Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Physiol ; 13: 827280, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35399274

RESUMEN

Intravital multiphoton microscopy has empowered investigators to study dynamic cell and subcellular processes in vivo within normal and disease organs. Advances in hardware, software, optics, transgenics and fluorescent probe design and development have enabled new quantitative approaches to create a disruptive technology pioneering advances in understanding of normal biology, disease pathophysiology and therapies. Offering superior spatial and temporal resolution with high sensitivity, investigators can follow multiple processes simultaneously and observe complex interactions between different cell types, intracellular organelles, proteins and track molecules for cellular uptake, intracellular trafficking, and metabolism in a cell specific fashion. The technique has been utilized in the kidney to quantify multiple dynamic processes including capillary flow, permeability, glomerular function, proximal tubule processes and determine the effects of diseases and therapeutic mechanisms. Limitations include the depth of tissue penetration with loss of sensitivity and resolution due to scattered emitted light. Tissue clearing technology has virtually eliminated penetration issues for fixed tissue studies. Use of multiphoton microscopy in preclinical animal models offers distinct advantages resulting in new insights into physiologic processes and the pathophysiology and treatment of diseases.

2.
Chemphyschem ; 22(3): 323-335, 2021 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-33219724

RESUMEN

Anionic pentameric thiophene acetates can be used for fluorescence detection and diagnosis of protein amyloid aggregates. Replacing the central thiophene unit by benzothiadiazole (BTD) or quinoxaline (QX) leads to large emission shifts and basic spectral features have been reported [Chem. Eur. J. 2015, 21, 15133-13137]. Here we present new detailed experimental results of solvent effects, time-resolved fluorescence and examples employing multi-photon microscopy and lifetime imaging. Quantum chemical response calculations elucidate how the introduction of the BTD/QX groups changes the electronic states and emissions. The dramatic red-shift follows an increased conjugation and quinoid character of the π-electrons of the thiophene backbone. An efficient charge transfer in the excited states S1 and S2 compared to the all-thiophene analogue makes these more sensitive to the polarity and quenching by the solvent. Taken together, the results guide in the interpretation of images of stained Alzheimer disease brain sections employing advanced fluorescence microscopy and lifetime imaging, and can aid in optimizing future fluorescent ligand development.


Asunto(s)
Microscopía Fluorescente/métodos , Proteínas/química , Tiofenos/química , Electrones , Ligandos
3.
EJNMMI Res ; 8(1): 26, 2018 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-29619584

RESUMEN

BACKGROUND: Assessment of the status of tumor biomarkers in individual patients would facilitate personalizing treatment strategy, and continuous monitoring of those biomarkers and their binding process to the therapeutic drugs would provide a means for early evaluation of the efficacy of therapeutic intervention. Fluorescent probes can accumulate inside the tumor region due to the leakiness of its vascularization and this can make it difficult to distinguish if the measured fluorescence intensity is from probes bound to target receptors or just accumulated unbound probes inside the tumor. In this paper, we have studied the fluorescence lifetime as a means to distinguish bound HER2 specific affibody probes to HER2 receptors. Our imaging system is a time-resolved fluorescence system using a Ti-Sapphire femtosecond pulse laser as source and Time correlated Single photon Counting (TCSPC) system as detector for calculating the lifetime of the contrast agent. HER2-specific Affibody (His6-ZHER2:GS-Cys) (Affibody, Stockholm, Sweden) conjugated with a Dylight750 fluorescent probe (Thermo-Fisher-Scientific, Waltham, Massachusetts) was used as contrast agent and six human cancer cell lines, BT-474, SKOV-3, NCI-N87, MDA-MB-361, MCF-7, and MDA-MB-468, known to express different levels of HER2/neu, are used in athymic mice xenografts. RESULTS: By comparing the lifetime of unbound contrast agent (at the contralateral site) to the fluorescence lifetime at the tumor site, our results show that the fluorescence lifetime decreases as HER2 specific Affibody probes bind to the tumor receptors. A decrease of ~15% (100ps) in tumor fluorescence lifetime was observed in tumors with mid to high HER2 expression. Smaller decreases were observed in tumors with low-level of HER2 receptors and no change was observed in the non-HER2-expressing tumors. CONCLUSIONS: Using HER2-specific Affibody conjugated with the Dylight750 fluorescent probe as contrast agent, we demonstrated in live animals that change in fluorescence lifetime of the bound contrast agent can be used to assess the high to mid-level expression of HER2 expressing tumors in-vivo in only one measurement. The rationale is that the fluorescence lifetime of our specific probe is sensitive to affinity to, and specific interaction with, other molecules.

4.
Mater Sci Eng C Mater Biol Appl ; 71: 412-424, 2017 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-27987725

RESUMEN

The nanotoxicity of Cd-containing quantum dots (QDs) for biomedical applications is very controversial and not completely understood. In this study, we evaluated the cytotoxicity of surface-biofunctionalized CdS QDs with chitosan directly synthesized via aqueous route at room temperature. These core-shell CdS-chitosan nanoconjugates showed different degrees of cytotoxic responses using MTT cell proliferation assay toward three human cell cultures, human osteosarcoma cell line (SAOS), non-Hodgkin's B cell lymphoma (Toledo), and human embryonic kidney cell line (HEK293T), under three exposure times (1, 3, and 5days) and three colloidal concentrations (10nM, 50nM, and 100nM). The results clearly demonstrated that the CdS QDs, regardless to the fact that they were coated with a biocompatible aminopolysaccharide shell, induced a severe dose- and time-dependent inhibition of cell viability. In addition, the HEK293T and SAOS cell lines showed much more sensitive response compared to Toledo, which indicated that the cytotoxicity was also cell-type dependent. The exceptional resistance of Toledo cells to toxic effects of CdS nanoconjugates even at severe test conditions was assigned to specific role of B-lineage cells of the immune defense system. Remarkably, no conclusive evidence of toxicity of CdS nanoconjugates was observed in vivo using intravenous injections of CdS nanoconjugates in BALB/c mouse animal models for 30days, but localized fluorescence was detected in ex-vivo liver tissue samples. Therefore, these results prove that there is no guarantee of "risk-free" use of CdS nanoconjugates for in vivo applications, even when functionalized with biopolymer ligands, as they can pose an excessive threat due to unpredicted and uncorrelated responses under in vitro and in vivo biological assays with highly toxic cadmium ions.


Asunto(s)
Compuestos de Cadmio , Quitosano , Puntos Cuánticos/química , Sulfuros , Animales , Compuestos de Cadmio/efectos adversos , Compuestos de Cadmio/química , Compuestos de Cadmio/farmacología , Línea Celular Tumoral , Quitosano/efectos adversos , Quitosano/química , Quitosano/farmacología , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Sulfuros/efectos adversos , Sulfuros/química , Sulfuros/farmacología
5.
Vet Ophthalmol ; 19(4): 275-84, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26215873

RESUMEN

OBJECTIVE: CXL penetration depth is an important variable influencing clinical treatment effect and safety. The purposes of this study were to determine the penetration depth of CXL in rabbit and equine corneas in epithelium-on and epithelium-off procedures and to assess an ex vivo fluorescent biomarker staining assay for objective assessment of CXL penetration depth. PROCEDURES: CXL treatment was performed according to a standardized protocol on 21 and 17 rabbit eyes and on 12 and 10 equine eyes with and without debridement, respectively. Control corneas were treated similarly, but not exposed to CXL. Hemicorneas were stained with either phalloidin and DAPI to visualize intracellular F-actin and nuclei, or with hematoxylin and eosin. Loss of actin staining was measured and compared between groups. RESULTS: Epithelium-off CXL caused a median actin cytoskeleton loss with a demarcation at 274 µm in rabbits and 173 µm in horses. In non-CXL-treated controls, we observed a median actin cytoskeleton loss with a demarcation at 134 µm in rabbits and 149 µm in horses. No effect was detected in the epithelium-on procedure. CONCLUSIONS: CXL penetration depth, as determined by a novel ex vivo fluorescent assay, shows clear differences between species. A distinct effect was observed following epithelium-off CXL treatment in the anterior stroma of rabbits, but no different effect was observed in horses in comparison with nontreated controls. Different protocols need to be established to effectively treat equine patients with infectious corneal disease.


Asunto(s)
Córnea/fisiología , Caballos , Fármacos Fotosensibilizantes/farmacología , Conejos , Riboflavina/farmacología , Rayos Ultravioleta , Animales , Biomarcadores , Muerte Celular , Reactivos de Enlaces Cruzados , Colorantes Fluorescentes , Técnicas de Cultivo de Tejidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA