Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Appl Bio Mater ; 6(9): 3739-3749, 2023 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-37679053

RESUMEN

The complex processes of neuron differentiation and neuron repair are critical for treating nervous system injuries and neurodegenerative diseases. Neurite outgrowth plays a crucial role in these processes by enabling the formation of connections between neurons and the generation of neuroplasticity to restore the function of the nervous system. In this study, we fabricated functionalized carbon dots (CDs) with distinctive photoluminescence and low cytotoxicity for use as fluorescence imaging probes and nanocarriers to deliver plasmid DNAs to neurons effectively for inducing neurite outgrowth. CDs were prepared through a reflux process in nitric acid solution, and their surface was then modified using polyethylenimine (PEI) to obtain positively charged CDs for increasing the absorption of plasmid DNAs and the efficiency of cell uptake. Experimental results indicated that the fabricated CDs maintained a low cytotoxicity and exhibited a high neuron uptake of up to 97%. An improvement in the plasmid DNA ingestion of neurons resulted in enhanced expression of Rab13-Q67L and Rab14 proteins, which considerably promoted neurite sprouting and elongation. After the fabricated PEI-modified CDs were used to deliver the Rab13-Q67L and Rab14 plasmids, more than 56% of the neurons had a neurite length that was greater than twice the size of their soma. Thus, DNA delivery through functionalized CDs has a high potential for use in gene therapy for neuronal injuries and diseases.


Asunto(s)
Proyección Neuronal , Neuronas , Plásmidos/genética , Transporte Biológico , Carbono , Polietileneimina
2.
Int J Mol Sci ; 21(23)2020 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-33291644

RESUMEN

Current methods to detect and monitor pathogens in biological systems are largely limited by the tradeoffs between spatial context and temporal detail. A new generation of molecular tracking that provides both information simultaneously involves in situ detection coupled with non-invasive imaging. An example is antisense imaging that uses antisense oligonucleotide probes complementary to a target nucleotide sequence. In this study, we explored the potential of repurposing antisense oligonucleotides initially developed as antiviral therapeutics as molecular probes for imaging of viral infections in vitro and in vivo. We employed nuclease-resistant phosphorodiamidate synthetic oligonucleotides conjugated with cell-penetrating peptides (i.e., PPMOs) previously established as antivirals for dengue virus serotype-2 (DENV2). As proof of concept, and before further development for preclinical testing, we evaluated its validity as in situ molecular imaging probe for tracking cellular DENV2 infection using live-cell fluorescence imaging. Although the PPMO was designed to specifically target the DENV2 genome, it was unsuitable as in situ molecular imaging probe. This study details our evaluation of the PPMOs to assess specific and sensitive molecular imaging of DENV2 infection and tells a cautionary tale for those exploring antisense oligonucleotides as probes for non-invasive imaging and monitoring of pathogen infections in experimental animal models.


Asunto(s)
Virus del Dengue/efectos de los fármacos , Virus del Dengue/fisiología , Hibridación in Situ , Imagen Molecular , Morfolinos/química , Péptidos/química , Replicación Viral/efectos de los fármacos , Animales , Chlorocebus aethiops , Humanos , Ratones , Oligonucleótidos Antisentido , Células Vero
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA