Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
1.
Pharmacol Res ; 208: 107376, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39216837

RESUMEN

Duchenne muscular dystrophy (DMD) is an X-linked recessive progressive degenerative disease of skeletal muscle, characterized by intramuscular inflammation, muscle regeneration disorder and replacement of muscle with fibroadipose tissue. DMD is caused by the absence of normal dystrophy. Impaired self-renew ability and limited differentiation capacity of satellite cells are proved as main reasons for muscle regeneration failure. The deficiency of estrogen impedes the process of muscle regeneration. However, the role of estrogen receptor ß (ERß) in muscle regeneration is still unclear. This study aims to investigate the role and the pharmacological effect of ERß activation on muscle regeneration in mdx mice. This study showed that mRNA levels of ERß and myogenic-related genes both witnessed increasing trends in dystrophic context. Our results revealed that treatment with selective ERß agonist (DPN, diarylpropionitrile) significantly increased myogenic differentiation 1 (MyoD-1) level and promoted muscle regeneration in mdx mice. Similarly, in mdx mice with muscle-specific estrogen receptor α (ERα) ablation, DPN treatment still promoted muscle regeneration. Moreover, we demonstrated that myoblasts differentiation was accompanied by raised nuclear accumulation of ERß. DPN treatment augmented the nuclear accumulation of ERß and, thus, contributed to myotubes formation. One important finding was that forkhead box O3A (FOXO3A), as a pivotal transcription factor in Myod-1 transcription, participated in the ERß-promoted muscle regeneration. Overall, we offered an interesting explanation about the crucial role of ERß during myogenesis.


Asunto(s)
Receptor beta de Estrógeno , Proteína Forkhead Box O3 , Ratones Endogámicos C57BL , Ratones Endogámicos mdx , Músculo Esquelético , Distrofia Muscular de Duchenne , Proteína MioD , Nitrilos , Propionatos , Regeneración , Animales , Receptor beta de Estrógeno/genética , Receptor beta de Estrógeno/metabolismo , Receptor beta de Estrógeno/agonistas , Proteína MioD/genética , Proteína MioD/metabolismo , Regeneración/efectos de los fármacos , Proteína Forkhead Box O3/metabolismo , Proteína Forkhead Box O3/genética , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Nitrilos/farmacología , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/tratamiento farmacológico , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patología , Distrofia Muscular de Duchenne/fisiopatología , Ratones , Propionatos/farmacología , Masculino , Desarrollo de Músculos/efectos de los fármacos , Núcleo Celular/metabolismo , Núcleo Celular/efectos de los fármacos , Mioblastos/efectos de los fármacos , Mioblastos/metabolismo , Diferenciación Celular/efectos de los fármacos
2.
Glia ; 72(9): 1629-1645, 2024 09.
Artículo en Inglés | MEDLINE | ID: mdl-38785370

RESUMEN

We have previously shown that phosphodiesterase 4 (PDE4) inhibition protects against neuronal injury in rats following middle cerebral artery occlusion/reperfusion (MCAO/R). However, the effects of PDE4 on brain edema and astrocyte swelling are unknown. In this study, we showed that inhibition of PDE4 by Roflumilast (Roflu) reduced brain edema and brain water content in rats subjected to MCAO/R. Roflu decreased the expression of aquaporin 4 (AQP4), while the levels of phosphorylated protein kinase B (Akt) and forkhead box O3a (FoxO3a) were increased. In addition, Roflu reduced cell volume and the expression of AQP4 in primary astrocytes undergoing oxygen and glucose deprivation/reoxygenation (OGD/R). Consistently, PDE4B knockdown showed similar effects as PDE4 inhibition; and PDE4B overexpression rescued the inhibitory role of PDE4B knockdown on AQP4 expression. We then found that the effects of Roflu on the expression of AQP4 and cell volume were blocked by the Akt inhibitor MK2206. Since neuroinflammation and astrocyte activation are the common events that are observed in stroke, we treated primary astrocytes with interleukin-1ß (IL-1ß). Astrocytes treated with IL-1ß showed decreased AQP4 and phosphorylated Akt and FoxO3a. Roflu significantly reduced AQP4 expression, which was accompanied by increased phosphorylation of Akt and FoxO3a. Furthermore, overexpression of FoxO3a partly reversed the effect of Roflu on AQP4 expression. Our findings suggest that PDE4 inhibition limits ischemia-induced brain edema and astrocyte swelling via the Akt/FoxO3a/AQP4 pathway. PDE4 is a promising target for the intervention of brain edema after cerebral ischemia.


Asunto(s)
Aminopiridinas , Acuaporina 4 , Astrocitos , Benzamidas , Edema Encefálico , Infarto de la Arteria Cerebral Media , Inhibidores de Fosfodiesterasa 4 , Ratas Sprague-Dawley , Daño por Reperfusión , Animales , Acuaporina 4/metabolismo , Acuaporina 4/genética , Astrocitos/metabolismo , Astrocitos/efectos de los fármacos , Daño por Reperfusión/metabolismo , Inhibidores de Fosfodiesterasa 4/farmacología , Masculino , Edema Encefálico/metabolismo , Edema Encefálico/etiología , Edema Encefálico/patología , Aminopiridinas/farmacología , Benzamidas/farmacología , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/metabolismo , Ciclopropanos/farmacología , Proteína Forkhead Box O3/metabolismo , Ratas , Proteínas Proto-Oncogénicas c-akt/metabolismo , Células Cultivadas , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patología , Modelos Animales de Enfermedad , Interleucina-1beta/metabolismo
3.
Stem Cells Dev ; 33(13-14): 365-375, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38661524

RESUMEN

Age-related osteoporosis is characterized by an imbalance between osteogenic and adipogenic differentiation in bone mesenchymal stem cells (BMSCs). Forkhead box O 3 (FoxO3) transcription factor is involved in lifespan and cell differentiation. In this study, we explore whether FoxO3 regulates age-related bone loss and marrow fat accumulation. The expression levels of FoxO3 in BMSCs during aging were detected in vivo and in vitro. To explore the role of FoxO3 in osteogenic and adipogenic differentiation, primary BMSCs were isolated from young and aged mice. FoxO3 expression was modulated by adenoviral vector transfection. The role of FoxO3 in bone-fat balance was evaluated by alizarin red S staining, oil red O staining, quantitative reverse transcription-polymerase chain reaction, Western blot, and histological analysis. Age-related bone loss and fat deposit are associated with downregulation of FoxO3. Overexpression of FoxO3 alleviated age-related bone loss and marrow fat accumulation in aged mice. Mechanistically, FoxO3 reduced adipogenesis and enhanced osteogenesis of BMSCs via downregulation of PPAR-γ and Notch signaling, respectively. In conclusion, FoxO3 is an essential factor controlling the fate of BMSCs and is a potential target for the prevention of age-related osteoporosis.


Asunto(s)
Adipogénesis , Envejecimiento , Proteína Forkhead Box O3 , Células Madre Mesenquimatosas , Osteogénesis , Animales , Proteína Forkhead Box O3/metabolismo , Proteína Forkhead Box O3/genética , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Envejecimiento/genética , Envejecimiento/metabolismo , Osteogénesis/genética , Ratones , Adipogénesis/genética , Diferenciación Celular/genética , Ratones Endogámicos C57BL , Osteoporosis/metabolismo , Osteoporosis/patología , Osteoporosis/genética , Huesos/metabolismo , Transducción de Señal , PPAR gamma/metabolismo , PPAR gamma/genética , Masculino , Células Cultivadas , Receptores Notch/metabolismo , Receptores Notch/genética
4.
Free Radic Biol Med ; 212: 477-492, 2024 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-38190924

RESUMEN

Forkhead box O3a (FOXO3a)-mediated mitochondrial dysfunction plays a pivotal effect on cardiac hypertrophy and heart failure (HF). However, the role and underlying mechanisms of FOXO3a, regulated by breviscapine (BRE), on mitochondrial function in HF therapy remain unclear. This study reveals that BRE-induced nuclear translocation of FOXO3a facilitates mitofusin-1 (MFN-1)-dependent mitochondrial fusion in cardiac hypertrophy and HF. BRE effectively promotes cardiac function and ameliorates cardiac remodeling in pressure overload-induced mice. In addition, BRE mitigates phenylephrine (PE)-induced cardiac hypertrophy in cardiomyocytes and fibrosis remodeling in fibroblasts by inhibiting ROS production and promoting mitochondrial fusion, respectively. Transcriptomics analysis underscores the close association between the FOXO pathway and the protective effect of BRE against HF, with FOXO3a emerging as a potential target of BRE. BRE potentiates the nuclear translocation of FOXO3a by attenuating its phosphorylation, other than its acetylation in cardiac hypertrophy. Mechanistically, over-expression of FOXO3a significantly inhibits cardiac hypertrophy and mitochondrial injury by promoting MFN-1-mediated mitochondrial fusion. Furthermore, BRE demonstrates its ability to substantially curb cardiac hypertrophy, reduce mitochondrial ROS production, and enhance MFN-1-mediated mitochondrial fusion through a FOXO3a-dependent mechanism. In conclusion, nuclear FOXO3a translocation induced by BRE presents a successful therapeutic avenue for addressing cardiac hypertrophy and HF through promoting MFN-1-dependent mitochondrial fusion.


Asunto(s)
Flavonoides , Insuficiencia Cardíaca , Dinámicas Mitocondriales , Ratones , Animales , Especies Reactivas de Oxígeno/metabolismo , Cardiomegalia/inducido químicamente , Cardiomegalia/tratamiento farmacológico , Cardiomegalia/genética , Miocitos Cardíacos/metabolismo , Insuficiencia Cardíaca/patología
5.
Aging (Albany NY) ; 16(1): 844-856, 2024 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-38206302

RESUMEN

Premature ovarian insufficiency (POI) is a diverse form of female infertility characterized by a decline in ovarian function before the age of 40. Melatonin (MT) is a potential clinical treatment for restoring or safeguarding ovarian function in POI. However, the specific therapeutic mechanism underlying this effect remains unclear. To address this, we conducted experiments using human granulosa cells (GCs) from both POI and normal patients. We examined the expression levels of autophagy-related genes and proteins in GCs through qRT-PCR and western blot analysis. Autophagy flux was monitored in GCs infected with GFP-LC3-adenovirus, and the regulatory function of MT in autophagy was investigated. Additionally, we employed pharmacological intervention of autophagy using 3-Methyladenine (3-MA) and RNA interference of Forkhead box O-3A (FOXO3A) to elucidate the mechanism of MT in the autophagy process. Compared to GCs from normal patients, GCs from POI patients exhibited irregular morphology, decreased proliferation, increased apoptosis, and elevated ROS levels. The expression of autophagy-related genes was downregulated in POI GCs, resulting in reduced autophagic activity. Furthermore, MT levels were decreased in POI GCs, but exogenous MT effectively activated autophagy. Mechanistically, melatonin treatment downregulated FOXO3A expression and induced phosphorylation in POI GCs. Importantly, silencing FOXO3A abolished the protective effect of melatonin on GCs. These findings indicate that autophagy is downregulated in POI GCs, accompanied by a deficiency in MT. Moreover, we demonstrated that supplementing MT can rescue autophagy levels and enhance GC viability through the activation of FOXO3A signaling. Thus, MT-FOXO3A may serve as a potential therapeutic target for POI treatment.


Asunto(s)
Melatonina , Insuficiencia Ovárica Primaria , Femenino , Humanos , Autofagia , Células de la Granulosa/metabolismo , Melatonina/farmacología , Melatonina/uso terapéutico , Insuficiencia Ovárica Primaria/tratamiento farmacológico , Insuficiencia Ovárica Primaria/genética , Insuficiencia Ovárica Primaria/metabolismo , Transducción de Señal
6.
J Nutr Biochem ; 125: 109567, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38185348

RESUMEN

Diabetic cardiomyopathy is a common complication of diabetes, resulting in cardiac hypertrophy and heart failure associated with excessive reactive oxygen species and mitochondria-mediated apoptosis generation. Mitogen-activated protein kinase-c-Jun N-terminal kinase (MAPK-JNK), regulated by microRNA (miR)-210, affects mitochondrial function and is activated by advanced glycation end-products (AGE) in cardiac cells. Diallyl trisulfide (DATS), an antioxidant in garlic oil, inhibits stress-induced cardiac apoptosis. This study examined whether DATS enhances miR-210 expression to attenuate cardiac apoptosis. We investigated the DATS-mediated attenuation mechanism of AGE-enhanced cardiac apoptosis by modulating miR-210 and its upstream transcriptional regulator, FoxO3a. We found FoxO3a binding sites in the miR-210 promoter region. Our results indicated that DATS treatment inhibited AGE-induced JNK activation, phosphoprotein c-Jun nuclear transactivation, and cardiac apoptosis and reversed the AGE-induced reduction in cardiac miR-210 levels. The luciferase activity after DATS treatment was significantly lower than that of the control and was reversed following AGE treatment. We also showed that FoxO3a, upregulated by DATS treatment, may bind to the miR-210 promoter to enhance its expression and downregulates JNK expression to attenuate AGE-induced cardiac apoptosis. Oral administration of DATS enhanced FoxO3a expression in the heart and reduced diabetes-induced heart apoptosis. Our findings indicate that DATS mediates AGE-induced cardiac cell apoptosis attenuation by promoting FoxO3a nuclear transactivation to enhance miR-210 expression and regulate JNK activation. Our results suggest that DATS can be used as a cardioprotective agent, and miR-210 is a critical regulator in inhibiting diabetic cardiomyopathy.


Asunto(s)
Compuestos Alílicos , Cardiomiopatías Diabéticas , MicroARNs , Humanos , Regulación hacia Arriba , Cardiomiopatías Diabéticas/prevención & control , Productos Finales de Glicación Avanzada , Reacción de Maillard , Sulfuros/farmacología , Apoptosis , Línea Celular Tumoral , Quinasas de Proteína Quinasa Activadas por Mitógenos , MicroARNs/genética
7.
Chin J Integr Med ; 30(3): 230-242, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37815727

RESUMEN

OBJECTIVE: To examine the therapeutic effect of Fangji Fuling Decoction (FFD) on sepsis through network pharmacological analysis combined with in vitro and in vivo experiments. METHODS: A sepsis mouse model was constructed through intraperitoneal injection of 20 mg/kg lipopolysaccharide (LPS). RAW264.7 cells were stimulated by 250 ng/mL LPS to establish an in vitro cell model. Network pharmacology analysis identified the key molecular pathway associated with FFD in sepsis. Through ectopic expression and depletion experiments, the effect of FFD on multiple organ damage in septic mice, as well as on cell proliferation and apoptosis in relation to the mitogen-activated protein kinase 14/Forkhead Box O 3A (MAPK14/FOXO3A) signaling pathway, was analyzed. RESULTS: FFD reduced organ damage and inflammation in LPS-induced septic mice and suppressed LPS-induced macrophage apoptosis and inflammation in vitro (P<0.05). Network pharmacology analysis showed that FFD could regulate the MAPK14/FOXO signaling pathway during sepsis. As confirmed by in vitro cell experiments, FFD inhibited the MAPK14 signaling pathway or FOXO3A expression to relieve LPS-induced macrophage apoptosis and inflammation (P<0.05). Furthermore, FFD inhibited the MAPK14/FOXO3A signaling pathway to inhibit LPS-induced macrophage apoptosis in the lung tissue of septic mice (P<0.05). CONCLUSION: FFD could ameliorate the LPS-induced inflammatory response in septic mice by inhibiting the MAPK14/FOXO3A signaling pathway.


Asunto(s)
Proteína Quinasa 14 Activada por Mitógenos , Radioisótopos de Oxígeno , Sepsis , Wolfiporia , Ratones , Animales , Proteína Quinasa 14 Activada por Mitógenos/metabolismo , Lipopolisacáridos/farmacología , Sepsis/complicaciones , Transducción de Señal , Inflamación/tratamiento farmacológico
8.
Phytother Res ; 38(4): 1761-1780, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37922559

RESUMEN

In hospitals, contrast-induced acute kidney injury (CI-AKI) is a major cause of renal failure. This study evaluates berberine's (BBR) renal protection and its potential HDAC4 mechanism. CI-AKI in rats was induced with 10 mL kg-1 ioversol. Rats were divided into five groups: Ctrl, BBR, CI-AKI, CI-AKI + BBR, and CI-AKI + Tasq. The renal function of CI-AKI rats was determined by measuring serum creatinine and blood urea nitrogen. Histopathological changes and apoptosis of renal tubular epithelial cells were observed by HE and terminal deoxynucleotidyl transferase (TdTase)-mediated dUTP-biotin nick end labeling (TUNEL) staining. Transmission electron microscopy was used to observe autophagic structures. In vitro, a CI-AKI cell model was created with ioversol-treated HK-2 cells. Treatments included BBR, Rapa, HCQ, and Tasq. Analyses focused on proteins and genes associated with kidney injury, apoptosis, autophagy, and the HDAC4-FoxO3a axis. BBR showed significant protective effects against CI-AKI both in vivo and in vitro. It inhibited apoptosis by increasing Bcl-2 protein levels and decreasing Bax levels. BBR also activated autophagy, as indicated by changes in autophagy-related proteins and autophagic flux. The study further revealed that the contrast agent ioversol increased the expression of HDAC4, which led to elevated levels of phosphorylated FoxO3a (p-FoxO3a) and acetylated FoxO3a (Ac-FoxO3a). However, BBR inhibited HDAC4 expression, resulting in decreased levels of p-FoxO3a and Ac-FoxO3a. This activation of autophagy-related genes, regulated by the transcription factor FoxO3a, played a role in BBR's protective effects. BBR, a traditional Chinese medicine, shows promise against CI-AKI. It may counteract CI-AKI by modulating HDAC4 and FoxO3a, enhancing autophagy, and limiting apoptosis.


Asunto(s)
Lesión Renal Aguda , Berberina , Ácidos Triyodobenzoicos , Animales , Ratas , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/tratamiento farmacológico , Apoptosis , Autofagia , Berberina/farmacología , Histona Desacetilasas
9.
Artículo en Inglés | WPRIM (Pacífico Occidental) | ID: wpr-1010324

RESUMEN

OBJECTIVE@#To examine the therapeutic effect of Fangji Fuling Decoction (FFD) on sepsis through network pharmacological analysis combined with in vitro and in vivo experiments.@*METHODS@#A sepsis mouse model was constructed through intraperitoneal injection of 20 mg/kg lipopolysaccharide (LPS). RAW264.7 cells were stimulated by 250 ng/mL LPS to establish an in vitro cell model. Network pharmacology analysis identified the key molecular pathway associated with FFD in sepsis. Through ectopic expression and depletion experiments, the effect of FFD on multiple organ damage in septic mice, as well as on cell proliferation and apoptosis in relation to the mitogen-activated protein kinase 14/Forkhead Box O 3A (MAPK14/FOXO3A) signaling pathway, was analyzed.@*RESULTS@#FFD reduced organ damage and inflammation in LPS-induced septic mice and suppressed LPS-induced macrophage apoptosis and inflammation in vitro (P<0.05). Network pharmacology analysis showed that FFD could regulate the MAPK14/FOXO signaling pathway during sepsis. As confirmed by in vitro cell experiments, FFD inhibited the MAPK14 signaling pathway or FOXO3A expression to relieve LPS-induced macrophage apoptosis and inflammation (P<0.05). Furthermore, FFD inhibited the MAPK14/FOXO3A signaling pathway to inhibit LPS-induced macrophage apoptosis in the lung tissue of septic mice (P<0.05).@*CONCLUSION@#FFD could ameliorate the LPS-induced inflammatory response in septic mice by inhibiting the MAPK14/FOXO3A signaling pathway.


Asunto(s)
Ratones , Animales , Proteína Quinasa 14 Activada por Mitógenos/metabolismo , Wolfiporia , Lipopolisacáridos/farmacología , Sepsis/complicaciones , Transducción de Señal , Inflamación/tratamiento farmacológico , Radioisótopos de Oxígeno
10.
J Orthop Translat ; 39: 147-162, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37188001

RESUMEN

Background: Ferroptosis is a nonapoptotic cell death process that is characterized by lipid peroxidation and intracellular iron accumulation. As osteoarthritis (OA) progresses, inflammation or iron overload induces ferroptosis of chondrocytes. However, the genes that play a vital role in this process are still poorly studied. Methods: Ferroptosis was elicited in the ATDC5 chondrocyte cell line and primary chondrocytes by administration of the proinflammatory cytokines, interleukin (IL)-1ß and tumor necrosis factor (TNF)-α, which play key roles in OA. The effect of FOXO3 expression on apoptosis, extracellular matrix (ECM) metabolism, and ferroptosis in ATDC5 cells and primary chondrocytes was verified by western blot, Immunohistochemistry (IMHC), immunofluorescence (IF) and measuring Malondialdehyde (MDA) and Glutathione (GSH) levels. The signal cascades that modulated FOXO3-mediated ferroptosis were identified by using chemical agonists/antagonists and lentivirus. In vivo experiments were performed following destabilization of medial meniscus surgery on 8-week-old C57BL/6 mice and included micro-computed tomography measurements. Results: In vitro administration of IL-1ß and TNF-α, to ATDC5 cells or primary chondrocytes induced ferroptosis. In addition, the ferroptosis agonist, erastin, and the ferroptosis inhibitor, ferrostatin-1, downregulated or upregulated the protein expression of forkhead box O3 (FOXO3), respectively. This, suggested, for the first time, that FOXO3 may regulate ferroptosis in articular cartilage. Our results further suggested that FOXO3 regulated ECM metabolism via the ferroptosis mechanism in ATDC5 cells and primary chondrocytes. Moreover, a role for the NF-κB/mitogen-activated protein kinase (MAPK) signaling cascade in regulating FOXO3 and ferroptosis was demonstrated. In vivo experiments confirmed the rescue effect of intra-articular injection of a FOXO3-overexpressing lentivirus against erastin-aggravated OA. Conclusions: The results of our study show that the activation of ferroptosis promotes chondrocyte death and disrupts the ECM both in vivo and in vitro. In addition, FOXO3 can reduce OA progression by inhibiting ferroptosis through the NF-κB/MAPK signaling pathway. The Translational potential of this article: This study highlights the important role of chondrocyte ferroptosis regulated by FOXO3 through the NF-κB/MAPK signaling in the progression of OA. The inhibition of chondrocyte ferroptosis by activating FOXO3 is expected to be a new target for the treatment of OA.

11.
Int J Mol Sci ; 24(7)2023 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-37047012

RESUMEN

Butea monosperma (Fabaceae) has been used in traditional Indian medicine to treat a variety of ailments, including abdominal tumors. We aimed to investigate the anti-IL-6 activity of butein in ovarian cancer and elucidate the underlying molecular mechanisms. Butein was isolated and identified from B. monosperma flowers, and the inhibition of IL-6 signaling was investigated using the HEK-Blue™ IL-6 cell line. The surface plasmon resonance assay was used to estimate the binding of butein to IL-6, IL-6Rα, and gp130. After treatment with butein, ovarian cancer cell migration, apoptosis, and tumor growth inhibition were evaluated in vitro and in vivo. Furthermore, we used STAT3 siRNA to identify the mechanistic effects of butein on the IL-6/STAT3/FoxO3a pathway. Butein suppressed downstream signal transduction through higher binding affinity to IL-6. In ovarian cancer, butein inhibited cell proliferation, migration, and invasion, and induced cell cycle arrest and apoptosis. In addition, it decreased the growth of ovarian cancer cells in xenograft tumor models. Butein inhibited STAT3 phosphorylation and induced FoxO3a accumulation in the nucleus by inhibiting IL-6 signaling. The anticancer activity of butein was mediated by blocking the IL-6/IL-6Rα interaction and suppressing IL-6 bioactivity via interfering with the IL-6/STAT3/FoxO3a pathway.


Asunto(s)
Chalconas , Neoplasias Ováricas , Femenino , Humanos , Apoptosis , Línea Celular , Línea Celular Tumoral , Proliferación Celular , Chalconas/farmacología , Neoplasias Ováricas/tratamiento farmacológico , Factor de Transcripción STAT3/metabolismo
12.
Ecotoxicol Environ Saf ; 256: 114872, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37027942

RESUMEN

Manganese (Mn), as one of the environmental risk factors for Parkinson's disease (PD), has been widely studied. Though autophagy dysfunction and neuroinflammation mainly are responsible for the causative issue of Mn neurotoxicity, the molecular mechanism of parkinsonism caused by Mn has not been explored clearly. The results of in vivo and in vitro experiments showed that overexposure to Mn caused neuroinflammation impairment and autophagy dysfunction, accompanied by the increase of IL-1ß, IL-6, and TNF-α mRNA expression, and nerve cell apoptosis, microglia cell activation, NF-κB activation, poor neurobehavior performance. This is due to Mn-induced the downregulation of SIRT1. Upregulation of SIRT1 in vivo and in vitro could alleviate Mn-induced autophagy dysfunction and neuroinflammation, yet these beneficial effects were abolished following 3-MA administration. Furthermore, we found that Mn interfered with the acetylation of FOXO3 by SIRT1 in BV2 cells, leading to a decrease in the nuclear translocation of FOXO3, and its binding of LC3B promoter and transcription activity. This could be antagonized by the upregulation of SIRT1. Finally, it is proved that SIRT1/FOXO3-LC3B autophagy signaling involves in Mn-induced neuroinflammation impairment.


Asunto(s)
Manganeso , Enfermedades Neuroinflamatorias , Autofagia , Proteína Forkhead Box O3/metabolismo , Manganeso/metabolismo , Microglía , Sirtuina 1/metabolismo , Animales , Ratones
13.
Oncol Rep ; 49(2)2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36660952

RESUMEN

Diffuse large B­cell lymphoma (DLBCL) is one of the most common types of lymphoma. Calponin 3 (CNN3) is a thin filament­associated protein previously known to regulate smooth muscle contraction. Recent evidence illustrates its involvement in carcinogenesis; however, its roles in DLBCL remain unknown. CNN3 was found to be highly expressed in DLBCL specimens according to the online Gene Expression Profiling Interactive Analysis data. The aim of the present study was to investigate the roles of CNN3 in the progression of DLBCL. In vitro, the ectopic expression of CNN3 promoted the proliferation and G1/S transition of DLBCL cells, while its silencing led to opposite alterations. A similar tumor­promoting role of CNN3 was also demonstrated by injecting nude mice with DLBCL cells over­ or underexpressing CNN3. The results of dual­luciferase reporter and chromatin immunoprecipitation assays revealed that forkhead box O3 (FOXO3), a known tumor suppressor in DLBCL, bound to the CNN3 promoter at ­1955/­1948 and ­1190/­1183, and suppressed the transcription of CNN3. The alterations induced by FOXO3 were partly blocked by CNN3 overexpression. On the whole, the present study demonstrates that CNN3, whose transcriptional activity is negatively regulated by FOXO3, contributes to the malignant behavior of DLBCL cells. The findings of the present study may provide novel diagnostic or therapeutic insight for DLBCL in clinical practice.


Asunto(s)
Linfoma de Células B Grandes Difuso , Animales , Ratones , Línea Celular Tumoral , Ratones Desnudos , Proliferación Celular/genética , Linfoma de Células B Grandes Difuso/patología , Regulación Neoplásica de la Expresión Génica , Calponinas
14.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-980167

RESUMEN

ObjectiveTo explore the mechanism of Gegen Qinliantang (GQT) in improving ectopic lipid accumulation in the liver of db/db mice with type 2 diabetes mellitus (T2DM) by regulating the adenosine monophosphate-activated protein kinase (AMPK)-forkhead box O3a (FoxO3a) autophagy axis, to provide a scientific basis for clarifying the hypoglycemic mechanism of GQT and its clinical application. MethodSeventy-five spontaneous T2DM db/db mice and 15 normal db/m mice were selected and maintained on a regular diet for one week, followed by the measurement of blood glucose. They were then randomly divided into six groups, with 15 mice in each group, including normal group (0.2 g·kg-1 saline), metformin group (0.2 g·kg-1), high-, medium, and low-dose GQT group (31.9, 19.1, 6.9 g·kg-1), and model group (0.2 g·kg-1 saline). The mice were orally administered the corresponding drugs once daily for 12 weeks. Fasting blood glucose (FBG) and glycated hemoglobin (HbA1c) were detected. Fasting insulin (FINS) and free fatty acid (FFA) levels were measured by enzyme-linked immunosorbent assay (ELISA). Pathological changes in liver tissues were observed by hematoxylin-eosin (HE) staining. The protein expression levels of phosphorylated (p)-AMPK, p-FoxO3a, and autophagy-related proteins microtubule-associated protein 1 light chain 3 Ⅱ (LC3Ⅱ) and p62 were detected using Western blot. Immunofluorescence was used to detect the expression of hypoxia-inducible factor-1α (HIF-1α) in liver tissues. Real-time polymerase chain reaction (Real-time PCR) was performed to detect the mRNA expression of AMPK, FoxO3a, and LC3 in liver tissues. ResultCompared with the normal group, the model group showed pathological changes in liver tissues, increased FBG, HbA1c, FINS, and FFA levels (P<0.01), increased protein expression levels of p-AMPK, p62, and HIF-1α, decreased protein expression levels of p-FoxO3a and LC3Ⅱ in liver tissues (P<0.01), decreased mRNA expression of AMPK, and increased expression of FoxO3a (P<0.01). Compared with the model group, the treatment groups showed relieved liver tissue lesions and decreased FBG, HbA1c, FINS, and FFA levels (P<0.01). The expression of p-AMPK, p62, and HIF-1α increased, while the expression of p-FoxO3a showed a dose-dependent decrease in the high-dose GQT group. The expression of LC3Ⅱ increased in the metformin group and the high-dose GQT group (P<0.01). The mRNA expression of AMPK showed a dose-dependent increase, and the expression of FoxO3a showed a dose-dependent decrease in the treatment groups (P<0.01). ConclusionGQT can improve ectopic lipid accumulation in the liver of T2DM db/db mice, which may be related to the regulation of the AMPK-FoxO3a autophagy axis.

15.
Toxicol Rep ; 9: 1357-1368, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36561957

RESUMEN

In recent years, new nicotine delivery methods have emerged, and many users are choosing electronic cigarettes (e-cigarettes) over traditional tobacco cigarettes. E-cigarette use is very popular among adolescents, with more than 3.5 million currently using these products in the US. Despite the increased prevalence of e-cigarette use, there is limited knowledge regarding the health impact of e-cigarettes on the general population. Based on published findings by others, E-cigarette is associated with lung injury outbreak, which increased health and safety concerns related to consuming this product. Different components of e-cigarettes, including food-safe liquid solvents and flavorings, can cause health issues related to pneumonia, pulmonary injury, and bronchiolitis. In addition, e-cigarettes contain alarmingly high levels of carcinogens and toxicants that may have long-lasting effects on other organ systems, including the development of neurological manifestations, lung cancer, cardiovascular disorders, and tooth decay. Despite the well- documented potential for harm, e-cigarettes do not appear to increase susceptibility to SARS-CoV- 2 infection. Furthermore, some studies have found that e-cigarette users experience improvements in lung health and minimal adverse effects. Therefore, more studies are needed to provide a definitive conclusion on the long-term safety of e-cigarettes. The purpose of this review is to inform the readers about the possible health-risks associated with the use of e-cigarettes, especially among the group of young and young-adults, from a molecular biology point of view.

16.
Clin Cosmet Investig Dermatol ; 15: 1403-1413, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35910506

RESUMEN

Purpose: Metformin (MET) has been proved to be effective for the treatment of psoriasis. The mechanisms of its action under the hyperlipidemia have yet to be fully elucidated. Here, we investigated the effect of metformin on the cell proliferation induced by hyperlipidemia and the underlying mechanism in immortalized human keratinocyte cell line (HaCat). Methods: Wild-type or FOXO3 knockdown HaCat cells were treated with free fatty acids (FFA) for 10 days and then co-treated with metformin for another 4 days. Triglyceride (TG) level, cell viability, proliferation, apoptosis, antioxidant enzymes, reactive oxygen species (ROS) levels, as well as the transcription activity of FOXO3 were analyzed. Results: Metformin decreased HaCaT cell proliferation and induced cell apoptosis after FFA treatment. Metformin was found to significantly increase the expressions and the activities of superoxide dismutase (SOD) as well as catalase (CAT), and reduced the reactive oxygen species (ROS) level. Metformin significantly promoted the autophagy and increase FOXO3 protein level in the nucleus under hyperlipidemia. However, all of the effects from metformin were partially blocked by FOXO3 knockdown. Conclusion: This study demonstrated that under the hyperlipidemia, metformin has significant antiproliferation and proapoptosis effects by reducing ROS level as well as increasing autophagy. All of these effects from metformin were through FOXO3-dependent pathway.

17.
Mol Med ; 28(1): 92, 2022 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-35941589

RESUMEN

BACKGROUND: The forkhead box O3a protein (FoxO3a) has been reported to be involved in the migration and invasion of trophoblast, but its underlying mechanisms unknown. In this study, we aim to explore the transcriptional and metabolic regulations of FoxO3a on the migration and invasion of early placental development. METHODS: Lentiviral vectors were used to knock down the expression of FoxO3a of the HTR8/SVneo cells. Western blot, matrigel invasion assay, wound healing assay, seahorse, gas-chromatography-mass spectrometry (GC-MS) based metabolomics, fluxomics, and RNA-seq transcriptomics were performed. RESULTS: We found that FoxO3a depletion restrained the migration and invasion of HTR8/SVneo cells. Metabolomics, fluxomics, and seahorse demonstrated that FoxO3a knockdown resulted in a switch from aerobic to anaerobic respiration and increased utilization of aromatic amino acids and long-chain fatty acids from extracellular nutrients. Furthermore, our RNA-seq also demonstrated that the expression of COX-2 and MMP9 decreased after FoxO3a knockdown, and these two genes were closely associated with the migration/invasion progress of trophoblast cells. CONCLUSIONS: Our results suggested novel biological roles of FoxO3a in early placental development. FoxO3a exerts an essential effect on trophoblast migration and invasion owing to the regulations of COX2, MMP9, aromatic amino acids, energy metabolism, and oxidative stress.


Asunto(s)
Proteína Forkhead Box O3/metabolismo , Preeclampsia , Trofoblastos , Aminoácidos Aromáticos/metabolismo , Línea Celular , Movimiento Celular/genética , Femenino , Humanos , Metaloproteinasa 9 de la Matriz/metabolismo , Placenta/metabolismo , Preeclampsia/genética , Embarazo , Trofoblastos/metabolismo
18.
J Ginseng Res ; 46(4): 536-542, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35818428

RESUMEN

Background: In aged skin, reactive oxygen species (ROS) induces degradation of the extracellular matrix (ECM), leading to visible aging signs. Collagens in the ECM are cleaved by matrix metalloproteinases (MMPs). Syringaresinol (SYR), isolated from Panax ginseng berry, has various physiological activities, including anti-inflammatory action. However, the anti-aging effects of SYR via antioxidant and autophagy regulation have not been elucidated. Methods: The preventive effect of SYR on skin aging was investigated in human HaCaT keratinocytes in the presence of H2O2, and the keratinocyte cells were treated with SYR (0-200 µg/mL). mRNA and protein levels of MMP-2 and -9 were determined by real-time PCR and Western blotting, respectively. Radical scavenging activity was researched by 2,2 diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) assays. LC3B level was assessed by Western blotting and confocal microscopy. Results: SYR significantly reduced gene expression and protein levels of MMP-9 and -2 in both H2O2-treated and untreated HaCaT cells. SYR did not show cytotoxicity to HaCaT cells. SYR exhibited DPPH and ABTS radical scavenging activities with an EC50 value of 10.77 and 10.35 µg/mL, respectively. SYR elevated total levels of endogenous and exogenous LC3B in H2O2-stimulated HaCaT cells. 3-Methyladenine (3-MA), an autophagy inhibitor, counteracted the inhibitory effect of SYR on MMP-2 expression. Conclusion: SYR showed antioxidant activity and up-regulated autophagy activity in H2O2-stimulated HaCaT cells, lowering the expression of MMP-2 and MMP-9 associated with skin aging. Our results suggest that SYR has potential value as a cosmetic additive for prevention of skin aging.

19.
Chem Biol Interact ; 363: 110010, 2022 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-35690101

RESUMEN

Oleanolic acid (OA) is a natural compound that possesses numerous beneficial health effects, including anticancer activity. The current study aimed to investigate the role of forkhead box O3a (FOXO3a) in autophagy/mitophagy by OA in HCT116 cell line. OA dose-dependently reduced viability of HCT116 cells, with IC50 = 29.8 µΜ. The expression of cleaved caspase-3 and poly (ADP-ribose) polymerase 1 increased after OA treatment, suggesting induction of apoptosis. Concurrently, OA induced autophagy, evidenced by increased expression of Beclin-1, autophagy-related protein 5 and microtubule-associated protein1A/1B-light chain 3 beta (LC3B), which played a prosurvival role. The induction of mitophagy was suggested by increased expression of p62 and PTEN-induced kinase 1 and reduced expression of translocase of outer mitochondrial membrane 20, which colocalized with LC3B. OA also induced nuclear accumulation of forkhead box O3a (FOXO3a). The cytotoxic activity of OA coincided with upregulation of p38. Inhibition of p38 led to increase in FOXO3a and NAD+-dependent deacetylase sirtuin 6 expression. In vivo, OA inhibited tumor growth in colon cancer xenograft mice. Our results suggest concomitant induction of apoptosis and prosurvival mitophagy by OA in colon cancer via p38/FOXO3a/Sirt6 signaling. Additionally, our data demonstrate that OA can chemosensitize colon cancer cells to 5-fluorouracil (5-FU).


Asunto(s)
Neoplasias del Colon , Ácido Oleanólico , Sirtuinas , Animales , Apoptosis , Autofagia , Línea Celular Tumoral , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/metabolismo , Fluorouracilo/farmacología , Proteína Forkhead Box O3/metabolismo , Células HCT116 , Humanos , Ratones , Ácido Oleanólico/farmacología
20.
Toxicol Appl Pharmacol ; 449: 116140, 2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-35753429

RESUMEN

The unpredictable pharmacokinetics of non-renal cleared drugs in chronic kidney disease (CKD) patients is associated with the activity of drug transporters. However, the mechanisms underlying regulation of drug transporters are yet to be established. In this study, we demonstrated the involvement of a HDAC2-Foxo3α pathway in advanced oxidation protein products (AOPPs)-induced ATP-binding cassette subfamily B member 1 (ABCB1) expression and activity. The correlation of AOPPs accumulation with concentration of cyclosporine in plasma was evaluated in 194 patients with transplantation. Molecular changes in acetylation of various histones and related regulatory molecules were examined in HepG2 cell cultures treated with AOPPs. Accumulation of AOPPs in serum in relation to molecular changes in HDAC2-Foxo3α in vivo were evaluated in 5/6 nephrectomy (5/6 nx) and oral adenine (Adenine) CKD rat models. Interestingly, the cyclosporine level was negatively correlated with AOPPs in plasma. In addition, AOPPs markedly suppressed the expression of histone deacetylase 2 (HDAC2), inducing ABCB1 expression and activity in vitro and in vivo. Importantly, AOPPs modulated phosphorylation of Foxo3α and the upstream Akt protein. Our findings indicate that AOPPs regulate the expression and activity of ABCB1 via reducing HDAC2 expression and activating Foxo3α-dependent signaling. The collective results support the utility of AOPPs as a potential target for drug and/or dosage adjustment in CKD patients. Targeting of AOPPs presents a novel approach to regulate non-renal clearance.


Asunto(s)
Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Ciclosporinas , Insuficiencia Renal Crónica , Adenina , Productos Avanzados de Oxidación de Proteínas/metabolismo , Animales , Proteína Forkhead Box O3/metabolismo , Histona Desacetilasa 2 , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA