Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 222
Filtrar
1.
Chemosphere ; 363: 142928, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39048048

RESUMEN

Extracellular cellular adhesins facilitate microbial aggregation; however, most of the information about extracellular adhesins is based on pure culture studies. In this study, we characterized the hydrophobic characteristics and distribution of the extracellular adhesins in environmental biofilms and flocs. The hydrophobic characteristics of the extracellular adhesins were studied by sonicating the microbial aggregates to disperse the cells and by fractionating them using the microbial adhesion to the hydrocarbon method. Furthermore, we probed environmental biofilms and flocs using immunohistochemistry coupled with confocal laser scanning microscopy for reimaging the microbial aggregates based on extracellular adhesins. Small flocs have a relatively dispersed distribution of extracellular adhesins (flagella, fimbriae, pili, and amyloid adhesins). The stratified distribution of extracellular adhesins was observed in environmental biofilms. It was observed that the pili and amyloid adhesins were predominantly present in the core of biofilms, whereas flagella and fimbriae were present in the outer layer of the microbial aggregates. The dispersion of microbial aggregates is one of the limiting factors that challenge the sustainable application of wastewater treatment processes. Greater attention to the components of extracellular protein (such as the adhesins) is required to understand the aggregation of dispersible environmental microbial aggregates.


Asunto(s)
Biopelículas , Adhesinas Bacterianas/metabolismo , Adhesión Bacteriana , Fimbrias Bacterianas/metabolismo
2.
J Environ Sci (China) ; 146: 217-225, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38969449

RESUMEN

Membrane fouling is a bottleneck issue that hindered the further application of ultrafiltration technology. To alleviate membrane fouling, coagulation-ultrafiltration (C-UF) process using polyaluminum chloride (PACl) and PACl-Al13 with high proportion of Al13O4(OH)247+ as coagulants, respectively, were investigated at various pH conditions. Results indicated that an increase in solution pH contributed to larger floc size and looser floc structure for both PACl and PACl-Al13. It was conducive to the formation of more porous cake, as evidenced by mean pore area and pore area distribution of cake, leading to lower reversible fouling. Furthermore, humic acid (HA) removal presented a trend of first increasing and then decreasing with the increase of pH. The optimal HA removal was achieved at pH 6 regardless of coagulant type, suggesting that the slightest irreversible fouling should be occurred at this point. Interestingly, the irreversible fouling with PACl coagulant achieved a minimum value at pH 9, while the minimal irreversible fouling with PACl-Al13 was observed at pH 6. We speculated that the cake formed by PACl could further intercept HA prior to UF process at alkaline pH. Furthermore, compared with PACl, PACl-Al13 had a stronger charge neutralization ability, thus contributing to more compact floc structure and higher HA removal at various pH conditions. By UF fractionation measurement, higher HA removal for PACl-Al13 was due to higher removal of HA with molecular weight less than 50 kDa.


Asunto(s)
Sustancias Húmicas , Membranas Artificiales , Ultrafiltración , Ultrafiltración/métodos , Sustancias Húmicas/análisis , Floculación , Hidróxido de Aluminio/química , Purificación del Agua/métodos , Concentración de Iones de Hidrógeno , Eliminación de Residuos Líquidos/métodos
3.
Water Res ; 259: 121846, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38820733

RESUMEN

Ballasted flocculation is regarded as a most promising water treatment technology in aspects of retrofit and high-rate applications. To deep understand the incorporation behaviors of ballasting agent into ballasted floc growth, two distinct injection modes (namely a two-stage injection of polyacrylamide (PAM) alone, and a two-stage injection of both PAM and microsand) were developed in this study. Then, ballasted flocculation tests of kaolin and kaolin-HA (humic acid) waters were conducted at varying split ratios for fixed total dosages of both PAM and microsand. The experimental results showed that for either two-stage injection mode, the higher the second percentage of each split ratio, the greater the average size of maturated flocs at the second sub-stage of maturation. Meanwhile, the turbidity and UV254 values of settled water became lower at 30 and 180 s of sedimentation, suggesting that varying split ratios significantly affected the kinetics of ballasted floc growth. Moreover, it was suggested that the selection of either two-stage injection mode or corresponding split ratios played a more pronounced role in the HA removal than the total dosage of PAM. This suggestion was supported by SEM, FTIR and XPS analyses for surface morphological details, functional groups and chemical states of maturated flocs eventually formed in the kaolin-HA water through both two-stage injection modes. Accordingly, newly-established conceptual models of ballasted floc growth were proposed to explore the potential influencing mechanisms of varying split ratios on the ballasted flocculation performance. At each sub-stage of maturation, an appropriate dosage ratio between PAM and microsand was of great importance to effectively incorporate microsand particles into ballasted floc formation, besides the hydrolyzed produces of AS coagulant formed at the coagulation stage of ballasted flocculation. This study is expected to provide valuable insights for making ballasted flocculation more effective, economical and sustainable in water treatment engineering.


Asunto(s)
Floculación , Sustancias Húmicas , Caolín , Purificación del Agua , Caolín/química , Purificación del Agua/métodos , Resinas Acrílicas/química , Polímeros/química
4.
J Hazard Mater ; 472: 134421, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38718517

RESUMEN

Currently, the hidden risk of microplastics in the coagulation process has attracted much attention. However, previous studies aimed at improving the removal efficiency of microplastics and ignored the importance of interactions between microplastics and natural organic matter (NOM). This study investigated how polystyrene micro/nano particles impact the release of NOM during the aging of flocs formed by aluminum-based coagulants Al13 and AlCl3. The results elucidated that nano-particles with small particle sizes and agglomerative states are more likely to interact with coagulants. After 7 years of floc aging, the DOC content of the nano system decreased by more than 40%, while the micron system did not change significantly. During coagulation, the benzene rings in polystyrene particles form complexes with electrophilic aluminum ions through π-bonding, creating new Al-O bonds. NOM tends to adsorb at micro/nano plastic interfaces due to hydrophobic interactions and conformational entropy. In the aging process, the structure of PS-Al13 or PS-AlCl3 flocs and the functional groups on the surface of micro/nano plastics control the absorption and release of organic matter through hydrophobic, van der Waals forces, hydration, and polymer bridging. In the system with the addition of nano plastics, several DBPs such as TCAA, DCAA, TBM, DBCM and nitrosamines were reduced by more than 50%. The reaction order of different morphological structures and surface functional groups of microplastics to Al13 and AlCl3 systems is aromatic C-H > C-OH > C-O > NH2 > aromatic CC > aliphatic C-H and C-O>H-CO> NH2 >C-OH> aliphatic C-H. The results provided a new sight to explore the effect of micro/nano plastics on the release of NOM during flocs aging.

5.
Sci Total Environ ; 939: 173378, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-38795993

RESUMEN

Cyanobacterial blooms have been a growing problem in water bodies and attracted attention from researcher and water companies worldwide. Different treatment methods have been researched and applied either inside water treatment plants or directly into reservoirs. We tested a combination of coagulants, polyaluminium chloride (PAC) and iron(III) chloride (FeCl3), and ballasts, luvisol (LUV) and planosol (PLAN), known as the 'Floc and Sink' technique, to remove positively buoyant cyanobacteria from a tropical reservoir water. Response Surface Methodology (RSM) based on Central Composite Design (CCD) was used to optimize the two reaction variables - coagulant dosage (x1) and ballast dosage (x2) to remove the response variables: chlorophyll-a, turbidity, true color, and organic matter. Results showed that the combination of LUV with PAC effectively reduced the concentration of the response variables, while PLAN was ineffective in removing cyanobacteria when combined to PAC or FeCl3. Furthermore, FeCl3 presented poorer floc formation and lower removal efficiency compared to PAC. This study may contribute to the theoretical and practical knowledge of the algal biomass removal for mitigating eutrophication trough different dosages of coagulants and ballasts.


Asunto(s)
Cianobacterias , Eutrofización , Cianobacterias/crecimiento & desarrollo , Purificación del Agua/métodos , Cloruros/análisis , Floculación , Compuestos Férricos , Hidróxido de Aluminio/química , Suelo/química
6.
Water Environ Res ; 96(4): e11023, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38647151

RESUMEN

The frequent design challenge for existing water resource recovery facilities targets the accommodation of an ~50% load increase within the existing infrastructure and footprint. Off-loading this organic load at the top-end of the plant and redirection toward the digesters has proven the most efficient way of process intensification. The Triple A settler is an "activated primary treatment," stands for alternating activated adsorption, and can be retrofitted into existing rectangular or circular (mostly) primary tanks at a hydraulic retention time of 2 h and a sludge retention time of about 0.5 days. Several technology implementations demonstrate flexible designs adjusting to existing tank geometries and depths of 2.5 to 5.0 m. Different implementation scales from dry-weather flow rates ranging from 0.1 to 10 mgd show generic applicability of the functional principles at any scale: Biosorption, bioflocculation, and assimilation provide the key added value in pretreatment efficiencies of ~60/25/33 in %COD/%N/%P removal compared with application of pure physics in primary settling with typical 33%/9%/11% removal, respectively. PRACTITIONERS POINTS: Triple A is a hybrid form of A-stage and contact stabilizer for advanced primary treatment. Besides COD and TSS, also, P and N can be removed via Triple A. Triple A can be retrofitted in existing rectangular or circular tanks. This high-rate process does not worsen the conditions for enhanced biological phosphorus removal. Energy efficiency, capacity increase, and operational benefits are the main goals of Triple A.


Asunto(s)
Eliminación de Residuos Líquidos , Eliminación de Residuos Líquidos/métodos , Purificación del Agua/métodos , Reactores Biológicos , Aguas del Alcantarillado/química , Fósforo/química
7.
J Hazard Mater ; 471: 134314, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38640668

RESUMEN

Inorganic coagulants could effectively precipitate algae cells but might increase the potential risks of cell damage and coagulant residue. This study was conducted to critically investigate the suitability of polyaluminum (PAC), FeCl3 and TiCl4 for algae-laden water treatment in terms of the trade-off between algal substance removal, cell viability, and coagulant residue. The results showed that an appropriate increase in coagulant dosage contributed to better coagulation performance but severe cell damage and a higher risk of intracellular organic matter (IOM) release. TiCl4 was the most destructive, resulting in 60.85% of the algal cells presenting membrane damage after coagulation. Intense hydrolysis reaction of Ti salts was favorable for the formation of larger and more elongated, dendritic structured flocs than Al and Fe coagulants. TiCl4 exhibited the lowest residue level and remained in the effluents mainly in colloidal form. The study also identified charge neutralization, chemisorption, enmeshment, and complexation as the dominant mechanisms for algae water coagulation by metal coagulants. Overall, this study provides the trade-off analyses between maximizing algae substance removal and minimizing potential damage to cell integrity and is practically valuable to develop the most suitable and feasible technique for algae-laden water treatment.


Asunto(s)
Hidróxido de Aluminio , Supervivencia Celular , Compuestos Férricos , Floculación , Titanio , Purificación del Agua , Purificación del Agua/métodos , Hidróxido de Aluminio/química , Supervivencia Celular/efectos de los fármacos , Floculación/efectos de los fármacos , Compuestos Férricos/química , Titanio/química , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/toxicidad , Cloruros/química
8.
Water Res ; 255: 121512, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38554637

RESUMEN

Mud flocculation and settling play key role in understanding sediment transport cycle and affect water quality in estuaries and coastal seas. However, the morphological irregularity and structural instability of fragile mud flocs set huge obstacles for quantifying geometric property accurately and establishing reliable predicting tools in settling dynamics via previous observing strategies based on instant measured and 2-dimensional imagery floc parameterizations. Here we designed a multi-camera apparatus targeting capturing multiple angles of individual flocs, and developed a multi-view segmentation algorithm on floc images analysis. We finally accomplished batch of 3-dimensional reconstruction obtaining each settling floc's volumetric size in equilibrium flocculation. The results indicate a stable bimodal floc size distribution in equilibrium flocculation with a dominant peak of microflocs (<200 µm) and a secondary smaller peak of macroflocs (> 200 µm). The flocculi (<50 µm) shows more spherical outlines with dense structure while the larger-sized macroflocs (>200 µm) have high irregular morphologies with high porosity and visible biological debris attaching, and the microflocs (50-200 µm) tend to be irregular in shape and dense inside. The terminal settling velocity of mud flocs shows increasing with floc size in <200 µm but keeps stable around 1-2 mm s-1 after >200 µm due to the increase in size being compensated by the decrease of density according to the fractal theory on floc geometry. The higher organic matter content within larger porous flocs reduces the macroflocs effective density. These lead to high volumetric settling flux but low mass settling flux of macroflocs in natural water systems. This work provides new insight to reveal more accurate mud floc geometric parameterizations in volumetric aspect and reliable characterizations of equilibrium flocculation using a fast and sound batch of direct measuring approach. This may importantly improve the predictions of suspended mud dynamics in nature.

9.
Water Res ; 254: 121383, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38432002

RESUMEN

The gravity-driven membrane (GDM) system is desirable for energy-efficient water treatment. However, little is known about the influence of cations on biofilm properties and GDM performance. In this study, typical cations (Ca2+ and Na+) were used to reveal the combined fouling behavior and mechanisms. Results showed that Ca2+ improved the stable flux and pollutant removal efficiency, while Na+ adversely affected the flux. Compared with GDM control, the concentration of pollutants was lower in Ca-GDM, as indicated by the low biomass, proteins, and polysaccharides. A heterogeneous and loose biofilm was observed in the Ca-GDM system, with roughness and porosity increasing by 43.06 % and 32.60 %, respectively. However, Na+ induced a homogeneous and dense biofilm, with porosity and roughness respectively reduced by 17.48 % and 22.04 %. The richness of bacterial communities increased in Ca-GDM systems, while it decreased in Na-GDM systems. High adenosine triphosphate (ATP) concentration in Ca-GDM system was consistent with the abundant bacteria and their high biological activity, which was helpful for the efficient removal of pollutants. The abundance of Apicomplexa, Platyhelminthes, Annelida and Nematoda increased after adding Ca2+, which was related to the formation of loose biofilms. Computational simulations indicated that the free volumes of the biofilms in Ca-GDM and Na-GDM were 13.7 and 13.2 nm3, respectively. The addition of cations changed intermolecular forces, Ca2+ induced bridging effects led to large and loose floc particles, while the significant dehydration of hydrated molecules in the Na-GDM caused obvious aggregation. Overall, microbiological characteristics and contaminant molecular interactions were the main reasons for differences in GDM systems.


Asunto(s)
Contaminantes Ambientales , Purificación del Agua , Membranas Artificiales , Filtración/métodos , Biopelículas , Purificación del Agua/métodos , Cationes
10.
Sci Total Environ ; 927: 172023, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38547982

RESUMEN

A comprehensive floc model for simultaneous nitrification, denitrification, and phosphorus removal (SNDPR) was designed, incorporating polyphosphate-accumulating organisms (PAOs), glycogen-accumulating organisms (GAOs), intrinsic half-saturation coefficients, and explicit external mass transfer terms. The calibrated model was able to effectively describe experimental data over a range of operating conditions. The estimated intrinsic half-saturation coefficients of oxygen values for ammonia-oxidizing bacteria, nitrite-oxidizing bacteria, ordinary heterotrophic organisms (OHOs), PAOs, and GAOs were set at 0.08, 0.18, 0.03, 0.07, and 0.1 mg/L, respectively. Simulation suggested that low dissolved oxygen (DO) environments favor K-strategist nitrifying bacteria and PAOs. In SNDPR, virtually all influent and fermentation-generated volatile fatty acids were assimilated as polyhydroxyalkanoates by PAOs in the anaerobic phase. In the aerobic phase, PAOs absorbed 997 % and 171 % of the benchmark influent total phosphorus mass loading through aerobic growth and denitrification via nitrite. These high percentages were because they were calculated relative to the influent total phosphorus, rather than total phosphorus at the end of the anaerobic period. When considering simultaneous nitrification and denitrification, about 23.1 % of influent total Kjeldahl nitrogen was eliminated through denitrification by PAOs and OHOs via nitrite, which reduced the need for both oxygen and carbon in nitrogen removal. Moreover, the microbial and DO profiles within the floc indicated a distinct stratification, with decreasing DO and OHOs, and increasing PAOs towards the inner layer. This study demonstrates a successful floc model that can be used to investigate and design SNDPR for scientific and practical purposes.


Asunto(s)
Desnitrificación , Nitrificación , Fósforo , Eliminación de Residuos Líquidos , Fósforo/metabolismo , Fósforo/análisis , Eliminación de Residuos Líquidos/métodos , Reactores Biológicos , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/metabolismo , Modelos Teóricos
11.
Bioresour Technol ; 397: 130468, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38378102

RESUMEN

Positively charged bubbles efficiently capture and remove negatively charged algal cells without relying on coagulation-flocculation. However, the efficiency is notably influenced by the presence of algal organic matter (AOM). This study investigated the impact of AOM composition on flotation performance by analyzing AOM from various growth phases of Microcystis flos-aquae. The results indicated that low-concentration AOM (<5 mg C L-1), particularly the high molecular weight (>30 kDa) fractions containing high percentages of protein during the exponential growth phase, significantly improved the flotation efficiency by >18%. A high-speed camera system illustrates the pivotal role of low-concentration protein-containing AOM in forming network structures that enhance cell capture. These protein-driven network structures, which enhance the flotation efficiency, provide valuable insights into the development of effective in-situ algal bloom prevention techniques.


Asunto(s)
Microcystis , Microcystis/metabolismo , Eutrofización , Floculación
12.
Water Res ; 254: 121301, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38417265

RESUMEN

Fiber-based materials have emerged as a promising option to increase the efficiency of water treatment plants while reducing their environmental impacts, notably by reducing the use of unsustainable chemicals and the size of the settling tank. Cellulose fiber-based super-bridging agents are sustainable, reusable, and versatile materials that considerably improve floc separation in conventional settling tanks or via alternative screening separation methods. In this study, the effectiveness of fiber-based materials for wastewater treatment was evaluated at lab-scale (0.25 L) and at pilot-scale (20 L) for two separation methods, namely settling and screening. For the fiber-based method, the performance of floc separation during settling was slightly affected by an 80x upscaling factor. A small decrease in turbidity removal from 93 and 86 % was observed for the jar and pilot tests, respectively. By contrast, the turbidity removal of the conventional treatment, i.e., no fibers with a settling separation, was largely affected by the upscaling with turbidity removals of 84 and 49 % for jar and pilot tests, respectively. Therefore, results are suggesting that fiber-based super-bridging agents could be implemented in full-scale water treatment plants. Moreover, the tested fibers increase the robustness of treatment by providing better floc removal than conventional treatment under several challenging conditions such as low settling time and screening with coarse screen mesh size. Furthermore, at both lab-scale and pilot-scale, the use of fiber-based materials reduced the demand for coagulant and flocculant, potentially lowering the operational costs of water treatment plants and reducing the accumulation of metal-based coagulants and synthetic polymers in sludge. Acute toxicity tests using the model organism Daphnia magna show that the cellulose fibers introduce insignificant toxicity at the optimized fiber concentration. Although dedicated mechanistic studies are required at various scales to understand in detail the influence of fibers on water treatment (coagulation/flocculation time, floc formation, floc size distribution velocity gradient, etc.), the efficacy and scalability of the fiber-based approach, along with its minimal environmental impact, position it as a viable and sustainable option for existing and future wastewater treatment plants.


Asunto(s)
Eliminación de Residuos Líquidos , Purificación del Agua , Eliminación de Residuos Líquidos/métodos , Aguas del Alcantarillado , Polímeros/química , Purificación del Agua/métodos , Floculación , Celulosa
13.
Environ Sci Pollut Res Int ; 31(13): 20117-20132, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38374501

RESUMEN

Produced water (PW) is the largest by-product that comes out of the oil wells during oil and gas (O&G) field exploration. PW contains high-salt concentration along with other organic and inorganic components; therefore, PW must be treated before disposal. Electrocoagulation (EC) is an effective treatment method to remove pollutants from PW which has been the focus of many experimental studies; however, a mathematical model specifically for PW treatment by EC has not been developed yet. In this work, a comprehensive mathematical model has been developed to elucidate the role of EC operating parameters on the PW treatment performance and determine the mechanism for COD (Chemical Oxygen Demand) removal. The present model considers and identifies the dominant Al-hydroxy complex species and their contribution to the COD removal from synthetic PW samples by estimating their rate constants and comparing their magnitudes and investigates multi-scale modelling of the EC reactor. The influence of working parameters such as current density, initial pH, interelectrode distance, mixing speed and solution volume of PW on Al coagulant production and COD removal was investigated and modelled. The study estimates the rate constants of the reactions taking place for COD removal by EC process and by comparing their magnitudes identifies the dominant reactions and coagulant species involved in the process. The mathematical model prediction of COD removal fits well with the experimental data at 10 mA cm-2, 15 mA cm-2 and 20 mA cm-2 current density with R2 value of 0.96, 0.97 and 0.92, respectively and for dissolved Al concentration R2 value of 0.96, 0.99, and 0.97, respectively. The simulated results reproduced a good fit at initial pH of 6.1, 7.3 and 8.6 with R2 value of 0.92, 0.96 and 0.98, respectively for COD removal. The mathematical model and the experimental results showed the role of dominant Al-hydroxy complex species such as Al OH 2 + , Al OH 2 + , Al OH 3 , Al 2 OH 2 + 4 and Al OH 4 - in controlling the COD removal process. Under different operating conditions considered in the study, the model also predicted the COD removal performance of the EC reactors at different reactor volumes with R2 value of 0.96 for higher solution volume and larger reactor. The model presented and rate constants determined in the study will provide a theoretical basis for designing, scaling up and operating the EC reactor for oil-field PW treatment.


Asunto(s)
Aguas Residuales , Contaminantes Químicos del Agua , Eliminación de Residuos Líquidos/métodos , Aluminio , Agua , Yacimiento de Petróleo y Gas , Concentración de Iones de Hidrógeno , Electrodos , Electrocoagulación/métodos , Modelos Teóricos , Contaminantes Químicos del Agua/análisis , Residuos Industriales
14.
Water Res ; 254: 121352, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38401286

RESUMEN

Coagulation efficiency is heavily contingent upon a profound comprehension of the underlying mechanisms, facilitated by the evolution of coagulation theory. However, the role of anions, prevalent components in raw and wastewaters, has been relatively overlooked in this context. To address this gap, this study has investigated the impact of three common anions (i.e., chloride, sulfate, and phosphate) on Al-based coagulation. The results have shown that the influence of anions on coagulation depends predominantly on their ability to compete with hydroxyl groups throughout the entire coagulation process, encompassing hydrolysis, aggregation, and the growth of large flocs. Moreover, this competition is subject to the dual influence of both anion concentration and hydroxyl concentration (i.e., pH). The results have revealed the intricate interplay between anions and coagulants, their impact on floc structure, and their importance in optimizing coagulation efficiency and ensuring the production of high-quality water.


Asunto(s)
Sulfatos , Purificación del Agua , Floculación , Aniones , Aguas Residuales , Cationes , Purificación del Agua/métodos
15.
J Contam Hydrol ; 260: 104269, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38061243

RESUMEN

Electrocoagulation has been widely studied in oily wastewater treatment because of its high demulsification efficiency and no secondary reagent is required. Oil removal largely depends on the properties of the aggregates. This study aimed to explore the growth process of aggregates and oil removal near the anode by electrocoagulation. Four factors, current density, solution temperature, initial pH value, and electrode structure, were investigated. According to the findings, the current density and temperature have the most significant influence on the growth process of aggregates. The oil removal rate depends more on the average particle size than the fractal dimension. The results showed that the current density and solution temperature have the most significant influence on the parameters of the electrocoagulation process. With increasing current density, the aggregate growth rate and average particle size entering the stable period were accelerated, and the oil removal efficiency was promoted. The growth of aggregates was retarded at high temperatures. The change in the scope of the fractal dimension was minor, ranging from 1.65 to 1.84, during the growth process of the aggregates. Foamed aluminium electrodes were beneficial for accelerating aggregate growth instead of aluminium plates, but the energy consumption was obviously increased. The relationship between the mean particle size and mean fractal dimension of aggregates is consistent with the power function. From the point of view of aggregate growth, this study forms the basis for an in-depth understanding of the demulsification mechanism.


Asunto(s)
Aluminio , Aguas Residuales , Aceites , Electrocoagulación/métodos , Fractales , Eliminación de Residuos Líquidos/métodos
16.
Water Res ; 249: 120971, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38101042

RESUMEN

The digital transformation of sludge treatment processes requires online sensing of dewaterability. This topic has been attempted for many years based on macroscopic shear rheology. However, the relationship between rheological behavior and dewaterability remains noncommittal, and the reason is unclear. Herein, a binary gel-like structure model was proposed including the interactions network at the supra-flocs level and the gel-like structure at the flocs level. Multiple advanced techniques including optical tweezers were employed to precisely understand the binary gel-like structure and to classify the correlation mechanism between this gel-like structure, rheological behavior, and dewaterability. The analysis of sludge from eight wastewater treatment plants showed the binary gel-like structures at both supra-flocs and flocs levels have significant relationships with sludge dewaterability (p < 0.05). Further deconstruction of the sludge viscoelastic behavior illustrated that the gel-like structure at the supra-flocs level dominates the rheological behavior of sludge. Moreover, the direct description of the binary gel-like structure in four typical sludge treatment processes highlighted the importance of the flocs level's structure in determining the dewaterability. Overall, this study revealed that shear rheology may prefer to stress the interactions network at the supra-flocs level but mask the flocs level's structure, although the latter is important. This observation may provide a general guideline for the design of robust sensors for dewaterability.


Asunto(s)
Aguas del Alcantarillado , Purificación del Agua , Aguas del Alcantarillado/química , Agua/química , Purificación del Agua/métodos , Reología , Eliminación de Residuos Líquidos/métodos
17.
Int J Syst Evol Microbiol ; 73(11)2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37990978

RESUMEN

A floc-forming bacterial strain, designated HF-7T, was isolated from the activated sludge of an industrial wastewater treatment plant in Hefei, PR China. Cells of this strain were Gram-stain-positive, catalase- and oxidase-negative, facultatively anaerobic, and rod-shaped. Growth occurred at 20-42 °C (optimum, 28 °C), at pH 5.5-10.5 (optimum, pH 7.5) and with 0-8.0 % (w/v) NaCl (optimum, 1 %). The major fatty acid was anteiso-C15 : 0. The polar lipid profile contained phosphatidylglycerol, diphosphatidylglycerol and phosphatidylinositol. The DNA G+C content was 67 mol% from whole genomic sequence analysis. Based on the results of 16S rRNA gene sequence analysis, this strain should be assigned to the genus Tessaracoccus and is closely related to Tessaracoccus arenae CAU 1319T (95.87 % similarity), Tessaracoccus lapidicaptus IPBSL-7T (95.19 %) and Tessaracoccus bendigoensis Ben 106T (94.63 %) but separated from them by large distances in different phylogenetic trees. Based on whole genome analysis, the orthologous average nucleotide identity and in silico DNA-DNA hybridization values against two of the closest relatives were 75.21-76.50 % and 14.2-24.4 %, respectively. The phylogenetic, genotypic, phenotypic and chemotaxonomic data demonstrated that strain HF-7T could be distinguished from its phylogenetically related species and represents a novel species within the genus Tessaracoccus, for which the name Tessaracoccus caeni sp. nov. is proposed. The type strain is HF-7T (=KCTC 49959T=CCTCC AB 2023019T).


Asunto(s)
Ácidos Grasos , Propionibacteriaceae , Ácidos Grasos/química , Aguas del Alcantarillado/microbiología , Filogenia , ARN Ribosómico 16S/genética , ADN Bacteriano/genética , Análisis de Secuencia de ADN , Composición de Base , Técnicas de Tipificación Bacteriana , China , Fosfolípidos/química
18.
Nanomaterials (Basel) ; 13(17)2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37686928

RESUMEN

This study aims to provide a comprehensive understanding of the key factors influencing the rheological behavior and the mechanisms of natural polyelectrolyte complexes (PECs) as flocculation agents for cellulose microfibers (CMFs) and nanofibers (CNFs). PECs were formed by combining two polyelectrolytes: xylan (Xyl) and chitosan (Ch), at different Xyl/Ch mass ratios: 60/40, 70/30, and 80/20. First, Xyl, Ch, and PEC solutions were characterized by measuring viscosity, critical concentration (c*), rheological parameter, ζ-potential, and hydrodynamic size. Then, the flocculation mechanisms of CMF and CNF suspensions with PECs under dynamic conditions were studied by measuring viscosity, while the flocculation under static conditions was examined through gel point measurements, floc average size determination, and ζ-potential analysis. The findings reveal that PEC solutions formed with a lower xylan mass ratio showed higher intrinsic viscosity, higher hydrodynamic size, higher z-potential, and a lower c*. This is due to the high molecular weight, charge, and gel-forming ability. All the analyzed solutions behave as a typical non-Newtonian shear-thinning fluid. The flocculation mechanisms under dynamic conditions showed that a very low dosage of PEC (between 2 and 6 mg PEC/g of fiber) was sufficient to produce flocculation. Under dynamic conditions, an increase in viscosity indicates flocculation at this low PEC dosage. Finally, under static conditions, maximum floc sizes were observed at the same PEC dosage where minimum gel points were reached. Higher PEC doses were required for CNF suspensions than for CMF suspensions.

19.
Water Res ; 244: 120451, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37582321

RESUMEN

Biophysical cohesive mud, consisting of clay minerals and extracellular polymeric substance (EPS), plays significant role in determining sediments, nutrients and pollutants transport in estuarine and coastal systems. Series of laboratory jar experiments have been conducted aiming at filling the gap of knowledge regarding how biological cohesive EPS affects equilibrium flocculation of EPS-mineral mixtures. Four types of common clay (chlorite, kaolinite, illite and montmorillonite) were chosen due to their abundance in estuarine mud and distinct crystal chemistry and structures. Turbulent shear throughout all the experimental runs were constantly provided at a mean shear parameter of G ≈ 15 s-1 being equivalent to high tidal influenced estuarine turbulent environment. The results reveal that adding EPS increases the equilibrium floc size evidently. The pure mineral flocs show unimodal equilibrium floc size distribution (eFSD) with single peak located at microfloc range (<200 µm) while the EPS-mineral flocs show bimodal eFSD with a secondary peak located in macroflocs range (>200 µm) mostly. Moreover, EPS largely reduces the effective density in EPS-mineral flocs by 1∼2 magnitude. Most importantly, the terminal settling velocity of flocs shows size-dominated in uniform mineral floc cases but density-dominated in EPS-mineral mixture floc cases especially in macroflocs. To model a full floc size or settling velocity distributions in natural environments, furtherly quantification of EPS functions within the large-sized non-fractal mixture floc individually becomes a necessity.


Asunto(s)
Matriz Extracelular de Sustancias Poliméricas , Eliminación de Residuos Líquidos , Arcilla , Eliminación de Residuos Líquidos/métodos , Floculación , Salinidad , Caolín , Agua
20.
Chemosphere ; 341: 139798, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37572708

RESUMEN

Current methods of optimizing the coagulant dosage in wastewater treatment processes typically rely on the use of labor- and material-intensive jar testers, which are inadequate when coagulation processes require frequent adjustments due to variations in properties of the incoming feed. Analytical centrifuges (ACs) employ an integrated optics system that simultaneously monitors the position of the boundary between two separating phases in multiple samples of fairly low volumes (∼2 mL) - thus it was expected that ACs would be ideally suited to study the stability and settling kinetics of coagulation treatment processes. In this study, wastewater samples from a biogas generation facility (known as centrate) were collected in February 2022 (Batch A) and July 2022 (Batch B). A comprehensive screening of the treatment performance for Batch B was conducted at three pHs (5, 6, and 7) and nine concentrations of ferric chloride (0-500 mg-Fe3+/L) - it was found that the front-tracking profiles measured by the integrated optics system could be used to identify the minimal coagulation conditions needed to transition from slow to rapid settling. While the settling velocity was found to be well correlated with the instability index, a dimensionless number between 0 and 1 (where values closer to 1 indicate better separation), it was determined that the percentage of COD removal from the centrate samples increased up to an instability index of approximately 0.5 and then plateaued. Finally, it was found that the front-tracking profiles could be used to estimate the volume of sludge produced at various coagulation conditions. Thus, the results from this study establish ACs as an important screening tool for rapid evaluation of treatment performance while consuming minimal material and time - in this study, a total of 132 screening experiments were conducted using approximately ∼11 L of centrate and ∼6 hours of operator time.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento , Eliminación de Residuos Líquidos , Eliminación de Residuos Líquidos/métodos , Aguas Residuales , Aguas del Alcantarillado , Floculación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA