Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Gels ; 10(3)2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38534615

RESUMEN

Polybenzoxazines (Pbzs) are advanced forms of phenolic resins that possess many attractive properties, including thermal-induced self-curing polymerization, void-free polymeric products and absence of by-product formation. They also possess high Tg (glass transition temperature) and thermal stability. But the produced materials are brittle in nature. In this paper, we present our attempt to decrease the brittleness of Pbz by blending it with polyvinylalcohol (PVA). Benzoxazine monomer (Eu-Ed-Bzo) was synthesized by following a simple Mannich condensation reaction. The formation of a benzoxazine ring was confirmed by FT-IR and NMR spectroscopic analyses. The synthesized benzoxazine monomer was blended with PVA in order to produce composite films, PVA/Pbz, by varying the amount of benzoxazine monomer (1, 3 and 5 wt. % of PVA). The property of the composite films was studied using various characterization techniques, including DSC, TGA, water contact angle analysis (WCA) and SEM. WCA analysis proved that the hydrophobic nature of Pbz (value) was transformed to hydrophilic (WCA of PVA/Pbz5 is 35.5°). These composite films could play the same role as flexible electrolytes in supercapacitor applications. For this purpose, the composite films were immersed in a 1 M KOH solution for 12 h in order to analyze their swelling properties. Moreover, by using this swelled gel, a symmetric supercapacitor, AC//PVA/Pbz5//AC, was constructed, exhibiting a specific capacitance of 170 F g-1.

2.
Small ; 20(23): e2309162, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38152973

RESUMEN

Polymeric solid electrolytes have attracted tremendous interest in high-safety and high-energy capacity lithium-sulfur (Li─S) batteries. There is, however, still a dilemma to concurrently attain high Li-ion conductivity and high mechanical strength that effectively suppress the Li-dendrite growth. Accordingly, a rapidly Li-ion conducting solid electrolyte is prepared by grafting pyrrolidinium cation (PYR+)-functionalized poly(ethylene glycol) onto the poly(arylene ether sulfone) backbone (PAES-g-2PEGPYR). The PYR+ groups effectively immobilize anions of Li-salts in Li-conductive PEGPYR domains phase-separated from PAES matrix to enhance the single-ion conduction. The tailored PAES-g-2PEGPYR membrane shows a high Li-ion transference number of 0.601 and superior ionic conductivity of 1.38 mS cm-1 in the flexible solid state with the tensile strength of 1.0 MPa and Young's modulus of 1.5 MPa. Moreover, this PAES-g-2PEGPYR membrane exhibits a high oxidation potential (5.5 V) and high thermal stability up to 200 (C. The Li/PAES-g-2PEGPYR/Li cell stably operates for 1000 h without any short circuit, and the rechargeable Li/PAES-g-2PEGPYR/S cell discharges a capacity of 1004.7 mAh g-1 at C/5 with the excellent rate capability and the prominent cycling performance of 95.3% retention after 200 cycles.

3.
ACS Nano ; 17(3): 1764-1802, 2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36716429

RESUMEN

The advent of 5G and the Internet of Things has spawned a demand for wearable electronic devices. However, the lack of a suitable flexible energy storage system has become the "Achilles' Heel" of wearable electronic devices. Additional problems during the transformation of the battery structure from conventional to flexible also present a severe challenge to the battery design. Flexible Zn-based batteries, including Zn-ion batteries and Zn-air batteries, have long been considered promising candidates due to their high safety, eco-efficiency, substantial reserve, and low cost. In the past decade, researchers have come up with elaborate designs for each portion of flexible Zn-based batteries to improve the ionic conductivities, mechanical properties, environment adaptabilities, and scalable productions. It would be helpful to summarize the reported strategies and compare their pros and cons to facilitate further research toward the commercialization of flexible Zn-based batteries. In this review, the current progress in developing flexible Zn-based batteries is comprehensively reviewed, including their electrolytes, cathodes, and anodes, and discussed in terms of their synthesis, characterization, and performance validation. By clarifying the challenges in flexible Zn-based battery design, we summarize the methodology from previous investigations and propose challenges for future development. In the end, a research paradigm of Zn-based batteries is summarized to fit the burgeoning requirement of wearable electronic devices in an iterative process, which will benefit the future development of Zn-based batteries.

4.
ACS Appl Mater Interfaces ; 13(9): 11018-11025, 2021 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-33629848

RESUMEN

The growing demand for safer lithium-ion batteries draws researchers' attention to solid-state electrolytes. In general, a desired electrolyte should be flexible, mechanically strong, and with high ionic conductivity. A solid-state electrolyte with a polymer as a matrix seems to be able to meet these demands. However, a pure polymer electrolyte lacks sufficient strength to suppress Li dendrites, and hybrids with ceramic components often lead to poor flexibility, both far from satisfactory. Herein, a solid-state electrolyte is designed by employing a mass-produced porous polyamide (PA) film infiltrated with polyethylene oxide (PEO)/lithium bis(trifluoromethanesulfonyl)imide (LiTFSI). The PA/PEO/LiTFSI electrolyte is flexible but robust with a Young's modulus of up to 1030 MPa, ensuring steady Li//Li cycling without short circuit for more than 400 h. Also, the porous structure of the PA film decreases the crystalline regions and effectively enhances the ionic conductivity (2.05 × 10-4 S cm-1 at 30 °C). When cycled at 1C, solid-state LiFePO4//Li batteries assembled with the PA/PEO/LiTFSI electrolyte retain 82% capacity after 300 cycles (60 °C). In addition, a flexible LiFePO4//PA/PEO/LiTFSI//Li pouch cell can also work well in harsh operating environments, such as being folded, crimped, and pierced.

5.
Front Chem ; 8: 372, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32528925

RESUMEN

Zn-air battery is considered as one of the most promising candidates for next-generation batteries for energy storage due to safety, high energy density, and low cost. There are many challenges in electrolytes for developing high-performance rechargeable Zn-air cells as well as electrocatalysts. An electrolyte is the crucial part of the rechargeable Zn-air batteries that determine their capacity, cycling stability, and lifetime. This paper reviews the most recent progress in designing and fabricating electrolytes in aqueous and flexible Zn-air batteries. The discussion on the surface reaction relationships was covered between air-catalyst-electrolyte and electrolyte-zinc reaction mechanism. We highlight the recent developments of three different electrolytes in zinc-air battery: aqueous electrolyte, room temperature ionic liquid, and quasi-solid flexible electrolyte. Furthermore, the general perspective is proposed for designing and fabricating electrolytes to improve the performance and prolong the lifetime of Zn-air batteries.

6.
ACS Appl Mater Interfaces ; 12(9): 10382-10388, 2020 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-32022534

RESUMEN

The increasing demand for high-energy-density batteries stimulated the revival of research interest in Li-metal batteries. The garnet-type ceramic Li7La3Zr2O12 (LLZO) is one of the few solid-state fast-ion conductors that are stable against Li metal. However, the densification of LLZO powders usually requires high sintering temperatures (e.g., 1200 °C), which likely result in Li loss and various side reactions. From an engineering point of view, high-temperature sintering of thin LLZO electrolytes (brittle) at a large scale is difficult. Moreover, the high interfacial resistance between the solid LLZO electrolytes and electrodes is a notorious problem. Here, we report a practical synthesis of a flexible composite Al-doped LLZO (Al-LLZO) sheet electrolyte (75 µm in thickness), which can be mass-produced at room temperature. This ceramic-based flexible sheet electrolyte enables Li-metal batteries to operate at both 60 and 30 °C, demonstrating its potential application for developing practical Li-metal batteries.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA