Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
Más filtros











Intervalo de año de publicación
1.
J Sep Sci ; 47(16): e2400121, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39189598

RESUMEN

In this study, we focused on the fluorous affinity acting among fluorine compounds, and then developed a new separation medium and evaluated their performance. We prepared the stationary phases for a column using silica gel-modified alkyl fluoride and investigated the characteristics of fluorous affinity by comparing them with a typical stationary phase, which does not contain fluorine, using high-performance liquid chromatography (HPLC). In HPLC measurements, we confirmed that while all non-fluorine compounds were not retained, retention of fluorine compounds increased as the number of fluorine increased with the stationary phase. It also revealed that the strength of fluorous affinity changes depending on the types of the organic solvent; the more polar the solvent, the stronger the effect. Additionally, the stationary phase was employed to compare the efficiency of our column with that of a commercially available column, Fluofix-II. The retention selectivity was almost the same, but the absolute retention strength was slightly higher on our column, indicating that the column is available for practical use.

2.
Water Res X ; 24: 100239, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39193396

RESUMEN

Per- and polyfluoroalkyl substances (PFASs) are emerging contaminants detected ubiquitously and have negative impacts on human health and ecosystem; thus, developing in-situ sensing technique is important to ensure safety. Herein, we report a novel colorimetric-based sensor with perfluoroalkyl receptor attached to citrate coated gold nanoparticles (Citrate-Au NPs) that can detect several PFASs including perfluorocarboxylates with different chain lengths (PFHxA, PFOA, PFNA, PFDA), perfluorooctanoic sulfonate (PFOS), and perfluorooctanoic phosphonate (PFOPA). The sensor detects PFASs utilizing fluorous interaction between PFASs and the perfluoroalkyl receptor of Citrate-Au NPs in a solution at a fixed salt concentration, inducing changes in nanoparticle dispersity and the solution color. The rate of spectrum shift was linearly dependent on PFASs concentrations. Citrate-Au NPs with size between 29 - 109 nm were synthesized by adjusting citrate/Au molar ratios, and 78 nm showed the best sensitivity to PFOA concentration (with level of detection of 4.96 µM). Citrate-Au NPs only interacted with PFASs with perfluoroalkyl length > 4 and not with non-fluorinated alkyl compound (nonanoic acid). The performance of Citrate-Au NP based sensor was strongly dependent on the chain length of the perfluoroalkyl group and the head functional group; higher sensitivity was observed with longer chain over shorter chain, and with sulfonate functional group over carboxylate and phosphonate. The sensor was tested using real water samples (i.e., tap water, filtered river water), and it was found that the sensor is capable of detecting PFASs in these conditions if calibrated with the corresponding water matrix. While further optimization is needed, this study demonstrated new capability of Citrate-Au NPs based sensor for detection of PFASs in water.

3.
Angew Chem Int Ed Engl ; 63(37): e202408570, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-38923136

RESUMEN

Hybrid Organic-Inorganic Halide Perovskites (HOIHPs) represent an emerging class of semiconducting materials, widely employed in a variety of optoelectronic applications. Despite their skyrocket growth in the last decade, a detailed understanding on their structure-property relationships is still missing. In this communication, we report two unprecedented perovskite-like materials based on polyfluorinated imidazolium cations. The two materials show thermotropic liquid crystalline behavior resulting in the emergence of stable mesophases. The manifold intermolecular F ⋅ ⋅ ⋅ F interactions are shown to be meaningful for the stabilization of both the solid- and liquid-crystalline orders of these perovskite-like materials. Moreover, the structure of the incorporated imidazolium cation was found to tune the properties of the liquid crystalline phase. Collectively, these results may pave the way for the design of a new class of halide perovskite-based soft materials.

4.
Anal Sci ; 40(9): 1787-1792, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38795277

RESUMEN

As fundamental investigation on fluorous nanoemulsion (NE) optodes for highly selective perfluorooctanesulfonate (PFOS-) sensing, the effect of matrix fluorination on selectivity was investigated. Due to the high hydrophobicity of PFOS- itself, it responded in exhaustive mode regardless of the fluorination ratio of the matrix, and the lowest detectable PFOS- concentration was on the order of 10-7 to 10-6 M. On the other hand, the response of non-fluorous interfering anions was suppressed as the fluorination ratio of the matrix increased. It was revealed that the relative selectivity of PFOS- for hydrophobic anions, ClO4-, SCN-, and 1-octanesulfonate (OS-) was improved by more than one order of magnitude, up to nearly two orders of magnitude, and that it was also improved by less than one order of magnitude for hydrophilic anions, Br-, Cl-, and SO4-, in logarithmic selectivity coefficient (log K PFOS - , j opt ).

5.
Adv Mater ; 36(30): e2404824, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38733312

RESUMEN

Rational molecular design and suitable device engineering are two important strategies to boost the efficiencies in organic solar cells (OSCs). Yet these two approaches are independently developed, while their synergy is believed to be more productive. Herein, a branched polyfluoride moiety, heptafluoroisopropoxyl group, is introduced into the side chains of conjugated polymers for the first time. Compared with the conventional alkyl chain, this polyfluoride chain can endow the resulting polymer namely PF7 with highly packing order and strong crystallinity owing to the strong polarization and fluorine-induced interactions, while good solubility and moderate miscibility are retained. As a result, PF7 comprehensively outperforms the state-of-the-art polymer PM6 in photovoltaic properties. More importantly, based on the solubility of heptafluoroisopropoxyl groups in fluorous solvents, a new post-treatment denoted as fluorous solvent vapor annealing (FSVA) is proposed to match PF7. Differing from the existing post-treatments, FSVA can selectively reorganize fluoropolymer molecules but less impact small molecules in blend films. By employing the synergy of fluoropolymer and fluorous solvent, the device achieves a remarkable efficiency of 19.09%, which is among the best efficiencies in binary OSCs. The polymer PF7 and the FSVA treatment exhibit excellent universality in various OSCs with different material combinations or device architectures.

6.
Molecules ; 29(5)2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38474478

RESUMEN

The epoxidation of olefins by substituting "air" for potentially harmful oxidants was achieved using an oxidation method that integrated a fluorous iron(III) salen catalyst derived from common metals and pivalaldehyde. Several aromatic disubstituted olefins were converted into their corresponding epoxides with high efficiency and quantitative yields. This reaction represents an environmentally friendly oxidation process that utilizes an abundant source of air and employs a readily available metal, iron, in the form of salen complexes, making it an environmentally conscious oxidation reaction.

7.
Angew Chem Int Ed Engl ; 63(20): e202403140, 2024 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-38393614

RESUMEN

The rising prevalence of global antibiotic resistance evokes the urgent need for novel antimicrobial candidates. Cationic lipopeptides have attracted much attention due to their strong antimicrobial activity, broad-spectrum and low resistance tendency. Herein, a library of fluoro-lipopeptide amphiphiles was synthesized by tagging a series of cationic oligopeptides with a fluoroalkyl tail via a disulfide spacer. Among the lipopeptide candidates, R6F bearing six arginine moieties and a fluorous tag shows the highest antibacterial activity, and it exhibits an interesting fluorine effect as compared to the non-fluorinated lipopeptides. The high antibacterial activity of R6F is attributed to its excellent bacterial membrane permeability, which further disrupts the respiratory chain redox stress and cell wall biosynthesis of the bacteria. By co-assembling with lipid nanoparticles, R6F showed high therapeutic efficacy and minimal adverse effects in the treatment of MRSA-induced sepsis and chronic wound infection. This work provides a novel strategy to design highly potent antibacterial peptide amphiphiles for the treatment of drug-resistant bacterial infections.


Asunto(s)
Antibacterianos , Staphylococcus aureus Resistente a Meticilina , Pruebas de Sensibilidad Microbiana , Sepsis , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/química , Sepsis/tratamiento farmacológico , Sepsis/microbiología , Infección de Heridas/tratamiento farmacológico , Infección de Heridas/microbiología , Animales , Ratones , Infecciones Estafilocócicas/tratamiento farmacológico , Tensoactivos/química , Tensoactivos/farmacología , Tensoactivos/síntesis química , Lipopéptidos/farmacología , Lipopéptidos/química , Lipopéptidos/uso terapéutico
8.
NMR Biomed ; 37(5): e5100, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38230415

RESUMEN

Magnetic resonance imaging (MRI) is a routine diagnostic modality in oncology that produces excellent imaging resolution and tumor contrast without the use of ionizing radiation. However, improved contrast agents are still needed to further increase detection sensitivity and avoid toxicity/allergic reactions associated with paramagnetic metal contrast agents, which may be seen in a small percentage of the human population. Fluorine-19 (19F)-MRI is at the forefront of the developing MRI methodologies due to near-zero background signal, high natural abundance of 100%, and unambiguous signal specificity. In this study, we have developed a colloidal nanoemulsion (NE) formulation that can encapsulate high volumes of the fluorous MRI tracer, perfluoro-[15-crown-5]-ether (PFCE) (35% v/v). These nanoparticles exhibit long-term (at least 100 days) stability and high PFCE loading capacity in formulation with our semifluorinated triblock copolymer, M2F8H18. With sizes of approximately 200 nm, these NEs enable in vivo delivery and passive targeting to tumors. Our diagnostic formulation, M2F8H18/PFCE NE, yielded in vivo 19F-MR images with a high signal-to-noise ratio up to 100 in a tumor-bearing mouse model at clinically relevant scan times. M2F8H18/PFCE NE circulated stably in the vasculature, accumulated in high concentration of an estimated 4-9 × 1017 19F spins/voxel at the tumor site, and cleared from most organs over the span of 2 weeks. Uptake by the mononuclear phagocyte system to the liver and spleen was also observed, most likely due to particle size. These promising results suggest that M2F8H18/PFCE NE is a favorable 19F-MR diagnostic tracer for further development in oncological studies and potential clinical translation.


Asunto(s)
Imagen por Resonancia Magnética con Fluor-19 , Neoplasias , Ratones , Humanos , Animales , Medios de Contraste , Imagen por Resonancia Magnética/métodos , Neoplasias/diagnóstico por imagen , Relación Señal-Ruido , Hígado
9.
Molecules ; 28(22)2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-38005354

RESUMEN

The effect of the presence of fluorous tags in bisoxazoline ligands on the stereoselectivity of the cobalt-catalyzed asymmetric Henry reaction was investigated. In contrast to the stereoselectivity obtained with conventional nonfluorous ligands, using bisoxazoline bidentate ligands featuring two fluorous tags in adjacent positions on the aromatic ring yielded a reversed stereoselectivity. The stereoselectivity also reversed when the fluorous tags were replaced with alkyl chains of equivalent length, albeit to a considerably lesser degree, highlighting the effect of the fluorous tags.

10.
Bioorg Chem ; 141: 106929, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37879181

RESUMEN

Compounds that mimic the biological properties of glycosaminoglycans (GAGs) and can be more easily prepared than the native GAG oligosaccharides are highly demanded. Here, we present the synthesis of sulfated oligosaccharides displaying a perfluorinated aliphatic tag at the reducing end as GAG mimetics. The preparation of these molecules was greatly facilitated by the presence of the fluorinated tail since the reaction intermediates were isolated by simple fluorous solid-phase extraction. Fluorescence polarization competition assays indicated that the synthesized oligosaccharides interacted with two heparin-binding growth factors, midkine (MK) and FGF-2, showing higher binding affinities than the natural oligosaccharides, and can be therefore considered as useful GAG mimetics. Moreover, NMR experiments showed that the 3D structure of these compounds is similar to that of the native sequences, in terms of sugar ring and glycosidic linkage conformations. Finally, we also demonstrated that these derivatives are able to block the MK-stimulating effect on NIH3T3 cells growth.


Asunto(s)
Péptidos y Proteínas de Señalización Intercelular , Sulfatos , Animales , Ratones , Células 3T3 NIH , Glicosaminoglicanos , Oligosacáridos/química
11.
Angew Chem Int Ed Engl ; 62(47): e202309928, 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37795918

RESUMEN

The ubiquitous presence of per- and polyfluoroalkyl substances (PFAS) in aqueous environments has aroused societal concern. Nonetheless, effective sensing technologies for continuous monitoring of PFAS within water distribution infrastructures currently do not exist. Herein, we describe a ratiometric sensing approach to selectively detect aqueous perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) at concentrations of µg ⋅ L-1 . Our method relies on the excitonic transport in a highly fluorinated poly(p-phenylene ethynylene) to amplify a ratiometric emission signal modulated by an embedded fluorinated squaraine dye. The electronic coupling between the polymer and dye occurs through overlap of π-orbitals and is designed such that energy transfer is dominated by an electron-exchange (Dexter) mechanism. Exposure to aqueous solutions of PFAS perturbs the orbital interactions between the squaraine dye and the polymer backbone, thereby diminishing the efficiency of the energy transfer and producing a "polymer-ON/dye-OFF" response. These polymer/dye combinations were evaluated in spin-coated films and polymer nanoparticles and were able to selectively detect PFAS at concentrations of ca. 150 ppb and ca. 50 ppb, respectively. Both polymer films and nanoparticles are not affected by the type of water, and similar responses to PFAS were found in milliQ and well water.

12.
Chemistry ; 29(23): e202203860, 2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-36722398

RESUMEN

A de novo designed class of peptide-based fluoropolymers composed of fluorinated aliphatic amino acids as main components is reported. Structural characterization provided insights into fluorine-induced alterations on ß-strand to α-helix transition upon an increase in SDS content and revealed the unique formation of PPII structures for trifluorinated fluoropeptides. A combination of circular dichroism, fluorescence-based leaking assays and surface enhanced infrared absorption spectroscopy served to examine the insertion and folding processes into unilamellar vesicles. While partitioning into lipid bilayers, the degree of fluorination conducts a decrease in α-helical content. Furthermore, this study comprises a report on the proteolytic stability of peptides exclusively built up by fluorinated amino acids and proved all sequences to be enzymatically degradable despite the degree of fluorination. Herein presented fluoropeptides as well as the distinctive properties of these artificial and polyfluorinated foldamers with enzyme-degradable features will play a crucial role in the future development of fluorinated peptide-based biomaterials.


Asunto(s)
Aminoácidos , Péptidos , Péptidos/química , Aminoácidos/química , Péptido Hidrolasas , Membrana Dobles de Lípidos/química , Proteolisis , Dicroismo Circular , Pliegue de Proteína
13.
J Hazard Mater ; 448: 130853, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36709737

RESUMEN

In this study we synthesized a library of 12 novel adsorbent materials that utilize a chemically well-defined silica support for superior removal of PFAS from real groundwater from a contaminated United States Air Force base. The library of sorbents probed the importance of a fluorous, hydrophobic, and electrostatic components in the removal efficacy. The materials were assessed in batch studies with PFOA, PFOS, and PFBA and compared directly to GAC and Ion Exchange resin. Adsorption kinetics with PFOS were best fit to a pseudo-second order model and equilibrium data fit well to a Langmuir isotherm model. The results were also validated externally, and the best performing material removed greater than 90% of 8 PFAS tested and was able to be regenerated up to 5 cycles. The results provide a top performing material that with further testing can be used to clean up environmentally contaminated water and provide support for the theory that a fluorous component when combined with the electrostatic and hydrophobic components, imparts both enhanced PFAS selectivity and functional resilience to the material.

14.
Environ Res ; 216(Pt 4): 114801, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36375504

RESUMEN

The toxicity and environmental persistence of perfluorooctanoic acid (PFOA), and perfluorooctane sulfonate (PFOS) are of great concern for food intake in humans. However, PFASs conversion or conjugation to other substances in rice grown on PFASs polluted soil has not been explored clearly. These unknown transformed or conjugated products of PFOA and PFOS could be harmful to human health. The restriction factor in evaluating the possible transformation of PFOA and PFOS is mainly attributed to the lack of an efficient method for screening PFOA and PFOS and their related metabolites. To circumvent this challenge, we established a non-targeted screening method by combining a fluoro-cotton fiber-based solid phase extraction (FC-SPE) and liquid chromatography-high resolution mass spectrometry (LC-HRMS) to monitor the formation of possible organic fluorine compounds from rice (Oryza sativa L.) grown on PFASs. We synthesized fluoro-cotton fibers to serve as the FC-SPE packing material and characterized by field-emission scanning electron-microscope, Fourier transform infrared, and X-ray photoelectron spectroscopy measurements. The optimal extraction conditions for the prepared FC-SPE were investigated. The performance of FC-SPE in LC-MS analysis was validated by linearity, precision, recovery, and matrix effect. Then the FC-SPE combined with LC-HRMS was used to specifically capture organic fluorine compounds from complex matrices via F-F interaction, including rice seedlings grown in PFOA and PFOS polluted soil and soil samples. By the established FC-SPE LC-HRMS method, in total 429 features were found as the possible organic fluorine compounds from rice seedlings grown in PFOA polluted soil among the 1781 features from the rice seedlings. Finally, we employed a13C metabolic tracing analysis of organic fluorine compounds in combination with the FC-SPE LC-HRMS method to further identify the features that detected from rice seedlings grown in PFOA polluted soil. The final result indicated that there were not any new organic fluorine metabolites screened out from rice grown in PFOA or PFOS polluted soil.


Asunto(s)
Ácidos Alcanesulfónicos , Compuestos de Flúor , Fluorocarburos , Oryza , Humanos , Fluorocarburos/análisis , Suelo/química , Flúor , Ácidos Alcanesulfónicos/análisis , Caprilatos
15.
ACS Nano ; 17(1): 752-759, 2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36537902

RESUMEN

An orthogonal, noncovalent approach to direct the assembly of higher-order DNA origami nanostructures is described. By incorporating perfluorinated tags into the edges of DNA origami tiles we control their hierarchical assembly via fluorous-directed recognition. When we combine this approach with Watson-Crick base-pairing we form discrete dimeric constructs in significantly higher yield (8x) than when either molecular recognition method is used in isolation. This integrated "catch-and-latch" approach, which combines the strength and mobility of the fluorous effect with the specificity of base-pairing, provides an additional toolset for DNA nanotechnology, one that enables increased assembly efficiency while requiring significantly fewer DNA sequences. As a result, our integration of fluorous-directed assembly into origami systems represents a cheap, atom-efficient means to produce discrete superstructures.


Asunto(s)
Nanoestructuras , Conformación de Ácido Nucleico , Nanoestructuras/química , ADN/química , Nanotecnología/métodos , Emparejamiento Base
16.
Int J Mol Sci ; 23(21)2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-36362187

RESUMEN

Structural variants of α-galactosylceramide (α-GalCer) that stimulate invariant natural killer T (iNKT) cells constitute an emerging class of immunomodulatory agents in development for numerous biological applications. Variations in lipid chain length and/or fatty acids in these glycoceramides selectively trigger specific pro-inflammatory responses. Studies that would link a specific function to a structurally distinct α-GalCer rely heavily on the availability of homogeneous and pure materials. To address this need, we report herein a general route to the diversification of the ceramide portion of α-GalCer glycolipids. Our convergent synthesis commences from common building blocks and relies on the Julia-Kocienski olefination as a key step. A cleavable fluorous tag is introduced at the non-reducing end of the sugar that facilitates quick purification of products by standard fluorous solid-phase extraction. The strategy enabled the rapid generation of a focused library of 61 α-GalCer analogs by efficiently assembling various lipids and fatty acids. Furthermore, when compared against parent α-GalCer in murine cells, many of these glycolipid variants were found to have iNKT cell stimulating activity similar to or greater than KRN7000. ELISA assaying indicated that glycolipids carrying short fatty N-acyl chains (1fc and 1ga), an unsubstituted (1fh and 1fi) or CF3-substituted phenyl ring at the lipid tail, and a flexible, shorter fatty acyl chain with an aromatic ring (1ge, 1gf, and 1gg) strongly affected the activation of iNKT cells by the glycolipid-loaded antigen-presenting molecule, CD1d. This indicates that the method may benefit the design of structural modifications to potent iNKT cell-binding glycolipids.


Asunto(s)
Interleucina-2 , Células T Asesinas Naturales , Ratones , Animales , Antígenos CD1d , Glucolípidos/farmacología , Ácidos Grasos
17.
Pharmaceuticals (Basel) ; 15(10)2022 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-36297312

RESUMEN

Fluorination represents one of the most powerful modern design strategies to impart biomacromolecules with unique functionality, empowering them for widespread application in the biomedical realm. However, the properties of fluorinated protein materials remain unpredictable due to the heavy context-dependency of the surrounding atoms influenced by fluorine's strong electron-withdrawing tendencies. This review aims to discern patterns and elucidate design principles governing the biochemical synthesis and rational installation of fluorine into protein and peptide sequences for diverse biomedical applications. Several case studies are presented to deconvolute the overgeneralized fluorous stabilization effect and critically examine the duplicitous nature of the resultant enhanced chemical and thermostability as it applies to use as biomimetic therapeutics, drug delivery vehicles, and bioimaging modalities.

18.
J Control Release ; 351: 703-712, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36202150

RESUMEN

Development of intracellular delivery systems for bioactive peptides remains challenging. Herein, we report a facile strategy to address this issue by conjugating peptides with benzaldehyde-tethered fluorous tags to generate dynamic peptide amphiphiles via a hydrazone bond for efficient cytosolic delivery. Those dynamic peptide fluoroamphiphiles could self-assemble into nanoparticles that readily cross the cell membrane. Using this strategy, several bioactive peptides were efficiently internalized by cancer cells and released into the cytosol to exert their biological functions, which showed much higher efficacies than non-fluorous lipids and cell penetrating peptide decorated peptides. Moreover, the fluorous tagged proapoptotic peptide was able to efficiently inhibit tumor growth in vivo. This report provides a new family of fluorous tags based on benzaldehyde for efficient cytosolic peptide delivery.


Asunto(s)
Péptidos de Penetración Celular , Nanopartículas , Citosol/metabolismo , Benzaldehídos , Péptidos de Penetración Celular/metabolismo , Nanopartículas/química
19.
Small ; 18(40): e2203432, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36069247

RESUMEN

Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) is a common respiratory critical syndrome that currently has no effective therapeutic interventions. Pulmonary macrophages play a principal role in the initiation and progression of the overwhelming inflammation in ALI/ARDS. Here, a type of fluorous-tagged bioactive peptide nanoparticle termed CFF13F is developed, which can be efficiently internalized by macrophages and suppress the excessive expression of cytokines and the overproduction of reactive oxygen species (ROS) triggered by lipopolysaccharide (LPS). The cytoprotective effect of CFF13F may be attributed to the lysosomal-stabilization property and regulation of the antioxidative system. Moreover, intratracheal pretreatment with CFF13F can effectively reduce local and systematic inflammation, and ameliorate pulmonary damage in an LPS-induced ALI murine model. The therapeutic efficacy of CFF13F is affected by the administration routes, and the local intratracheal injection is found to be the optimal choice for ALI treatment, with preferred biodistribution profiles. The present study provides solid evidence of the potent immunomodulatory bioactivity of the fluorous-tagged peptide nanoparticles CFF13F in vitro and in vivo, and sheds light on the development of novel efficient nanodrugs for ALI/ARDS.


Asunto(s)
Lesión Pulmonar Aguda , Nanopartículas , Síndrome de Dificultad Respiratoria , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/metabolismo , Animales , Citocinas/metabolismo , Modelos Animales de Enfermedad , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Lipopolisacáridos/farmacología , Pulmón , Lisosomas/metabolismo , Macrófagos Alveolares , Ratones , Ratones Endogámicos C57BL , Especies Reactivas de Oxígeno/metabolismo , Distribución Tisular
20.
J Chromatogr A ; 1680: 463428, 2022 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-36001909

RESUMEN

Fluorous affinity chromatography has received growing attention in separation and purification of fluoro compounds, but the wettability of the fluorinated stationary phases is seldom noticed. Here, we construct a series of micro-sized fluorine-containing microspheres by solvothermal precipitation polymerization. The fluorinated microspheres could be obtained with narrow size distribution at even high monomer loading of 15 wt%. Through alternating fluoro monomer, both the particle size and the wettability of the microsphere array could be tuned. Among them, the poly(divinylbenzene -dodecafluoroheptyl methacrylate), P(DVB-DFHMA), microsphere (6.1 µm) arrays displays superhydrophobicity with 153.2° water contact angle. The P(DVB-DFHMA) fluorinated microspheres (7.58% fluorine content) can be packed into steel-less columns as stationary phase for high-performance liquid chromatography. The retention mechanism of the fluorinated column is proven to be the specific fluorine-fluorine interaction. Compared to the commercial C18 silica column, the fluorinated column can completely separate fluorine-containing compounds under high water content mobile phase, including small fluoro molecules and fluoro macromolecules, at much lower back pressure by fluorous affinity.


Asunto(s)
Flúor , Metacrilatos , Cromatografía de Afinidad , Cromatografía Líquida de Alta Presión/métodos , Flúor/química , Interacciones Hidrofóbicas e Hidrofílicas , Metacrilatos/química , Microesferas , Dióxido de Silicio/química , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA