Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.742
Filtrar
1.
Materials (Basel) ; 17(17)2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39274618

RESUMEN

This study presents test results and deep discussion regarding measurements of the fracture toughness of new concrete composites based on ternary blended cements (TCs). A composition of the most commonly used mineral additive (i.e., fly ash (FA)) in combination with nano-silica (NS) has been proposed as a partial replacement of the ordinary Portland cement (OPC) binder. The novelty of this article is related to the fact that ordinary concretes with FA + NS additives are most often used in construction practice, and there is a decided lack of fracture toughness test results concerning these materials. Therefore, in order to fill this gap in the literature, an extensive evaluation of the fracture mechanic parameters of TC was carried out. Four series of concretes were created, one of which was the reference concrete (REF), and the remaining three were TCs. The effect of a constant content of 5% NS and various FA contents, such as 0, 15%, and 25% wt., as a partial replacement of cement was studied. The parameters of the linear and nonlinear fracture mechanics were analyzed in this study (i.e., the critical stress intensity factor (KIcS), critical crack tip opening displacement (CTODc), and critical unit work of failure (JIc)). In addition, the main mechanical parameters (i.e., the compressive strength (fcm) and splitting tensile strength (fctm)) were evaluated. Based on the studies, it was found that the addition of 5% NS without FA increased the strength and fracture parameters of the concrete by approximately 20%. On the other hand, supplementing the composition of the binder with 5% NS in combination with the 15% FA additive caused an increase in all mechanical parameters by approximately another 20%. However, an increase in the FA content in the concrete mix of another 10% caused a smaller increase in all analyzed factors (i.e., by approximately 10%) compared with a composite with the addition of the NS modifier only. In addition, from an ecological point of view, by utilizing fine waste FA particles combined with extremely fine particles of NS to produce ordinary concretes, the demand for OPC can be reduced, thereby lowering CO2 emissions. Hence, the findings of this research hold practical importance for the future application of such materials in the development of green concretes.

2.
Materials (Basel) ; 17(17)2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39274719

RESUMEN

This study focuses on investigating the strength recovery of fire-damaged fly ash concrete (FAC) with a low substitution rate of 10% through post-fire curing. The chemical and microstructural changes were analyzed using X-ray diffraction (XRD), derivative thermogravimetry (DTG), scanning electron microscopy (SEM), energy dispersive X-ray spectrometry (EDS), and nitrogen adsorption. The findings indicate that the incorporation of fly ash slightly enhanced the strength after exposure to 400 °C; this was attributed to improved pozzolanic reactions, which were not observed at higher temperatures of 600 °C and 800 °C. Moreover, a positive effect on the recovery of compressive strength was observed due to the pozzolanic reaction. However, due to the relatively low fly ash content, depletion occurred at a later age, resulting in the inability to inhibit microstructural damage caused by the production of portlandite, thereby weakening the compressive strength. Interestingly, fly ash influenced the morphology of calcium carbonate and calcium silicate hydrate crystals, which is potentially ascribed to the role of high aluminum content acting as a crystallization-guiding agent.

3.
Materials (Basel) ; 17(17)2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39274751

RESUMEN

This paper deals with the issue of the bond of concrete with the new artificial aggregate Certyd to prestressing steel strands. The solution of the problem is of great importance in the development of the use of lightweight aggregate concrete for prestressed concrete elements. Experimental research on the bond stress-slip relationship of concrete to 15.7 mm non-pretensioned steel strand was carried out. The results of bond stress-slip tests for various embedment lengths (40, 80, 120, 240, 330 and 460 mm) for test specimens made of the same lightweight aggregate concrete mixture, in which the transfer of prestressing force took place at different levels of concrete maturity (after 3, 7 and 28 days of concrete maturing), are presented. Based on the obtained results, an analytical model of the bond stress-slip relationship of lightweight aggregate Certyd concrete to 15.7 mm non-pretensioned steel strand was proposed. The tests presented demonstrated that the lightweight aggregate (Certyd) concrete is suitable for the production of pretensioned concrete elements.

4.
Materials (Basel) ; 17(17)2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39274823

RESUMEN

With the growing global concerns regarding sustainable development in the building and construction industries, concentration only on the engineering properties of building materials can no longer meet the requirements. Although some studies have been implemented based on the lifecycle assessment of lightweight cement-based materials, very few attempts have been made pertaining to multi-criteria optimization, especially when fly ash cenospheres are used as lightweight aggregates and nano additives are incorporated as modifying admixtures. This investigation utilized cenospheres as fine aggregates to produce green, sustainable, lightweight cement mortar. Multi-walled carbon nanotubes at 0.05, 0.15, and 0.45% were binarily added, together with 0.2, 0.6, and 1.0% of nano silica to improve the mechanical performance. Strength tests were conducted to measure the flexural and compressive behaviors, combined with a cradle-to-gate lifecycle assessment and direct cost analysis to assess the environmental and economic viability. Integrated indexes and the TOPSIS method were adopted to systematically evaluate the mortar mixes and determine the optimal mix. The outcomes show that nano additives worked synergically to enhance the mechanical properties of the mortars. The utilization of cenospheres effectively reduced environmental impacts and improved economic feasibility. Nano additives significantly affected the sustainability and economic viability; in particular, the utilization of multi-walled carbon nanotubes increased the material costs. To minimize the impact of the price of multi-walled carbon nanotubes, it is proposed to binarily use less expensive nano silica. In the multi-parameter optimization, the mix with 0.05% multi-walled carbon nanotubes and 0.02% nano silica was recommended to be the optimal mix.

5.
Molecules ; 29(17)2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39274919

RESUMEN

In this study, the hydrophobic modification of coal gasification fly ash (FA) was investigated given the adverse effects of surface hydrophilic structures on the material field. The surface of FA was modified using stearic acid (SA), which successfully altered its hydrophilic structure. When the contact angle of S-FA increased from 23.4° to 127.2°, the activation index increased from 0 to 0.98, the oil absorption decreased from 0.564 g/g to 0.510 g/g, and the BET-specific surface area decreased from 13.973 m2/g to 3.218 m2/g. The failure temperature of SA on the surface of S-FA was 210 °C. The adsorption mechanism of FA was analyzed using density functional theory (DFT) and molecular dynamics (MD). The adsorption of water molecules by FA involved both chemical and physical adsorption, with active adsorption sites for Al, Fe, and Si. The adsorbed water molecules on the surface of FA formed hydrogen bonds with a bond length of 1.5-2.5 Å, leading to agglomeration. In addition, the long alkyl chain in SA mainly relied on the central carbon atom in the (-CH3) structure to obtain electrons in different directions from the H atoms in space, increasing the Coulomb repulsion with the O atoms in the water molecule and thereby achieving the hydrophobic effect. In the temperature range of 298 K to 358 K, the combination of FA and SA became stronger as the temperature increased.

6.
Sci Rep ; 14(1): 21485, 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39277618

RESUMEN

This study examines the influence of different grain size fractions of coal fly ash on the properties of clay-cement mortars used in flood levee construction. Dry aerodynamic separation and mesh sieving were used to obtain ultrafine, fine, and medium fractions of high-calcium and silica fly ash. The experimental results reveal that the rheological properties of fresh mortars are significantly influenced by these fractions. High-calcium fly ash mortars exhibit high reactivity and rapid increase in viscosity, with finer fractions showing the highest reactivity. Silica ashes show increased reactivity in the later stages of suspension hardening. Their spherical shape contributes to reducing internal friction during flow in initial technological operations. Furthermore, the compressive strength of hardened mortars improves as the particle size decreases for both ashes, resulting in a dense and uniform microstructure. The separation and fractionation of fly ashes contribute to the obtaining of fractions that influence the parameters of clay-cement suspension application on different scales. The results show the potential benefits of ash separation, which can bring advantages in terms of economic viability, engineering performance, and ecological sustainability.

7.
Sci Rep ; 14(1): 20953, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39251791

RESUMEN

Manufacturing ordinary Portland cement (OPC) poses significant challenges for sustainable construction practices. OPC manufacturing emits substantial greenhouse gases into the atmosphere and demands extensive raw materials. In pursuit of greener alternatives, researchers explore geopolymer concrete (GPC), a revolutionary material that entirely replaces OPC, comprising industrial wastes/by-products activated through an alkaline solution. The study aims to investigate the feasibility of incorporating quarry rock dust (QRD) into GPC production for environmentally sustainable structural applications. Circular columns (200 mm diameter, 1000 mm length) were formulated using GPC blends with fly ash, slag (SG), and QRD as a partial SG replacement. The structural performance of these columns, with and without steel fiber reinforcement, was evaluated under varied loading conditions. Results show that QRD is a valuable ingredient in GPC for structural concrete elements, offering performance comparable to traditional OPC concrete. Furthermore, the incorporation of steel fibers significantly enhances the peak axial loads, displacement response, and overall performance of GPC columns with or without QRD. Fiber-reinforced GPC columns demonstrated approximately 8-10% higher ultimate load capacity than equivalent OPC columns. Eccentricity was found to significantly reduce ductility, but fiber reinforcement offers substantial ductility improvements (25-55%).

8.
Sci Rep ; 14(1): 21064, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39256504

RESUMEN

Zeolite molecular sieves are potential adsorbents for wastewater treatment, characterized by high efficiency, simple process, easy regeneration, and low treatment cost. In this study, zeolite A molecular sieves were prepared using coal fly ash (CFA), which is an effective method for the utilization of CFA. The results showed that the CFA-based zeolite molecular sieves synthesized under optimized conditions exhibited excellent adsorption and removal rates (> 40%) for ammonia-nitrogen in wastewater of different concentrations and properties. The analysis of adsorption kinetics revealed that the adsorption process followed pseudo-second-order kinetics model, indicating that the adsorption of ammonia-nitrogen on zeolite is primarily controlled by chemisorption rather than physisorption. The adsorption process can be divided into two stages, with a higher adsorption rate and a smaller diffusion boundary layer thickness in the first stage, and a lower adsorption rate and an increased diffusion boundary layer thickness in the second stage. This indicates that as the adsorption proceeds, the internal diffusion resistance within the particles gradually increases, leading to a decrease in the adsorption rate until reaching equilibrium, where both the diffusion and adsorption become stable. The adsorption isotherms of ammonia-nitrogen on zeolite A conformed to the assumptions of the Langmuir model, suggesting that the adsorption mechanism primarily involves uniform monolayer adsorption on the surface without intermolecular interactions.

9.
Sci Rep ; 14(1): 21087, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39256600

RESUMEN

To solve the problem of a large amount of fly ash accumulation and study the axial compression and bearing capacity prediction of the self-compacting fly ash concrete filled circle steel tube (SCCFST) columns, eight specimens are designed to explore the impact of concrete strength grade, internal structural measures, and additional parameters. The stress, progression of deformation, and failure mode of each specimen are observed during the loading process. The load-displacement curves, load-strain curves, characteristic load and displacement, ductility, and stiffness degradation are analyzed. The findings revealed that shear deformation occurred predominantly in the middle and upper portions of the steel tubes. Enhancing the strength of the concrete or adopting internal structural measures could increase the bearing capacity and ductility of the specimens. The peak load and ductility could be increased by up to 17.6 and 53.6%, respectively. The proposed unified calculation equation for the axial compression bearing capacity of SCCFST columns demonstrates notable reliability and precision. Furthermore, these tests offer valuable references for the engineering application of various forms of SCCFST columns, which are of significant importance in practical engineering.

10.
Sci Total Environ ; 952: 175950, 2024 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-39218098

RESUMEN

Information on the emission of coal combustion-sourced magnetite nanoparticles (MNPs) is lacking, which is critical for their health-related risks. In this study, MNPs in coal fly ashes (CFAs) from various coal-fired power plants (CFPPs) in China equipped with various dust removal devices were extracted and quantified using single particle ICP-MS. The number concentrations of MNPs in CFAs captured by dust removal increased with stage, while their size decreased. Among all the dust removal devices, electrostatic-fabric-integrated precipitators showed the best removal of MNPs. Furthermore, throughout all the coal combustion by-products in a typical CFPP, MNPs in EFA (fly ash escaped from the stack) showed the highest number concentration (1.2 × 107 particles/mg) and lowest size (78 nm). Although the mass of CFA escaping through the stack is extremely low, it still had an emission rate of 1.9 × 1015 particles/h, contributing 3.56 % of the total emissions of MNPs in number. In addition, the purity of MNPs and their associated toxic metals showed a size-dependent variation pattern. As the particle size of MNPs decreased, the proportion of Fe in MNPs increased from 43 % in bottom ash (BA) to 84 % in EFA, while the abundance of trace toxic metals in EFA was 3.3 times higher than that of BA. These MNPs with the highest purity can adsorb elevated concentrations of toxic metals, and can be discharged directly into the atmosphere, posing a risk of synergistic toxicity.

11.
Environ Pollut ; : 124982, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39293653

RESUMEN

Fly ash is predominately the inorganic byproduct of coal combustion for electrical power generation. It is composed of aluminosilicates with Fe, Mg, K, and Ca forming submicron to 100 µm spheres and amorphous particles. During combustion trace elements are incorporated into the heterogenous fine particles that can pose risks to the environment and human health. This study combines optical, rock magnetic, and geochemical analyses of fly ash originating from Appalachian coal to develop an integrated suite of environmental coal ash tracers. The non-magnetic portion of power plant fly ash has higher abundance of clear spheres and clear amorphous particles, combined with enrichment of As, B, Th, Ba, Li, Se, Cd, Pb, and Tl. The magnetic fraction is enriched in opaque and orange spheres and Cu, U, V, Mo, Cr, Ni, and Co. Plerospheres occur in either fraction. We investigated ash-bearing fluvial sediment from Emory-Clinch River system that was impacted by the instantaneous TVA spill in 2008 and Hyco Lake in North Carolina that was contaminated by chronic releases of fly ash since 1964. Five years after the TVA spill, most ash in the riverbed reflects one population with trace element concentrations proportional to percent total ash. This relationship does not hold for As and Se, volatile elements associated with the outer surface of clear spheres, which are affected by river transport. At Hyco Lake, small clear and opaque spheres correlate with trace elements released from storage ponds. The combination of trace elements, fly ash morphology and rock magnetism provides a powerful set of tools to assess the distribution of ash and potential impact on the environment. We conclude that dispersal of fly ash to the aquatic environment, especially small clear and opaque spheres, should be avoided in favor of dry landfills.

12.
Sci Rep ; 14(1): 19115, 2024 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-39155304

RESUMEN

Construction and global infrastructure depend on cement production. It is one of the biggest carbon emitters, making it an aspect of environmental sustainability and climate change mitigation. Each stage of cement production releases CO2 and other greenhouse gasses. About 8% of worldwide CO2 emissions come from the cement sector, making it a major contributor. Different supplementary cementitious materials (SCMs) like fly ash (FA), silica fume (SF), and slag are used to partially replace traditional raw materials like limestone, reducing the environmental impact. This study investigated the use of supplementary cementitious materials, specifically FA and alccofine (AF), as partial replacements for cement in concrete to reduce environmental impact. The study first identified an optimal replacement percentage for FA (20%, 30%, and 40%) by weight of cement. Subsequently, using the optimal FA percentage, AF was added at varying percentages (5%, 10%, and 15%) by weight of cement. The study evaluated the mechanical properties of the concrete mixtures, including workability, compressive strength, split tensile strength, and flexural strength. Durability, measured by water sorptivity and rapid chloride penetrability tests, was also assessed. The microstructural properties of the concrete were analyzed to understand their influence on performance. As a result of the significant environmental implications of producing and using concrete for all activities, an in-depth life cycle assessment (LCA) was conducted. Additionally, artificial neural networks were employed to predict the compressive strength of the concrete. The study concluded that incorporating FA and AF in concrete mixtures is a promising approach to producing more environmentally friendly concrete.

13.
Heliyon ; 10(14): e34812, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39149027

RESUMEN

Developing recovery methods from coal mine waste like mudstone and coal fly ash (CFA) is crucial to expanding the alumina supply beyond bauxite. This review explores various approaches for alumina recovery from mudstone and CFA. Six main leaching techniques are discussed-caustic soda, nitric acid, Sulphuric acid, hydrochloric acid, and leaching roasted coal mine wastes. Due to high silica content, these techniques differ from those for bauxite minerals. Alkaline solutions, like sodium and calcium hydroxide, show promise but are cost-intensive. Sulphuric acid, combined with calcium hydroxide or sodium carbonate before roasting, yields efficient results, surpassing 90 % recovery. Microbial extraction also shows promise, but commercialisation faces equipment accessibility challenges. Heat treatment and optimal calcination temperatures are crucial, especially with acid reagents like Sulphuric and hydrochloric acids, preferred for insolubility in silica and better recovery. Sustainable alumina recovery requires further research into economically viable and ecologically friendly technology. This review underscores the need for feasible, high-purity alumina recovery techniques from mudstone and CFA for industrialisation.

14.
Sci Total Environ ; 950: 175056, 2024 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-39094637

RESUMEN

Coal fly ash has gained much attention as a potential alternative source for extracting critical metals such as Li, Ga, Nb, and lanthanides and yttrium (REY). This study investigates their distribution characteristics and modes of occurrence in alumina-rich fly ashes from the Togtoh Power Plant in Inner Mongolia, using various analytical methods. The objective was to provide a reference for the pre-enrichment of critical metals in fly ash. Lithium is primarily present in the glass phase, and its concentration is extremely low in the crystalline phases. Lithium is mainly concentrated in "pure" aluminosilicate glass, and is present but at a low level in Ca-rich aluminosilicate glass. Gallium is primarily present in the glass phase and in corundum, while Nb mainly exists in submicron zircon particles surrounded by Si-Al-Ca glass. Lanthanides and yttrium primarily occur in the glass phase and in crystalline phases, including an intermediate phase composed of the three end-member minerals of the gorceixite-crandallite-florencite series, as well as in monazite, crystalline forms of iron oxides and REY oxides. The Li concentrations in the alumina-rich fly ashes range from 562 to 894 µg/g for Li2O, from 43.9 to 81.9 µg/g for Ga, from 58.7 to 70.6 µg/g for Nb2O5, and from 258 to 450 µg/g for REY oxides, respectively, indicating their substantial potential for resource recovery. Especially, the 2nd row fly ash has the highest contents of these metals, allowing for direct extraction without the necessity for complex pre-processing. Physical separation can further enrich Li, Ga, Nb, and REY in the fly ash. In particular, particle size separation enriches these elements in the < 20 µm size range and magnetic separation enriches Li, Ga, Nb, and REY (except Ce) in the non-magnetic fraction. However, Ce is significantly enriched in the magnetic fraction compared to the original fly ash.

15.
Environ Sci Pollut Res Int ; 31(38): 50225-50242, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39088174

RESUMEN

The sustainable management of large amounts of fly ash (FA) is a concern for researchers, and we aim to determine the FA application in plant development and nematicidal activity in the current study. A pot study is therefore performed to assess the effects of adding different, FA-concentrations to soil (w/w) on the infection of chickpea plants with the root-knot nematode Meloidogyne incognita. Sequence characteristic amplified region (SCAR) and internal transcribed spacer (ITS) region-based-markers were used to molecularly confirm M. incognita. With better plant growth and chickpea yield performance, FA enhanced the nutritious components of the soil. When compared with untreated, uninoculated control (UUC) plants, the inoculation of M. incognita dramatically reduced chickpea plant growth, yield biomass, and metabolism. The findings showed that the potential of FA to lessen the root-knot nematode illness in respect of galls, egg-masses, and reproductive attributes may be used to explain the mitigating effect of FA. Fascinatingly, compared with the untreated, inoculated control (UIC) plants, the FA treatment, primarily at 20%, considerably (p ≤ 0.05) boosted plant growth, yield biomass, and pigment content. Additionally, when the amounts of FA rose, the activity of antioxidants like superoxide dismutase-SOD, catalase-CAT, and peroxidase-POX as well as osmo-protectants like proline gradually increased. Therefore, our findings imply that 20% FA can be successfully applied as a potential strategy to increase biomass yield and plant growth while simultaneously reducing M. incognita infection in chickpea plants.


Asunto(s)
Cicer , Ceniza del Carbón , Tylenchoidea , Animales , Tylenchoidea/fisiología , Raíces de Plantas/parasitología , Suelo/química , Suelo/parasitología , Enfermedades de las Plantas/parasitología , Enfermedades de las Plantas/prevención & control
16.
Sci Rep ; 14(1): 19147, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39160227

RESUMEN

This research is focused on the development of an eco-friendly low-cost concrete using fly ash (FA) and marble powder waste (MPW) as partial replacements for cement and fine aggregate respectively. The substantial use of cement in concrete makes it expensive and contributes to global warming due to high carbon emissions. Thus, using such waste materials can help reduce the overall carbon footprint. For this purpose, various mix designs of concrete were developed by varying the percentages of FA and MPW. The concrete's fresh and hardened properties were experimentally determined for those mixes. The test results revealed that MPW as a sand substitute increases strength up to 40% and gradually decreases beyond that, but a 60% replacement still has more strength than the control specimen. Similarly, using FA as a cement replacement was found to reduce the strength, but the reduction was not very significant up to 20%. A mixed blend of FA and MPW showed superior results and maximum strength was obtained at F10M40. The optimal mix, with 10% FA and 40% MPW (F10M40), achieved a compressive strength of 4493.46 psi, a 16.21% improvement compared to the control mix proportion. Furthermore, the microstructure of the cementitious material was improved due to the pozzolanic reaction that led to a denser microstructure, as supported by the permeability test and SEM analysis.

17.
R Soc Open Sci ; 11(8): 240598, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39169966

RESUMEN

Porous alkali-activated materials are synthetic aluminosilicates that should be often produced as granules for practical applications. In the present study, municipal solid waste incineration fly ash with ~1.2 wt% of metallic aluminium was used as a novel blowing agent for metakaolin (their ratio ranged from 0% to 100%) with an aqueous sodium silicate solution as the alkali-activator and granulation fluid in high-shear granulation. The compressive strength of all granules was sufficient (≥2 MPa). Water absorption indicated an increase in porosity as the fly ash content increased. However, X-ray microtomography imaging showed no clear correlation between the fly ash content and porosity. The granules exceeded the leaching limits for earth construction materials for antimony, vanadium, chloride and sulphate. Of those, antimony, chloride and sulphate could be controlled by decreasing the ash content, but the source of vanadium was identified as metakaolin. The increase in the fly ash content decreased the cation exchange capacity of the granules. In conclusion, the recommended fly ash content is equivalent to 0.3 wt% of Al0 and the developed granules could be best suited as light-weight artificial aggregates in concrete where the additional binder would provide stabilization to decrease the leaching.

18.
J Environ Manage ; 367: 122035, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39106796

RESUMEN

Vitrification is a promising treatment for municipal solid waste incineration fly ash (MSWI-FA); however, high energy consumption due to the high MSWI-FA fusion temperature limits the development and application of this technique. In this study, fine slag ash (FSA) derived from coal gasification and coal gangue ash (CGA) were mixed with MSWI-FA to reduce the ash fusion temperature. The transformation of minerals in ash during thermal treatment was examined via X-ray diffraction and thermodynamic equilibrium calculations. The ash flow behaviour was observed using a thermal platform microscope, and the silicate structure was quantified using Raman spectra. The co-melting mechanisms for the mixed ash were systematically investigated. Results indicate that the flow temperature (FT) of the mixed ash exhibited an initial decrease and subsequent increase as a function of the addition ratio of FSA or CGA. Lowest ash FT of 1215 °C and 1223 °C were recorded for addition of 50% FSA and 50% CGA, respectively; further, these temperatures were lowered by > 285 °C and >277 °C respectively, relative to FT of the MSWI-FA. The transformation of minerals and silicate structure during mixed ash heating was responsible for the variation in the ash fusion temperature. CaO in MSWI-FA tended to react with mullite, quartz and haematite in FSA and CGA, forming minerals such as anorthite, gehlenite, and andradite with relatively low melting points. The addition of FSA or CGA caused changes in the silicate network structure of the mixed ash. In particular, 50% FSA incorporation caused the transformation of Q4 and Q3 to Q2, whereas 50% CGA introduction resulted in the conversion of Q4 and Q2 into Q3 and Q1 + Q0, respectively. The silicate network depolymerised, causing reduction in the ash fusion temperature and increasing the melting rate.


Asunto(s)
Ceniza del Carbón , Carbón Mineral , Incineración , Residuos Sólidos , Ceniza del Carbón/química , Vitrificación , Difracción de Rayos X , Temperatura
19.
Materials (Basel) ; 17(15)2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39124314

RESUMEN

Geopolymer concretes are considered to be a potential sustainable, low-embodied carbon alternative for Ordinary Portland Cement (OPC) concrete. Alkali leaching is considered to be a major esthetic concern for Na-silicate-based geopolymers as it can lead to the formation of efflorescence products on the surfaces of concrete members exposed to humidity. In this context, this research aims to investigate the effect of the alkali content and the FA/GGBS mass ratio on the alkali leaching and formation of the efflorescence products. Paste cylinders were fabricated and cured in ambient conditions. Samples were submerged in deionized water and the concentration of the leached-out ions was measured. Efflorescence potential was also investigated by partial immersion of the samples in deionized water. The results highlight the complexity of the interacting parameters governing the formation of efflorescence products in geopolymer materials. Establishing relationships between the concrete mix variables and the risk of efflorescence seems unfeasible particularly because of the wide range of possible precursors and activators available to design geopolymer concrete mixes. To overcome this barrier, a practical performance-based testing method is developed. For the first time, by testing a wide range of geopolymer materials, performance-based requirements associated with the risk of efflorescence for geopolymer concrete surfaces exposed to humidity are calibrated. Four categories of risk are proposed and typical suitable exposure conditions for geopolymer concrete surfaces are suggested for each risk category.

20.
Materials (Basel) ; 17(15)2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39124386

RESUMEN

Biomass fly ash is a sustainable, eco-friendly cement substitute with economic and performance benefits, being renewable compared to coal fly ash. This study examines using biomass fly ash (BFA) as a sustainable cement substitute, comparing it with Class F fly ash (CFA). With a water-binder ratio of 0.5 and replacement rates of 10%, 15%, 20%, 25%, and 30% (by mass), the research highlights BFA's promising applications. BFA and CFA were mixed into cement paste/mortar to analyze their reactivity and properties, with hydration products CH and C-S-H evaluated at 7, 28, and 91 days. Compressive strength, micro-pore structure, and drying shrinkage (assessed from 7 to 182 days) were tested. Results showed BFA had similar pozzolanic reactions to CFA at later stages. While compressive strength decreased with higher BFA replacement rates, early-stage performance matched CFA; growth was CFA-10 (18 MPa) and BFA-10 (17.6 MPa). BFA mortars exhibited slightly better deformation properties. BFA-30 cement had superior performance, with a lower drying shrinkage rate of 65.7% from 14 to 56 days compared to CFA-10's 73.4% and a more stable shrinkage growth rate decrease to 8.4% versus CFA-10's 6.4% after 56 days. This study concluded that BFA, usable without preprocessing, performed best at a 10-15% replacement rate.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA