for complex missions, so suitable solutions are needed to improve the mission success rate, as well as the UAVs' survivability. A cooperative multi-UAV formation offers great advantages in this regard; however, for large and complex systems, the traditional control methods will be invalid when faced with unstable and changing environments. To deal with the poor self-adaptability and high requirements for the environmental state information of traditional control methods for a multi-UAV cluster, this paper proposes a consistent round-up strategy based on PPO path optimization to track targets. In this strategy, the leader is trained using PPO for obstacle avoidance and target tracking, while the followers are expected to establish a communication network with the leader to obtain environmental information. In this way, the tracking control law can be designed, based on the consistency protocol and the Apollonian circle, to realize the round-up of the target and obstacle avoidance. The experimental results show that the proposed strategy can achieve the round-up of the target UAV and guide the pursuing multi-UAV group to avoid obstacles in the absence of the initial detection of the target. In multiple simulated scenarios, the success rates of the pursuit multi-UAV cluster for rounding up the target are maintained above 80%.

15.
Entropy (Basel) ; 25(11)2023 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-37998228

RESUMEN

This paper focuses on the formation control of multi-robot systems with leader-follower network structure in directed topology to guide a system composed of multiple mobile robot agents to achieve global path navigation with a desired formation. A distributed linear formation control strategy based on the complex Laplacian matrix is employed, which enables the robot agents to converge into a similar formation of the desired formation, and the size and orientation of the formation are determined by the positions of two leaders. Additionally, in order to ensure that all robot agents in the formation move at a common velocity, the distributed control approach also includes a velocity consensus component. Based on the realization of similar formation control of a multi-robot system, the path navigation algorithm is combined with it to realize the global navigation of the system as a whole. Furthermore, a controller enabling the scalability of the formation size is introduced to enhance the overall maneuverability of the system in specific scenarios like narrow corridors. The simulation results demonstrate the feasibility of the proposed approach.

16.
Front Robot AI ; 10: 1285412, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38023586

RESUMEN

Multi-robot cooperative control has been extensively studied using model-based distributed control methods. However, such control methods rely on sensing and perception modules in a sequential pipeline design, and the separation of perception and controls may cause processing latencies and compounding errors that affect control performance. End-to-end learning overcomes this limitation by implementing direct learning from onboard sensing data, with control commands output to the robots. Challenges exist in end-to-end learning for multi-robot cooperative control, and previous results are not scalable. We propose in this article a novel decentralized cooperative control method for multi-robot formations using deep neural networks, in which inter-robot communication is modeled by a graph neural network (GNN). Our method takes LiDAR sensor data as input, and the control policy is learned from demonstrations that are provided by an expert controller for decentralized formation control. Although it is trained with a fixed number of robots, the learned control policy is scalable. Evaluation in a robot simulator demonstrates the triangular formation behavior of multi-robot teams of different sizes under the learned control policy.

17.
ACS Appl Mater Interfaces ; 15(36): 42836-42844, 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37665133

RESUMEN

Human voice recognition via skin-attachable devices has significant potential for gathering important physiological information from acoustic data without background noise interference. In this study, a highly sensitive and conductive wearable crack-based strain sensor was developed for voice-recognition systems. The sensor was fabricated using a double-layer structure of Ag nanoparticles (NPs) and Ag metal on a biocompatible polydimethylsiloxane substrate. The top metal layer acts as a conducting active layer, whereas the bottom Ag NP layer induces channel cracks in the upper layer, effectively hindering current flow. Subsequently, the double-layer film exhibits a low electrical resistance value (<5 × 10-5 Ω cm), ultrahigh sensitivity (gauge factor = 1870), and a fast response/recovery time (252/168 µs). A sound wave was detected at a high frequency of 15 kHz with a signal-to-noise ratio (SNR) over 40 dB. The sensor exhibited excellent anti-interference characteristics and effectively differentiated between different voice qualities (modal, pressed, and breathy), with a systematic analysis revealing successful detection of the laryngeal state and glottal source. This ultrasensitive wearable sensor has potential applications in various physiological signal measurement methods, personalized healthcare systems, and ubiquitous computing.


Asunto(s)
Nanopartículas del Metal , Dispositivos Electrónicos Vestibles , Humanos , Plata , Conductividad Eléctrica , Sonido
18.
Sensors (Basel) ; 23(18)2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37765905

RESUMEN

In structural vibration response sensing, mobile sensors offer outstanding benefits as they are not dedicated to a certain structure; they also possess the ability to acquire dense spatial information. Currently, most of the existing literature concerning mobile sensing involves human drivers manually driving through the bridges multiple times. While self-driving automated vehicles could serve for such studies, they might entail substantial costs when applied to structural health monitoring tasks. Therefore, in order to tackle this challenge, we introduce a formation control framework that facilitates automatic multi-agent mobile sensing. Notably, our findings demonstrate that the proposed formation control algorithm can effectively control the behavior of the multi-agent systems for structural response sensing purposes based on user choice. We leverage vibration data collected by these mobile sensors to estimate the full-field vibration response of the structure, utilizing a compressive sensing algorithm in the spatial domain. The task of estimating the full-field response can be represented as a spatiotemporal response matrix completion task, wherein the suite of multi-agent mobile sensors sparsely populates some of the matrix's elements. Subsequently, we deploy the compressive sensing technique to obtain the dense full-field vibration complete response of the structure and estimate the reconstruction accuracy. Results obtained from two different formations on a simply supported bridge are presented in this paper, and the high level of accuracy in reconstruction underscores the efficacy of our proposed framework. This multi-agent mobile sensing approach showcases the significant potential for automated structural response measurement, directly applicable to health monitoring and resilience assessment objectives.

19.
Micromachines (Basel) ; 14(8)2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37630083

RESUMEN

The Bird-like Flapping-wing Air Vehicle (BFAV) is a robotic innovation that emulates the flight patterns of birds. In comparison to fixed-wing and rotary-wing air vehicles, the BFAV offers superior attributes such as stealth, enhanced maneuverability, strong adaptability, and low noise, which render the BFAV a promising prospect for numerous applications. Consequently, it represents a crucial direction of research in the field of air vehicles for the foreseeable future. However, the flapping-wing vehicle is a nonlinear and unsteady system, posing significant challenges for BFAV to achieve autonomous flying since it is difficult to analyze and characterize using traditional methods and aerodynamics. Hence, flight control as a major key for flapping-wing air vehicles to achieve autonomous flight garners considerable attention from scholars. This paper presents an exposition of the flight principles of BFAV, followed by a comprehensive analysis of various significant factors that impact bird flight. Subsequently, a review of the existing literature on flight control in BFAV is conducted, and the flight control of BFAV is categorized into three distinct components: position control, trajectory tracking control, and formation control. Additionally, the latest advancements in control algorithms for each component are deliberated and analyzed. Ultimately, a projection on forthcoming directions of research is presented.

20.
Sensors (Basel) ; 23(13)2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37447921

RESUMEN

Nowadays, cyber-physical systems (CPSs) are composed of more and more agents and the demand for designers to develop ever larger multi-agent systems is a fact. When the number of agents increases, several challenges related to control or communication problems arise due to the lack of scalability of existing solutions. It is important to develop tools that allow control strategies evaluation of large-scale systems. In this paper, it is considered that a CPS is a heterogeneous robot multi-agent system that cooperatively performs a formation task through a wireless network. The goal of this research is to evaluate the system's performance when the number of agents increases. To this end, two different frameworks developed with the open-source tools Gazebo and Webots are used. These frameworks enable combining both real and virtual agents in a realistic scenario allowing scalability experiences. They also reduce the costs required when a significant number of robots operate in a real environment, as experiences can be conducted with a few real robots and a higher number of virtual robots by mimicking the real ones. Currently, the frameworks include several types of robots, such as the aerial robot Crazyflie 2.1 and differential mobile robots Khepera IV used in this work. To illustrate the usage and performance of the frameworks, an event-based control strategy for rigid formations varying the number of agents is analyzed. The agents should achieve a formation defined by a set of desired Euclidean distances to their neighbors. To compare the scalability of the system in the two different tools, the following metrics have been used: formation error, CPU usage percentage, and the ratio between the real time and the simulation time. The results show the feasibility of using Robot Operating System (ROS) 2 in distributed architectures for multi-agent systems in experiences with real and virtual robots regardless of the number of agents and their nature. However, the two tools under study present different behaviors when the number of virtual agents grows in some of the parameters, and such discrepancies are analyzed.


Asunto(s)
Robótica , Robótica/métodos , Especies Reactivas de Oxígeno , Programas Informáticos , Simulación por Computador
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA